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Abstract

In this paper, a new distribution called the Marshall-Olkin Rayleigh Lomax distribution is introduced
and studied. Marshall and Olkin [1] proposed an interesting method of adding a parameter to well-
known distributions, so we extended the Rayleigh Lomax distribution by the Marshall-Olkin method.
For this new distribution, the probability density function, cumulative distribution function, hazard rate,
survival function, moments and order statistics are derived. Then, maximum likelihood estimators and
the confidence intervals of the model parameters by observed Fisher information matrix are obtained.
Further, Bayes estimates under squared error and linear exponential loss functions using Markov Chain
Monte Carlo methods are obtained. Finally, the comparative study of different method of estimations is
carried out using Monte Carlo simulation method.

1 Introduction

An important topic for many researchers is to expand the family of distributions because it adds flexibility
to the original distribution. There are many ways to generate new distributions from original distributions.
One of these methods is proposed by Marshall and Olkin [1], in which the original distributions could be
found as a special case of new distribution.
The Rayleigh distribution was introduced by Rayleigh [2] and Lomax distribution was given by Lomax [3].

These two important distributions in statistical science are widely used in the field of medicine, engineering,
business and actuarial sciences. Fatima et al. [4] introduced a new probability model called Rayleigh Lomax
distribution as a mixture of above two models and studied its distributional properties. This distribution
is more flexible as compared to its base distributions. Sankaran and Jayakumar [5] studied the physical
interpretation of MO family by considering odd models. Jose [6] provided the applications of MO family
in reliability theory. Bdair [7] studied some methods of estimation for MO exponential distribution. Many
researchers have used extended family distribution to generate new forms of the distributions. Some statis-
tical properties of these new distributions were illustrated. For example, Alice and Jose [8] introduced MO
Pareto distributions and its reliability applications. MO Extended Lomax distribution has been introduced
by Ghitany et al. [9]. MO extended Weibull distribution was studied by Cordeiro and Lemonte [10]. Gui [11]
studied MO power log-normal distribution. Singh et al. [12] presented Bayesian estimation of MO extended
exponential parameters. For more details one can see, [13, 14, 15, 16, 17, 18]. The aim of this paper is to
provide a new extension of Rayleigh Lomax distribution called Marshall—Olkin Rayleigh Lomax (MORL)
distribution and study some of its properties and methods of estimation for the unknown parameters. The
paper is organized as follows:
MORL distribution and some properties are introduced in section 2. The maximum likelihood estimations

(MLEs) of the unknown parameters for MORL distribution are derived and confidence intervals by Fisher
information matrix are obtained in section 3. In section 4, MCMC is used to obtain the Bayes estimates of
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2 Inference Based on Marshall-Olkin Extended Rayleigh Lomax Distribution

the parameters. In section 5, simulation study to compare the effi ciency of different methods is provided.
The discussion of this work is concluded in section 6.

2 New Model and its Properties

The probability density function (PDF) and cumulative distribution function (CDF) of the Rayleigh Lomax
distribution respectively are given by

f(x) =
βλ

θ

(
θ

θ + x

)−2λ+1

e−
β
2 ( θ

θ+x )
−2λ

, x ≥ −θ; θ, λ, β > 0 (1)

and
F (x) = 1− e−

β
2 ( θ

θ+x )
−2λ

, x ≥ −θ; θ, λ, β > 0. (2)

Without loss of generality throughout the discussion we shall consider λ = 0.5. Therefore (1) and (2) becomes

f(x) =
β

2 θ
e−

β
2θ (θ+x), x ≥ −θ; θ, β > 0 (3)

and
F̄ (x) = e−

β
2θ (θ+x), x ≥ −θ; θ, β > 0. (4)

Marshall and Olkin [1] proposed a method to expand families of distributions based on the survival function
of a distribution by adding a new parameter. If F̄ (x)denote the survival function of a continuous random
variable X. Then, the survival function of Marshall Olkin (MO) distribution is given by

Ḡ(x, α) =
αF̄ (x)

1− ᾱF̄ (x)
, −∞ < x <∞, α > 0, ᾱ = 1− α. (5)

Then the survival function of the three parameters MORL distribution is defined as

F̄ (x, α, β, θ) =
αe−

β
2θ (θ+x)

1− ᾱe− β
2θ (θ+x)

, x > −θ. (6)

The PDF and hazard rate function (HRF) of MORL distribution, respectively are

f(x, α, β, θ) =
αβe−

β
2θ (θ+x)

2θ
(

1− ᾱe− β
2θ (θ+x)

)2 , α, β, θ > 0, x > −θ (7)

and

h(x, α, β, θ) =
β

2θ
(

1− ᾱe− β
2θ (θ+x)

) , α, β, θ > 0, x > −θ. (8)

Figures 1—6 describe different forms of the PDF, CDF, HRF of the MORL distribution for different values
of the parameters β and θ at α = 3.
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2.1 Moments

In any statistical analysis, moments are important and have significant applications. The jth moment of the
MORL distribution is given as

E(Xj) =

∫ ∞
−θ

xj
αβe−

β
2θ (θ+x)

2θ(1− ᾱe− β
2θ (θ+x))2

dx. (9)

Let β
2θ (θ + x) = t in (9). Then

E(Xj) = αθj
∫ ∞

0

(
2t

β
− 1

)j
e−t

(1− ᾱe−t)2
dt

= αθj
j∑
i=0

(−1)i
(

2

β

)j−i ∫ ∞
0

tj−i
e−t

(1− ᾱe−t)2
dt

= αθj
j∑
i=0

(−1)i
(

2

β

)j−i ∞∑
l=1

l(ᾱ)l−1

∫ ∞
0

e−lttj−idt

= αθj
j∑
i=0

∞∑
l=1

(−1)i
(

2

β

)j−i
l(ᾱ)l−1 Γ(j − i+ 1)

(lj−i+1)
. (10)

2.2 Order Statistics

In a random sample of size n from a continuous distribution, the probability density function of rth order
statistic Xr:n is

fr:n(x) =
n!

(r − 1)!(n− r) [F (x)]r−1[1− F (x)]n−rf(x). (11)
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The expression (11) can also be expressed as

fr:n(x) = Cr:n

r−1∑
j=0

(−1)j
(
r − 1

j

)
[1− F (x)]n+j−rf(x), (12)

where Cr:n = n!
(r−1)!(n−r)! . Thus using (12), the PDF of r

th order statistic Xr:n from MORL in view of (6)
and (7) can be written as

fr:n(x) =
β

2θ
Cr:n

r−1∑
j=0

(−1)j
(
r − 1
j

)
αn+j−r+1e−

β
2θ (n+j−r+1)(θ+x)

×(1− ᾱe−
β
2θ (θ+x))−(n+j−r+2).

Since (1− x)−n =
∑∞
m=0

(
m+n−1

m

)
xm, the above PDF of Xr:n can be expressed as

fr:n(x) =
β

2θ
Cr:n

r−1∑
j=0

∞∑
m=0

(−1)j
(
r − 1

j

)(
m+ n+ j − r + 1

m

)
×αn+j−r+1ᾱme−

β(θ+x)
2θ (m+n+j−r+1). (13)

The CDF of Xr:n is

Fr:n(x) =

n∑
i=r

(
n

i

)
[F (x)]i[1− F (x)]n−i =

n∑
i=r

i∑
j=0

(−1)j
(
n

i

)(
i

j

)
[1− F (x)]n−i+j .

Now using (6), the CDF of rth order statistics from MORL distribution is given as

Fr:n(x) =

n∑
i=r

i∑
j=0

∞∑
k=0

(−1)i
(
n

i

)(
i

j

)(
k + n− i+ j

k

)
αn−i+j(ᾱ)ke−

β
2θ (θ+x)(n−i+j+k). (14)

3 Classical Estimation

In this section, the MLEs and confidence intervals based on approximate Fisher information matrix of the
unknown parameters α, β and θ are evaluated.

3.1 Maximum Likelihood Estimation

Let X1, X2, ..., Xn be a random sample from MORL distribution. Then the likelihood function is given by

L(ψ;x
¯
) = αnβn(2θ)−ne−

β
2θ (nθ+

∑n
i=1 xi)

n∏
i=1

[
1− ᾱe−

β
2θ (θ+xi)

]−2

, (15)

where ψ = (α, β, θ). The log-likelihood function `(θ) is given by

`(ψ;x
¯
) = n lnα+ n lnβ − n ln(2θ)− β

2θ
(nθ +

n∑
i=1

xi)− 2

n∑
i=1

ln
[
1− ᾱe−

β
2θ (θ+xi)

]
.

Thus, we have
∂`(ψ;x

¯
)

∂α
=
n

α
− 2

n∑
i=1

[C−1
i (ψ) e−

β
2θ (θ+xi)], (16)
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∂`(ψ;x
¯
)

∂β
=
n

β
− n(θ + x̄)

2θ
− 2

n∑
i=1

ᾱ

2θ
[C−1
i (ψ)(θ + xi)e

− β
2θ (θ+xi)], (17)

and
∂`(ψ;x

¯
)

∂θ
= −n

θ
+
βnx̄

2θ2 +

n∑
i=1

ᾱβ

θ2 [C−1
i (ψ)xie

− β
2θ (θ+xi)], (18)

where Ci(ψ) = 1− ᾱe− β
2θ (θ+xi); ψ = (α, β, θ), i = 1, 2, ..., n and x̄ = 1

n

∑n
i=1 xi.

Making use of
∂`(ψ;x

¯
)

∂α = 0,
∂`(ψ;x

¯
)

∂β = 0 and
∂`(ψ;x

¯
)

∂θ = 0 in (16), (17) and (18), we get a system of three
nonlinear equations in three unknowns parameters α, β and θ. To find a numerical solution of the system,
one can use the Newton-Raphson method.

3.2 Asymptotic Confidence Intervals

Now, we can use the asymptotic distributions of the MLEs for the parameters ψ = (α, β, θ), to find the
approximate confidence intervals for the parameters. The asymptotic distribution of the MLEs of ψ is given
by [

(α̂− α), (β̂ − β), (θ̂ − θ)
]
→ N [0, I−1(α, β, θ)],

where I−1(α, β, θ) is the variance-covariance matrix of the parametersψ = (α, β, θ), and it can be approx-
imated by the inverse of observed Fisher-information matrix. Observed Fisher-information matrix is given
by

I(α̂, β̂, θ̂) =


∂2`
∂α2

∂2`
∂α∂β

∂2`
∂α∂θ

∂2`
∂α∂β

∂2`
∂β2

∂2`
∂β∂θ

∂2`
∂α∂θ

∂2`
∂β∂θ

∂2`
∂θ2


(α, β, θ)=(α̂, β̂, θ̂)

=

 I11 I12 I13

I21 I22 I23

I31 I32 I33


The elements of matrix I(α̂, β̂, θ̂) can be expressed using following equations

∂2`(ψ;x
¯
)

∂α2
= − n

α2
+ 2

n∑
i=1

[C−2
i (ψ) e−

β
θ (θ+xi)],

∂2`(ψ;x
¯
)

∂α∂β
=

n∑
i=1

(θ + xi)

θ
C−2
i (ψ) e−

β
2θ (θ+xi),

∂2`(ψ;x
¯
)

∂α∂θ
= −

n∑
i=1

βxi

θ2 C−2
i (ψ) e−

β
2θ (θ+xi),

∂2`(ψ;x
¯
)

∂β2 = − n

β2 +

n∑
i=1

ᾱ(θ + xi)
2

2θ2 C−2
i (ψ) e−

β
2θ (θ+xi),

∂2`(ψ;x
¯
)

∂β∂θ
=

nx̄

2θ2 −
ᾱ

2θ3

n∑
i=1

e−
β
2θ (θ+xi)[C−1

i (ψ)xi(βxi + βθ − 2θ) + ᾱβxiC
−2
i (ψ)e−

β
2θ (θ+xi)(θ + xi)],

∂2`(ψ;x
¯
)

∂θ2 =
n

θ2 −
β

θ3

n∑
i=1

xi +
βᾱ

2θ4

n∑
i=1

xie
− β

2θ (θ+xi)[−4θC−1
i (ψ) + βxiC

−1
i (ψ) + βᾱxiC

−2
i (ψ)e−

β
2θ (θ+xi)].

Then, the approximate 100(1− γ)% two-sided confidence intervals for α, β and θ are, respectively, given by[
α̂ML ± Zγ/2

√
I−1
11 (α̂ML), (β̂ML ± Zγ/2

√
I−1
22 (β̂ML), (θ̂ML ± Zγ/2

√
I−1
33 (θ̂ML)

]
,

where Zγ/2 is the upper 100(γ/2)th percentile of the standard normal distribution.
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4 Bayesian Estimation

In this section, we shall consider square error (SE) and linear exponential (LINEX) loss function to find the
Bayes estimates (BEs) of the parametersα, β and θ. For obtaining the BEs, informative priors are used.
Suppose the parameters α, β and θ are independent, then

π1(α) ∝ αλ1−1e−α/η1 ; λ1, η1 > 0,

π2(β) ∝ βλ2−1e−β/η2 ; λ2, η2 > 0,

π3(θ) ∝ θλ3−1e−θ/η3 ; λ3, η3 > 0.

Many authors used the gamma prior because it covers all prior information of the experimenter. For more
details, see [19], [20]. Then the joint prior is given by

π(α, β, θ) ∝ αλ1−1βλ2−1θλ3−1e−α/η1−β/η2−θ/η3 ; λ1, λ2, λ3, η1, η2, η3 > 0. (19)

From (15) and (19), the joint posterior density function is

π∗(α, β, θ|x
¯
) ∝ L(α, β, θ;x

¯
)π(α, β, θ)

∝ αn+λ1−1βn+λ2−1θλ3−n−1e−α/η1−β/η2−θ/η3 e
−β
2θ (nθ+

∑n
i=1 xi)

n∏
i=1

[
1− ᾱe−

β
2θ (θ+x)

]−2

. (20)

Based on SE loss and LINEX loss functions, the BE of the function Φ(ψ) = Φ(α, β, θ) of the model parameters
α, β and θ can be written, respectively, as

Φ̂SE(ψ) = E[Φ(ψ)|x
¯
] =

∫
ψ

Φ(ψ)π∗(ψ|x
¯
)dψ

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

Φ(α, β, θ)π∗(α, β, θ|x
¯
)dαdβdθ

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

Φ(α, β, θ)αn+λ1−1βn+λ2−1θλ3−n−1e−α/η1−β/η2−θ/η3

× e−
β
2θ (nθ+

∑n
i=1 xi)

n∏
i=1

[1− ᾱe−
β
2θ (θ+x)]−2dαdβdθ, (21)

Φ̂LINEX(ψ) = −1

c
ln
[
E(exp(−c Φ(ψ)|x

¯
)
]

= −1

c
ln

[∫ ∞
0

∫ ∞
0

∫ ∞
0

e−cΦ(α,β,θ)π∗(α, β, θ|x
¯
)dαdβdθ

]
= −1

c
ln [

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−cΦ(α,β,θ)αn+λ1−1βn+λ2−1θλ3−n−1e−α/η1−β/η2−θ/η3e−
β
2θ (nθ+

∑n
i=1 xi)

×
n∏
i=1

[1− ᾱe−
β
2θ (θ+x)]−2 dαdβdθ], (22)

where E(·) is the expected value and c is an arbitrary constant. This integration cannot be in closed form.
Therefore, we adopt MCMC method to approximate this integral.
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4.1 MCMC Method

In Bayesian analysis, methods such as MCMC have revolutionized Bayesian statistical computation. For full
details on the advantages of the method, one can see [21, 22, 23]. In this section, we have studied Gibbs
sampling, which is MCMC algorithm for obtaining a sequence of random samples from posterior function to
compute the BEs and credible intervals under the SE and LINEX loss functions. From (20), the conditional
posterior density functions of the parameters α, β and θ can be written, respectively, as follows

π∗α(α|β, θ;x
¯
) ∝ αn+λ1−1e−α/η1

n∏
i=1

[
1− ᾱe−

β
2θ (θ+x)

]−2

, (23)

π∗β(β|α, θ;x
¯
) ∝ βn+λ2−1e−β/η2e−

β
2θ (nθ+

∑n
i=1 xi)

n∏
i=1

[
1− ᾱe−

β
2θ (θ+x)

]−2

, (24)

and

π∗θ(θ|α, β;x
¯
) ∝ θλ3−n−1e−θ/η3e−

β
2θ (nθ+

∑n
i=1 xi)

n∏
i=1

[
1− ᾱe−

β
2θ (θ+x)

]−2

. (25)

The equations (23), (24) and (25) cannot be reduced analytically to known distributions from the condi-
tional posterior distributions of α, β and θ. So, to solve this problem, we use the Metropolis-Hastings (MH)
algorithm, which is used to generate random samples by using normal proposal distribution. For more
information, see [24]. To compute the Bayes estimators, we used the following algorithm.
Algorithm 1

1. Start with an (α(0) = α̂MLE , β
(0) = β̂MLE and θ(0) = θ̂MLE).

2. Set t = 1.

3. Use MH algorithm to generate α(t) from π∗α(α(t−1)|β(t−1), θ(t−1);x
¯
) with the proposal distribution

N
(
α(t−1), V ar(α̂ML)

)
, β(t) from π∗β(β(t−1)|α(t), θ(t−1);x

¯
) with the proposal distribution

N
(
β(t−1), V ar(β̂ML)

)
and then generate θ(t) from π∗θ(θ

(t−1)|β(t), θ(t);x
¯
) with the proposal distribution

N
(
θ(t−1), V ar(θ̂ML)

)
.

4. Set t = t+ 1.

5. Repeat steps 2-4 N times.

6. Obtain α(t), β(t) and θ(t), t = M + 1, . . . .., N , and now, the approximate means of Φ(α, β, θ) and
exp [−cΦ(α, β, θ)] are given, respectively, by

E
[
Φ(α, β, θ)|x

¯

]
=

1

N −M

N∑
t=M+1

Φ(α(t), β(t), θ(t)),

E
[
exp(−cΦ(α, β, θ)|x

¯
)
]

=
1

N −M

N∑
t=M+1

exp
[
−cΦ(α(t), β(t), θ(t))|x

¯

]
,

where M is the burn-in period.

Therefore, the Bayes MCMC point estimate of Φ(α, β, θ) based on SE and LINEX loss function are
given, respectively, by

Φ̂SE(α, β, θ) = E
[
Φ(α, β, θ)|x

¯

]
,

Φ̂LINEX(α, β, θ) = −1

c
ln
[
E(exp(−cΦ(α, β, θ)|x

¯
)
]
.
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7. Repeat 1-6 H times and arrange each estimate in order as α̂[1]
SE . . . α̂

[H]
SE , β̂

[1]
SE . . . β̂

[H]
SE and θ̂

[1]
SE . . . θ̂

[H]
SE .

Then, the 100(1−γ)% credible intervals for α, β and θ are (α̂
[
γ
2H]

SE , α̂
[(1−γ2 )H]

SE ), (β̂
[
γ
2H]

SE , β̂
[(1−γ2 )H]

SE ) and

(θ̂
[
γ
2H]

SE , θ̂
[(1−γ2 )H]

SE ) respectively.

5 Simulation Study

In this section, simulation studies for different sample sizes are conducted to evaluate the performances of
the MLEs and Bayes estimates, the estimation procedure is performed according to the following algorithm.
Algorithm 2

1. Set values for n and c.

2. For given values of the prior parameters (λ1, λ2, λ3, η1, η2, η3) generate α, β and θ from π1(α), π2(β)
and π3(θ), respectively.

3. For given values of the parameters (α, β , θ), use the model given by equation (5) to generate random
sample x1, x2, . . . , xn .

4. Use the random sample to compute the MLEs of the parameters α, β and θ by solving the nonlinear
equations (16), (17) and (18).

5. Compute the Bayes estimates of (α, β , θ) based on SE and LINEX loss function using MCMC approx-
imation.

6. Use Metropolis algorithm to generate a sequence of 11000 random samples iteratively with N = 11000
and M = 1000.

7. Compute the approximate confidence bounds with confidence level 95% and compute 95% credible CIs
for the parameters α, β and θ.

8. Repeat the steps 3—7, 1000 times.

9. Compute the average values of the MSEs and BEs of the parameters α, β and θ.

From Figures 7—12, one can see that most of the simulation numbers for parameters α, β and θ are
centered around the suggested values of these parameters. Thus, we can conclude that the mean of the
parameters is an estimate for this parameter.
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Table 1: MLE and BE of the parameters α, β and θ for the given prior values
(η1 = 0.5, η2 = 0.5, η3 = 0.4, λ1 = 0.7, λ2 = 0.7, λ3 = 0.7) with c = 2

α β θ n α̂ β̂ θ̂

ML BE ML BE ML BE
SE LINEX SE LINEX SE LINEX

2.0 0.3 0.2 10
30
50

1.6627
1.8523
1.8921

1.7342
1.8821
1.9244

1.7452
1.8993
1.9623

0.2425
0.2697
0.2711

0.2521
0.2733
0.3212

0.2611
0.2721
0.3189

0.1463
0.1627
0.1801

0.1594
0.1732
0.1911

0.1562
0.1811
0.1932

2.5 0.5 0.5 10
30
50

2.2442
2.2213
0.2298

2.334
2.4111
2.5120

2.38121
2.3993
2.5199

0.3345
0.3724
0.3987

0.4231
0.4575
0.5113

0.4177
0.4356
0.4876

0.2976
0.3421
0.3965

0.3521
0.4032
0.4664

0.3421
0.3987
0.4529

Table 2 : Lengths of 95% CIs for estimates of the parameters α, β and θ for the given prior values
(η1 = 0.5, η2 = 0.5, η3 = 0.4, λ1 = 0.7, λ2 = 0.7, λ3 = 0.7) with c = 2

α β θ n α̂ β̂ θ̂

ML BE ML BE ML BE
2.0 0.3 0.2 10

30
50

1.1342
0.9623
0.8721

1.0826
0.8201
0.8532

0.5593
0.5132
0.4504

0.5224
0.4891
0.3439

0.4620
0.3591
0.2961

0.3753
0.3129
0.2101

2.5 0.5 0.5 10
30
50

0.8864
0.7123
0.5463

0.7721
0.6129
0.3224

0.5065
0.4325
0.2381

0.4654
0.3218
0.1974

0.3321
0.2562
0.1894

0.3110
0.1974
0.1103
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6 Concluding Remarks

In this paper, a new distribution is proposed, which we call as MORL distribution. For this distribution,
the probability density function, cumulative distribution function, hazard rate, survival function, moments
and order statistics are derived. Then, maximum likelihood estimators and Bayes estimates using MCMC of
the model parameters are discussed. Finally, a simulation study is conducted to compare the performance
of the estimators. We found from Tables 1 and 2 that:

• The parameters’estimations based on Bayesian method are much better than those based on the ML
method.

• The ML and Bayes methods give more precise estimate by increasing the sample size.

• The length of the CIs by ML and Bayes methods are decreasing by increasing the sample size n.
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