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Abstract

In this paper, we consider a class of planar quintic differential systems, for which a non-algebraic limit
cycle around a non-elementary critical point is given and it is the unique limit cycle. The non-algebraic
limit cycle is constructed explicitly by using polar coordinates.

1 Introduction

In the study of planar differential systems, it is not always possible to find explicit solutions for such systems,
we resort to qualitative theory to seek information about solutions for non-linear systems to investigate their
behavior. In the qualitative theory, limit cycles, or isolated periodic solutions, were and still remain the most
sought solutions when modeling physical systems in the plane. Most of the early examples in the theory
of limit cycles in planar differential systems were commonly related to practical problems with mechanical
and electronic systems, but periodic behavior appears in all branches of science, both the technological and
natural sciences. Existence of limit cycles is one of the most diffi cult subjects in the qualitative theory of
planar differential equations. A large amount of references deals with the subject of limit cycle, for instance,
the famous Hilbert’s 16th problem [11] motivated researchers to enter this domain of research. In particular,
to deal with autonomous ordinary differential systems in two real variables, which have the following form

ẋ =
dx

dt
= PN (x, y),

ẏ =
dx

dt
= QN (x, y),

(1)

where P and Q are real polynomials in the variables x and y of degree N = max{degP,degQ}. The dot
denotes derivative with respect to the independent variable t. Recall that, limit cycle of (1) is an isolated
periodic orbit in the set of all its periodic orbits, and the algebraic curve U(x, y) = 0 is called an invariant
curve for (1) if and only if there exists a cofactor κ(x, y) which is a polynomial satisfying

PN (x, y)
∂U

∂x
+QN (x, y)

∂U

∂y
= κ(x, y)U(x, y). (2)

A limit cycle of (1) is said to be algebraic if it is contained in the zero set of an invariant algebraic curve
of system.
Nowadays, most limit cycles known in an explicit way are algebraic, see for instance [4, 5, 9]. In 1998,

M. Abdelkadder [1] presented for the first time an example of Liénard equations with an exact algebraic
limit cycle. This example was obtained as a particular case by Bendjeddou and Cheurfa [4] by considering
a more general class of planar systems. Limit cycles of planar polynomial differential systems are not in
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general algebraic. For instance, the limit cycle for the Van der Pol equation is non-algebraic as shown by
Odani [12]. the first examples of explicit non-algebraic limit cycles were given by Gasull [8], Al-Dossary [2]
for n = 5 and by Llibre [6] for n = 3. The first result about coexistence of algebraic and non-algebraic limit
cycles goes back to Giné and Grau [9] with n = 9.
In this work, we are mainly interested in the study of the existence of one and only one limit cycle which

is non-algebraic for a class of quintic systems around a non-elementary critical point.
Our main result is the following theorem.

Theorem 1 Consider the following quintic system

ẋ = P5(x, y) = bx3 + dmx5 − nx4y + cxy2 + dnx3y2

− (2a+ n)x2y3 + adxy4 − 2ay5,

ẏ = Q5(x, y) = 2mx
5 + bx2y + dmx4y + (2m+ n)x3y2

+ cy3 + dnx2y3 + nxy4 + ady5.

(3)

Then, for bc > 0, ab > 0 and d < 0, system (3) has one and only one limit cycle which is non-algebraic,
given in polar coordinates by the formula

r (θ; r∗) =

(∫ θ

0

f2(u)

g(u)
exp

(
−
∫ u

0

f1(s)

g(s)
ds

)
du+ r2∗

) 1
2

exp

(
1

2

∫ θ

0

f1(u)

g(u)
du

)
, (4)

where

f1(θ) = ad sin4 θ + dm cos4 θ + dn sin2 θ cos2 θ

+(n− 2a) sin3 θ cos θ + (2m− n) sin θ cos3 θ,

f2(θ) = b cos2 θ + c sin2 θ,

g(θ) = a sin4 θ +m cos4 θ + n sin2 θ cos2 θ,

and

r∗ =

∫ 2π0 f2(u)
g(u) exp

(
−
∫ u
0
f1(s)
g(s) ds

)
du

exp
(
−
∫ 2π
0

f1(u)
g(u) du

)
− 1


1
2

, (5)

provided that
n2 − 4am < 0. (6)

Proof. Since
yP5(x, y)− xQ5(x, y) = 2(x2 + y2)(mx4 + nx2y2 + ay4),

we see that from (6), the unique critical point is the origin (0, 0). In order to search for the limit cycle, we
use polar coordinates. System (3) becomes{

ṙ = f2θ)r
3 + f1(θ)r

5,

θ̇ = 2g(θ)r4.
(7)

We can rewrite system (7) as the first-order Bernoulli differential equation as follows

dr

dθ
=
1

2r

f2(θ)

g(θ)
+
r

2

f1(θ)

g(θ)
, (8)
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Using the change of variable ρ = r2, equation (8) becomes the following linear first order differential equation

dρ

dθ
=
f1(θ)

g(θ)
ρ+

f2(θ)

g(θ)
. (9)

Now immediately from (9) it follows that

r (θ; k) =

(∫ θ

0

f2(u)

g(u)
exp

(
−
∫ u

0

f1(s)

g(s)
ds

)
du+ k

) 1
2

exp

(
1

2

∫ θ

0

f1(u)

g(u)
du

)
(10)

solution for (8), where k is a constant. The Cartesian coordinate form of (10) proves that it is a non-algebraic
curve. It is clear that r (0, k) = r0 > 0, corresponds to k = r20, so (10) becomes

r (θ; r0) =

(∫ θ

0

f2(u)

g(u)
exp

(
−
∫ u

0

f1(s)

g(s)
ds

)
du+ r20

) 1
2

exp

(
1

2

∫ θ

0

f1(u)

g(u)
du

)
. (11)

Periodic solutions must verify the following condition

r (2π; r0) = r0, (12)

solving (12) with respect to r0 gives

r2∗ =

∫ 2π
0

f2(u)
g(u) exp

(
−
∫ u
0
f1(s)
g(s) ds

)
du

exp
(
−
∫ 2π
0

f1(u)
g(u) du

)
− 1

. (13)

In order to show that the right hand side into (13) is strictly positive, we can first easily show that

exp

(
−
∫ 2π

0

f1(u)

g(u)
du

)
− 1 = e−2πd − 1 > 0,

when d < 0, and because the denominator into (13) is positive, the sign of the numerator is the same as
the sign of f2(u)/g(u), but we have n2 − 4am < 0 this means that am > 0, which makes f2(u)/g(u) always
positive if and only if bc > 0 and ab > 0.
Let’s now consider from (11)

g̃(θ) = r(θ; r∗), (14)

r∗ is given by (13). From the previous considerations of parameters, we must have g̃ > 0 by construction.
Knowing that

e−
∫ 2π
0

f1(u)

g(u)
du = e−2πd,

replacing it into (14), with simple calculations, we can easily show that the function g̃ is periodic, i.e.,

g̃(θ + 2π) = g̃(θ).

Now we turn to the final step, i.e., the question whether the graph of the function g̃ is indeed a limit
cycle. We consider the Poincaré return map, from (11), we calculate the derivative of r(2π, r0) with respect
to r0 at the point r∗, thus

dr

dr0
(2π, r0)

∣∣∣∣
r0=r∗

=
eπdr∗

(G(2π) + r2∗)
1
2

, (15)

where

G(2π) =

∫ 2π

0

f2(u)

g(u)
exp

(
−
∫ u

0

f1(s)

g(s)
ds

)
du.
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From (15),
r∗

(G(2π) + r2∗)
1
2

< 1,

and

eπd < 1,

therefore
dr

dr0
(2π, r0)

∣∣∣∣
r0=r∗

< 1.

For that reason, limit cycle for the ordinary differential equation (8) is stable. Finally, system (3) has exactly
one non-algebraic limit cycle which is the only existing limit cycle.

2 Example

Let the parameters in system (3) be a = 1, m = 2, n = 1, b = 2, c = 1 and d = −1. Then system (3) becomes{
ẋ = 2x3 − 2x5 − x4y + xy2 − x3y2 − 3x2y3 − xy4 − 2y5,
ẏ = 4x5 + 2x2y − 2x4y + 5x3y2 + y3 − x2y3 + xy4 − y5. (16)

Clearly, conditions of theorem 1 can be easily verified, system (16) has one limit cycle as shown in figure
1.

Figure 1: The phase portrait in the Poincaré disc for system (16), with limit cycle included.

3 Conclusion

In this work, we determine the conditions for which a class of planar quintic systems, have a unique non-
algebraic limit cycle that is explicitly constructed. The method adopted is simple and gives interesting
results of this kind of systems. For polynomials of lower degrees, explicit results are diffi cult, for instance, an
explicitly given non-algebraic limit cycle with a polynomial of second degree still remains an open problem
to this day [7].
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