The Odd/Even Dichotomy For The Set Of Square-Full Numbers*

Teerapat Srichan ${ }^{\dagger}$

Received 19 February 2020

Abstract

A positive integer n is called square-full if $p^{2} \mid n$ for every prime factor p of n. The asymptotical ratio of odd to even square-full numbers is obtained.

1 Introduction and result

A positive integer n is called square-free if it is a product of different primes. In 2008, Scott [4] conjectured that the ratio of odd to even square-free numbers is asymptotically $2: 1$. Two years later, Jameson [3] used some properties of Dirichlet series and convolution to prove that the proportion of square-free numbers is asymptotically $\frac{4}{\pi^{2}}$ and showed that Scott's conjecture is true. It would be interesting to consider the odd/even dichotomy for the set of other kinds of integers. In this paper we shall consider the asymptotical ratio of odd to even square-full numbers.

A positive integer n is called square-full if $p^{2} \mid n$ for every prime factor p of n. Let G be the set of all squarefull numbers. Let $G(x), G_{o}(x)$ and $G_{e}(x)$ be the set of all square-full numbers, odd square-full numbers and even square-full in the interval $[1, x]$, respectively. We denote by $N(x), N_{o}(x)$ and $N_{e}(x)$ the number of members of $G(x), G_{o}(x)$ and $G_{e}(x)$, respectively. Erdös and Szekeres [2] were the first to investigate $N(x)$ and showed that

$$
\begin{equation*}
N(x)=\frac{\zeta(3 / 2)}{\zeta(3)} x^{1 / 2}+O\left(x^{1 / 3}\right) \tag{1}
\end{equation*}
$$

where $\zeta(s)$ denotes the Riemann zeta-function. In 1958, Bateman and Grosswald [1] improved (1) and showed that

$$
\begin{equation*}
N(x)=\frac{\zeta(3 / 2)}{\zeta(3)} x^{1 / 2}+\frac{\zeta(2 / 3)}{\zeta(2)} x^{1 / 3}+O\left(x^{1 / 6}\right) \tag{2}
\end{equation*}
$$

From (1) and (2) one could deduce that

$$
\begin{equation*}
N(x) \sim \frac{\zeta(3 / 2)}{\zeta(3)} x^{1 / 2} \tag{3}
\end{equation*}
$$

We obtain the asymptotical ratio of odd to even square-full numbers in the following theorem.
Theorem 1 As $x \rightarrow \infty$, we have

$$
\frac{N_{o}(x)}{N_{e}(x)} \sim 2-\sqrt{2} .
$$

Remark 2 The result in Theorem 1 indicates that the ratio of odd to even square-full numbers is asymptotically $1: 1+\frac{\sqrt{2}}{2}$.

Remark 3 The result in Theorem 1 can be found as an example in [5]. The author applied Theorem 2.1 and 2.2 in [5] to deduce that in any interval $[1, x]$ of integer, the number of the odd square-full numbers do not exceed the number of the even square-full numbers.

[^0]The proof of Theorem 2.1 and 2.2 in [5] is long. Here we give a simple and short proof for Theorem 1.
Notation $4 f(x) \sim g(x)$ means $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$ and we say that $f(x)$ is asymptotic to $g(x)$ as $x \rightarrow \infty$.

2 Proof of Theorem 1

Proof. First, we assume that,

$$
\begin{equation*}
N_{o}(x) \sim a x^{1 / 2} \quad \text { and } \quad N_{e}(x) \sim b x^{1 / 2}, \quad \text { for some } a, b \in \mathbb{R}^{+} \tag{4}
\end{equation*}
$$

We wish to show that,

$$
\begin{equation*}
\frac{a}{b}=2-\sqrt{2} \tag{5}
\end{equation*}
$$

Since there is no square-full number n such that $n \equiv 2(\bmod 4)$, we have $G_{e}(x)=\{n \leq x, n \in G$ and $4 \mid n\}$ and $G_{o}(x)=\{n \leq x, n \in G$ and $n \equiv 1,3(\bmod 4)\}$. Next, we spilt $G_{e}(x)$ in to the set $G_{e 1}(x)$ and the set $G_{e 2}(x)$, where $G_{e 1}(x)=\left\{n \leq x, n \in G_{e}(x)\right.$ and $\left.\frac{n}{4} \in G\right\}$ and $G_{e 2}(x)=\left\{n \leq x, n \in G_{e}(x)\right.$ and $\left.\frac{n}{4} \notin G\right\}$. It is obvious that,

$$
\begin{equation*}
N_{e 1}(x)=N(x / 4) \tag{6}
\end{equation*}
$$

Now we will show that,

$$
\begin{equation*}
N_{e 2}(x)=N_{o}(x / 8) \tag{7}
\end{equation*}
$$

For any positive integer $n \in G_{e 2}(x)$, we have $\frac{n}{4} \in \mathbb{Z}^{+}$. Then, we write $\frac{n}{4}=m r$ with m is square-full, r is square-free and $\operatorname{gcd}(m, r)=1$. Since $\frac{n}{4} \notin G$, we have $r \neq 1$. Suppose that $r>2$. We have a contradiction, since $n=4 m r \notin G$. We thus get only $r=2$ and consequently m is an odd square-full. Then we obtain the one-to-one relation between the sets $G_{e 2}(x)$ and $G_{o}(x / 8)$ and (7). In view of (6) and (7), we have

$$
\begin{equation*}
N_{e}(x)=N(x / 4)+N_{o}(x / 8) \tag{8}
\end{equation*}
$$

Then

$$
N_{e}(x)=\left(N_{e}(x / 4)+N_{o}(x / 4)\right)+N_{o}(x / 8)
$$

In view of (4), we have

$$
b x^{1 / 2} \sim \frac{b}{2} x^{1 / 2}+\frac{a}{2} x^{1 / 2}+\frac{a}{2 \sqrt{2}} x^{1 / 2}
$$

This shows the asymptotical ratio (5).
To complete the proof of Theorem 1, we have to show the existence of a and b in (4). In view of (8), we have

$$
\left\{\begin{array}{l}
N_{e}(x)=N(x / 4)+N_{o}(x / 8) \tag{9}\\
N(x)-N_{o}(x)=N(x / 4)+N_{o}(x / 8) \\
N(x)-N(x / 4)=N_{o}(x)+N_{o}(x / 8)
\end{array}\right.
$$

We write $f(x)=N(x)-N(x / 4)$. In view of (3), we know that,

$$
\begin{equation*}
f(x) \sim c x^{1 / 2} \tag{10}
\end{equation*}
$$

for a certain $c>0$. In view of (9), we have

$$
\begin{equation*}
f(x)-f(x / 8)=N_{o}(x)+N_{o}(x / 8)-\left(N_{o}(x / 8)+N_{o}\left(x / 8^{2}\right)\right)=N_{o}(x)-N_{o}\left(x / 8^{2}\right) \tag{11}
\end{equation*}
$$

Replace x in (11) by $x / 8^{2}$, we have

$$
\begin{equation*}
f\left(x / 8^{2}\right)-f\left(x / 8^{3}\right)=N_{o}\left(x / 8^{2}\right)+N_{o}\left(x / 8^{3}\right)-\left(N_{o}\left(x / 8^{3}\right)+N_{o}\left(x / 8^{4}\right)\right)=N_{o}\left(x / 8^{2}\right)-N_{o}\left(x / 8^{4}\right) \tag{12}
\end{equation*}
$$

In view of (11) and (12), we have

$$
N_{o}(x)-N_{o}\left(x / 8^{4}\right)=f(x)-f(x / 8)+f\left(x / 8^{2}\right)-f\left(x / 8^{3}\right)
$$

Repeating this, we see that

$$
\begin{equation*}
N_{o}(x)-N_{o}\left(x / 8^{2 k}\right)=\sum_{0 \leq i \leq k-1} f\left(x / 8^{2 i}\right)-\sum_{0 \leq j \leq k-1} f\left(x / 8^{2 j+1}\right) \tag{13}
\end{equation*}
$$

Since the asymptotic value (10), for $\epsilon>0$, we take x_{0} such that $(c-\epsilon) x^{1 / 2} \leq f(x) \leq(c+\epsilon) x^{1 / 2}$, for $x>x_{0}$. Then we take k such that $x / 8^{2 k}<x_{0} \leq x / 8^{2 k-1}$. We note that $N_{0}\left(x / 8^{2 k}\right) \leq N_{0}\left(x_{0}\right)<x_{0}$. From this and (13), we have

$$
\begin{aligned}
N_{o}(x) & \leq \sum_{0 \leq i \leq k-1} f\left(x / 8^{2 i}\right)-\sum_{0 \leq j \leq k-1} f\left(x / 8^{2 j+1}\right)+x_{0} \\
& \leq \sum_{i=0}^{\infty} f\left(x / 8^{2 i}\right)-\sum_{j=0}^{\infty} f\left(x / 8^{2 j+1}\right)+x_{0} \\
& =\sum_{i=0}^{\infty}\left((c+\epsilon) \frac{x^{1 / 2}}{8^{i}}\right)-\sum_{j=0}^{\infty}\left((c-\epsilon) \frac{x^{1 / 2}}{8^{j+1 / 2}}\right)+x_{0} \\
& =\frac{c \sqrt{8}}{\sqrt{8}+1} x^{1 / 2}+\frac{\epsilon \sqrt{8}}{\sqrt{8}-1} x^{1 / 2}+x_{0} \\
& \leq \frac{c \sqrt{8}}{\sqrt{8}+1} x^{1 / 2}+2 \epsilon x^{1 / 2}+x_{0}
\end{aligned}
$$

Thus, for $x>\left(\frac{x_{0}}{\epsilon}\right)^{2}$, we have

$$
\begin{equation*}
N_{o}(x) \leq\left(\frac{c \sqrt{8}}{\sqrt{8}+1}+3 \epsilon\right) x^{1 / 2} \tag{14}
\end{equation*}
$$

Next, we estimate the lower bound for $N_{o}(x)$. In view of (13), we can write

$$
N_{o}(x)=\sum_{i=0}^{\infty} f\left(x / 8^{2 i}\right)-\sum_{j=0}^{\infty} f\left(x / 8^{2 j+1}\right)
$$

Thus, for $x>x_{0}$, and we get

$$
\begin{aligned}
N_{o}(x) & \geq \sum_{i=0}^{\infty}\left((c-\epsilon) \frac{x^{1 / 2}}{8^{i}}\right)-\sum_{j=0}^{\infty}\left((c+\epsilon) \frac{x^{1 / 2}}{8^{j+1 / 2}}\right) \\
& =\frac{c \sqrt{8}}{\sqrt{8}+1} x^{1 / 2}-\frac{\epsilon \sqrt{8}}{\sqrt{8}-1} x^{1 / 2} \\
& \geq \frac{c \sqrt{8}}{\sqrt{8}+1} x^{1 / 2}-2 \epsilon x^{1 / 2}
\end{aligned}
$$

Thus, for $x>x_{0}$, we have

$$
\begin{equation*}
N_{o}(x) \geq\left(\frac{c \sqrt{8}}{\sqrt{8}+1}-2 \epsilon\right) x^{1 / 2} \tag{15}
\end{equation*}
$$

In view of (14) and (15), the value a exists. Similarly for the existence of b.

References

[1] P. T. Bateman and E. Grosswald, On a theorem of Erdös and Szekeres, Illinois J. Math., 2(1958), 88-98.
[2] P. Erdös and S. Szekeres, Über die anzahl der abelschen gruppen gegebener ordnung und über ein verwandtes zahlentheoretisches problem, Acta Univ. Szeged., 7(1934-1935), 95-102.
[3] G. J. O. Jameson, Even and odd square-free numbers, Math. Gaz., 94(2010), 123-127.
[4] J. A. Scott, Square-free integers once again, Math. Gaz., 92(2008), 70-71.
[5] T. Srichan, Square-full and cube-full numbers in arithmetic progressions, Siauliai Math. Seminar., 8(2013), 223-248.

[^0]: *Mathematics Subject Classifications: 11N69
 \dagger Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand

