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Abstract

The main aim of this paper is to introduce and study an iterative algorithm, which is based on the
Krasnoselskii-Mann iterative method and the gradient-projection algorithm for solving a constrained
convex minimization problem and fixed point problem with quasi-nonexpansive and firmly nonexpansive
mappings in a real Hilbert space. Finally, we apply our main result for finding a common solution of
convex minimization problem, fixed point problem and equilibrium problem. Essentially, a new approach
for solving some nonlinear problems is provided.

1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖.‖. Let K be a nonempty, closed
and convex subset of H. Consider the following constrained convex minimization problem:

min
y∈K

g(y), (1)

where g : K → R is a convex function.Assume that (1) is consistent (i.e., it has a solution) and we use
Ω to denote its solution set. It is well known that the gradient-projection algorithm (GPA, for short) is
usually applied to solve the minimization problem (1). This algorithm generates a sequence {xn} through
the recursion:

xn+1 = PK(xn − λn∇g(xn)), n ≥ 0, (2)

where the initial guess x0 ∈ K is chosen arbitrarily and {λn} is a sequence of stepsizes which may be chosen
in different ways.GPA (2) has well been studied in the case of constant stepsizes λn = λ for all n (see the
books [27, 28]). A fundamental convergence result for GPA (2) is the following one which can be found in
literature (cf. [ [28], Theorem 6.1] with constant stepsize).

Theorem 1 ([28]) Let {xn} be the sequence generated by GPA (2). Assume

(i) g is continuously differentiable and its gradient is Lipschitz continuous:

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn,

where L ≥ 0 is a constant;

(ii) the set K0 := {x ∈ K : g(x) ≤ g(x0)} is bounded;

(iii) the sequence {λn} satisfies the condition:

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2

L
.
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Then, the sequence {xn} generated by the gradient-projection algorithm (2) converges weakly to a solution
of (1).

However, Xu [33] constructed a counterexample which shows that algorithm (2) does not converge in norm
in an infinite-dimensional space, and also presented two modifications of gradient-projection algorithms which
are shown to have strong convergence.
In 2012, H. Iiduka [19] introduced the following algorithm for solving problem

Algorithm 1 Step 0. Choose x0 ∈ H arbitrarily, set λ0 ⊂ (0, 1) , α0 ⊂ (0, 1) and d0 = −∇g(x0) arbitrarily
and let n := 0.

Step 1. Given. xn ∈ H and dn ∈ H, choose λn ⊂ (0, 1) , αn ⊂ (0, 1) and compute xn+1 ∈ K as{
yn = T (xn + λndn),
xn+1 = αnx0 + (1− αn)yn.

Step 2. Choose βn+1 ∈ (0, 1] and compute the direction dn+1 ∈ H, by

dn+1 = −∇g(xn) + βn+1dn.

Update n := n+ 1 and go to Step 1.
Under suitable conditions, he proved that {xn}n∈N in Algorithm 1 weakly converges to a unique solution

to Problem (1). Recently, studies on solutions of the minization problem (1) were extensively carried out in
Hilbert spaces and in certain Banach spaces; see, for example, [18, 8, 17, 20, 5, 30, 3, 6] and the references
therein.
Recall that a mapping T : K → H is called L-Lipschitzian if for all x, y ∈ K,

‖Tx− Ty‖ ≤ L‖x− y‖,

where L ≥ 0 is a constant. In particular, if L ∈ [0, 1) then T is called a contraction mapping; if L = 1 then
T is called a nonexpansive mapping. A point x ∈ K is called a fixed point of T if Tx = x. We denote the
set of all fixed points of T by Fix(T ). A mapping T is said to be

(1) quasi-nonexpansive if Fix(T ) 6= ∅ and

‖Tx− p‖ ≤ ‖x− p‖, x ∈ K, p ∈ Fix(T );

(2) firmly nonexpansive if for all x, y ∈ K, we have

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉.

For nonexpansive mappings with fixed points, Mann iterative method [23] is a valuable tool to study
them.Mann’s scheme is defined by: {

x0 ∈ K,
xn+1 = αnxn + (1− αn)Txn,

where {αn} is a sequence in (0, 1). But Mann’s iteration process has only weak convergence, even in Hilbert
space setting. Hence the modification is necessary in order to guarantee the strong convergence of Mann’s
method. Lot of works have been done for the modification of the Mann’s iteration so that strong convergence
is guaranteed. See, e.g., [31, 35, 36, 16, 25, 22, 11, 12, 29, 13, 26] and the reference therein.
If T1 and T2 are self-mappings on K, a point x ∈ K is called a common fixed point of Ti(i = 1, 2) if

x ∈ Fix(T1)∩Fix(T2). To find a solution of the common fixed point problems, several iterative approximation
methods were introduced and studied. This problem can be applied in solving solutions of various problems
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in science and applied science, see [15, 21, 9] for instance. For almost all the results on common fixed point
of nonlinear mappings in Hilbert spaces, commuting assumptions are needed on the operators.
Now, we introduce two minimization problems coupled with fixed point problems, firstly, we consider the

constrained convex minimization problem coupled with fixed point problem involving two mappings, namely,
find an x∗ with the property:

x∗ ∈ Ω ∩ Fix(T1) ∩ Fix(T2). (3)

On the other hand, we consider the constrained convex minimization problem coupled with fixed point
problem involving composed mapping, namely, find an x∗ with the property:

x∗ ∈ Ω ∩ Fix(T1 ◦ T2), (4)

where T1 and T2 be quasi-nonexpansive and firmly nonexpansive mappings on K, respectively.

Remark 1 Easily, we obtain the following conclusions:

(i) Fix(T1) ∩ Fix(T2) ⊂ Fix(T1 ◦ T2);

(ii) Problem of finding an element of Ω∩Fix(T1 ◦ T2) is more general and more complex than the problem
of finding an element of Ω ∩ Fix(T1) ∩ Fix(T2).

Above discussion suggests the following questions.

Question 1: Is it always true that the set of solutions of problem (3) coincides with the set of solutions of
problem (4) without commuting assumptions?

Question 2: Could we construct an explicit algorithm based on a modified Mann iterative method and
the gradient-projection algorithm such that it converges strongly to a solution of problem (4) without
compactness assumption?

The purpose of this paper is to give affi rmative answers to these questions mentioned above. Applications
are also considered.

2 Preliminaries

Recall that a map A : H → H, the domain of A, D(A), the image of a subset S of H, A(S) the range of A,
R(A) and the graph of A, G(A) are defined as follows:

D(A) := {x ∈ H : Ax 6= ∅}, A(S) := ∪{Ax : x ∈ S},

R(A) := A(H), G(A) := {[x, u] : x ∈ D(A), u ∈ Ax}.
Let K be a nonempty, closed and convex subset of H. An operator A : K → H is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀ x, y ∈ K.

An operator A : K → H is said α-inverse strongly monotone if there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀ x, y ∈ K.

The demiclosedness of a nonlinear operator T usually plays an important role in dealing with the convergence
of fixed point iterative algorithms.

Definition 1 Let H be a real Hilbert space and T : D(T ) ⊂ H → H be a mapping. I − T is said to be
demiclosed at 0 if for any sequence {xn} ⊂ D(T ) such that {xn} converges weakly to p and ‖xn − Txn‖
converges to zero, then p ∈ Fix(T ).
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Lemma 2 ([4]) Let H be a real Hilbert space, K be a closed convex subset of H, and T : K → K be a
nonexpansive mapping such that F (T ) 6= ∅. Then I − T is demiclosed.

Lemma 3 ([10]) Let H be a real Hilbert space. Then for any x, y ∈ H, the following inequalities hold:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉,

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − (1− λ)λ‖x− y‖2, λ ∈ (0, 1).

Lemma 4 ( [34]) Assume that {an} is a sequence of nonnegative real numbers such that an+1 ≤ (1 −
αn)an + αnσn for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence in R such that

(a)
∑∞
n=0 αn =∞,

(b) lim supn→∞ σn ≤ 0 or
∑∞
n=0 |σnαn| <∞.

Then limn→∞ an = 0.

Lemma 5 ([24]) Let tn be a sequence of real numbers that does not decrease at infinity in a sense that there
exists a subsequence tni of tn such that tni such that tni ≤ tni+1 for all i ≥ 0. For suffi ciently large numbers
n ∈ N, an integer sequence {τ(n)} is defined as follows:

τ(n) = max{k ≤ n : tk ≤ tk+1}.

Then, τ(n)→∞ as n→∞ and
max{tτ(n), tn} ≤ tτ(n)+1.

Lemma 6 Let H be a real Hilbert space and K be a nonempty, closed convex subset of H. Let A : K → H
be an α-inverse strongly monotone mapping. Then, I − θA is nonexpansive mapping for all x, y ∈ K and
θ ∈ [0, 2α].

Proof. For all x, y ∈ K, we have

‖(I − θA)x− (I − θA)y‖2 = ‖(x− y)− θ(Ax−Ay)‖2

= ‖x− y‖2 − 2θ〈Ax−Ay, x− y〉+ θ2‖Ax−Ay‖2

By using property of A and θ ∈ [0, 2α], we have

‖(I − θA)x− (I − θA)y‖2 = ‖x− y‖2 + θ(θ − 2α)‖Ax−Ay‖2 ≤ ‖x− y‖2.

This shows that I − θA is nonexpansive.

Lemma 7 ([2]) Let H be a real Hilbert space, g a continuously Fréchet differentiable, convex functional on
H and ∇g the gradient of g. If ∇g is 1

α -Lipschitz continuous, then ∇g is α-inverse strongly monotone.

Lemma 8 Let H be a real Hilbert space and K be a nonempty, closed convex subset of H. Let g : K → R
be a continuously Fréchet differentiable, convex functional on K with a

1

α
-Lipschitz continuous ∇g. Then,

I − θ∇g is nonexpansive mapping for all x, y ∈ K and θ ∈ [0, 2α].

Proof. The proof follows Lemmas 6 and 7.

Remark 2 A necessary condition of optimality for a point x∗ ∈ Ω is that
x∗ ∈ V I(∇g,K), where

V I(∇g,K) := {x∗ ∈ K, 〈∇g(x∗), x− x∗〉 ≥ 0, ∀x ∈ K} .

Lemma 9 ([18]) Let K be a nonempty closed convex of a real Hilbert H. Let g : K → R be a continuously

Fréchet differentiable, convex functional on K with a
1

α
-Lipschitz continuous ∇g. Then for all λ > 0,

V I(∇g,K) = Fix(PK(I − λ∇g)).
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3 Main Results

We start by the following result.

Lemma 10 Let H be a real Hilbert space and let K be a nonempty closed convex subset of H. Let T1 :
K → K be a quasi-nonexpansive mapping and T2 : K → K be a firmly nonexpansive mapping. Then,
Fix(T1) ∩ Fix(T2) = Fix(T1 ◦ T2) and T1 ◦ T2 is a quasi-nonexpansive mapping on K.

Proof. We split the proof into two steps.
Step 1: First, we show that Fix(T1) ∩ Fix(T2) = Fix(T1 ◦ T2). We note that

Fix(T1) ∩ Fix(T2) ⊂ Fix(T1 ◦ T2).

Thus, we only need to show that Fix(T1 ◦ T2) ⊆ Fix(T1) ∩ Fix(T2). Let p ∈ Fix(T1) ∩ Fix(T2) and
q ∈ Fix(T1 ◦ T2). By using properties of T1 and T2, we have

‖q − p‖2 = ‖T1 ◦ T2q − T1p‖2 ≤ ‖T2q − p‖2. (5)

Using the fact that T2 is firmly nonexpansive, we have

‖T2q − p‖2 ≤ 〈T2q − p, q − p〉

=
1

2
(‖T2q − p‖2 + ‖q − p‖2 − ‖T2q − q‖2. (6)

By virtue of (6), we can infer that

‖T2q − p‖2 ≤ ‖q − p‖2 − ‖T2q − q‖2. (7)

Using (5) implies that (7) becomes

‖T2q − p‖2 ≤ ‖q − p‖2 − ‖T2q − q‖2 ≤ ‖T2q − p‖2 − ‖T2q − q‖2.

Clearly, ‖T2q − q‖ = 0 which implies that
q = T2q.

Keeping in mind that T1 ◦ T2q = q, we have

q = T1 ◦ T2q = T1q.

Thus, q ∈ Fix(T1) ∩ Fix(T2). Hence, Fix(T1) ∩ Fix(T2) = Fix(T1 ◦ T2).
Step 2: We show T1 ◦ T2 is a quasi-nonexpansive mapping on K. Let x ∈ K and p ∈ Fix(T1 ◦ T2). Then,
p ∈ Fix(T1) ∩ Fix(T2) by step 1. We observe that,

‖T1 ◦ T2x− p‖ = ‖T1 ◦ T2x− T1p‖ ≤ ‖T2x− p‖ ≤ ‖x− p‖.

This completes the proof.
We now prove the following theorem.

Theorem 11 Let H be a real Hilbert space and K a nonempty, closed convex cone of H. Let g : K → R
be a continuously Fréchet differentiable, convex functional on K with a

1

α
-Lipschitz continuous ∇g. Let

T1 : K → K be a quasi-nonexpansive mapping and T2 : K → K be a firmly nonexpansive mapping such that
Γ := Ω ∩ Fix(T1) ∩ Fix(T2) 6= ∅. Assume that I − T1 ◦ T2 is demiclosed at origin and λ ∈ (0, 2α). Let {xn}
be a sequence generated iteratively from arbitrary x0 ∈ K by

zn = θnxn + (1− θn)T1 ◦ T2xn, yn = βnzn + (1− βn)PK(I − λ∇g)zn, xn+1 = αn(λnxn) + (1− αn)yn,

yn = βnzn + (1− βn)PK(I − λ∇g)zn, xn+1 = αn(λnxn) + (1− αn)yn,

xn+1 = αn(λnxn) + (1− αn)yn,

where {αn}, {θn}, {λn} and {βn} be sequences in (0, 1). Suppose the following conditions hold:
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(i) limn→∞ αn = 0, limn→∞ λn = 1 and
∑∞
n=0(1− λn)αn =∞,

(ii) lim infn→∞ θn(1− θn) > 0,

(iii) lim infn→∞ βn(1− βn) > 0.

Then, the sequence {xn} converges strongly to x∗ ∈ Γ, where x∗ = PΓ(0).

Proof. First of all, we prove that the sequence {xn} is bounded. Indeed, if we let p ∈ Γ, by using Lemma 3,
we get

‖zn − p‖2 =
∥∥∥θn(xn − p) + (1− θn)(T1 ◦ T2xn − p)

∥∥∥2

= θn‖xn − p‖2 + (1− θn)‖T1 ◦ T2xn − p‖2 − θn(1− θn)‖T1 ◦ T2xn − xn‖2

≤ ‖xn − p‖2 − θn(1− θn)‖T1 ◦ T2xn − xn‖2.

Since θn ∈ (0, 1), we get that
‖zn − p‖2 ≤ ‖xn − p‖2. (8)

By using the definition of {xn} and Lemma 8, it follows that

‖yn − p‖ = ‖βnzn + (1− βn)PK(I − λ∇g)zn − p‖
≤ βn‖zn − p‖+ (1− βn)‖PK(I − λ∇g)zn − p‖
≤ ‖zn − p‖. (9)

From (8) and (9), we have
‖yn − p‖ ≤ ‖zn − p‖ ≤ ‖xn − p‖. (10)

From (10), we have

‖xn+1 − p‖ = ‖αn(λnxn) + (1− αn)yn − p‖
≤ αnλn‖xn − p‖+ (1− αn)‖yn − p‖+ (1− λn)αn‖p‖
≤ αnλn‖xn − p‖+ (1− αn)‖xn − p‖+ (1− λn)αn‖p‖
≤ [1− (1− λn)αn]‖xn − p‖+ (1− λn)αn‖p‖
≤ max {‖xn − p‖, ‖p‖}.

By induction, we get
‖xn − p‖ ≤ max {‖x0 − p‖, ‖p‖}, n ≥ 1.

Then, we obtain that {xn} is bounded, and so are {yn}, {zn}. By (8) and convexity of ‖.‖2, we obtain

‖xn+1 − p‖2 ≤ ‖αn(λnxn) + (1− αn)yn − p‖2

≤ αn‖(λnxn)− p‖2 + (1− αn)‖yn − p‖2

≤ αn‖(λnxn)− p‖2 + (1− αn)‖zn − p‖2

≤ αn‖(λnxn)− p‖2 + (1− αn)
[
‖xn − p‖2

−θn(1− θn)‖T1 ◦ T2xn − xn‖2
]
.

Thus,
(1− αn)(1− θn)θn‖T1 ◦ T2xn − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖(λnxn)− p‖2.

Hence,

(1− αn)(1− θn)θn‖T1 ◦ T2xn − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖(λnxn)− p‖2. (11)
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Now we divide the rest of the proof into two cases.
Case I. Assume that there is n0 ∈ N such that {‖xn− p‖} is decreasing for all n ≥ n0. Since {‖xn− p‖}

is monotonic and bounded, {‖xn − p‖} is convergent. Clearly, we have

lim
n→∞

[
‖xn − p‖2 − ‖xn+1 − p‖2

]
= 0.

It then implies from (11) that

lim
n→∞

(1− θn)θn‖T1 ◦ T2xn − xn‖2 = 0. (12)

Since θn ∈ (0, 1) and lim infn→∞ θn(1− θn) > 0, we have

lim
n→∞

∥∥∥xn − T1 ◦ T2xn

∥∥∥ = 0. (13)

Now, we observe that,

‖zn − xn‖ = ‖(1− θn)xn + θnT1 ◦ T2xn − xn‖
= ‖(1− θn)xn + θnT1 ◦ T2xn − θnxn − (1− θn)xn‖
≤ ‖T1 ◦ T2xn − xn‖.

Therefore, from (13) we have
lim
n→∞

‖zn − xn‖ = 0. (14)

Then from Lemma 11, inequality (8) and the fact that PK(I − λ∇g) is nonexpasive, we have

‖yn − p‖2 = ‖βnzn + (1− βn)PK(I − λ∇g)zn − p‖2

= βn‖zn − p‖2 + (1− βn)‖PK(I − λ∇g)zn − p‖2

−βn(1− βn)‖PK(I − λ∇g)zn − zn‖2

≤ ‖xn − p‖2 − βn(1− βn)‖PK(I − λ∇g)zn − zn‖2. (15)

By defintion of {xn} and the above inequality, we get

‖xn+1 − p‖2 = ‖αn(λnxn) + (1− αn)yn − p‖2

≤ αn‖(λnxn)− p‖2 + (1− αn)‖yn − p‖2

≤ αn‖(λnxn)− p‖2 + (1− αn)(‖xn − p‖2

−βn(1− βn)‖PK(I − λ∇g)zn − zn‖2).

Thus,

(1− αn)βn(1− βn)‖PK(I − λ∇g)zn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+αn‖(λnxn)− p‖2.

Since βn ∈ (0, 1) and lim infn→∞ βn(1− βn) > 0, we have

lim
n→∞

‖PK(I − λ∇g)zn − zn‖ = 0. (16)

Since H is reflexive and {xn} is bounded, there exists a subsequence {xnk} of {xn} such that xnk converges
weakly to a in K and

lim sup
n→+∞

〈x∗, x∗ − xn〉 = lim
k→+∞

〈x∗, x∗ − xnk〉.
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From (13) and I − T1 ◦ T2 is demiclosed, we obtain a ∈ Fix(T1 ◦ T2). Using Lemma 10, we have a ∈
Fix(T2) ∩ Fix(T1). It follows from (16) and Lemma 2, we obtain a ∈ Fix(PK(I − λ∇g)). By Lemma 9, we
have a ∈ V I(∇g,K). Therefore, a ∈ Γ. On other hand, using property of x∗ (x∗ = PΓ(0)), we then have

lim sup
n→+∞

〈x∗, x∗ − xn〉 = lim
k→+∞

〈x∗, x∗ − xnk〉

= 〈x∗, x∗ − a〉 ≤ 0.

Finally, we show that xn → x∗. Applying Lemma 3, we get

‖xn+1 − x∗‖2 = 〈xn+1 − x∗, xn+1 − x∗〉 = αnλn〈xn − x∗, xn+1 − x∗〉
+(1− λn)αn〈x∗, x∗ − xn+1〉+ (1− αn)〈yn − x∗, xn+1 − x∗〉

≤ αnλn〈xn − x∗, xn+1 − x∗〉+ (1− λn)αn〈x∗, x∗ − xn+1〉
+(1− αn)‖yn − x∗‖‖xn+1 − x∗‖

≤ αnλn‖xn − x∗‖‖xn+1 − x∗‖+ (1− λn)αn〈x∗, x∗ − xn+1〉
+(1− αn)‖xn − x∗‖‖xn+1 − x∗‖

≤ [1− (1− λn)αn]‖xn − x∗‖‖xn+1 − x∗‖
+(1− λn)αn〈x∗, x∗ − xn+1〉

≤ 1− (1− λn)αn
2

(‖xn − x∗‖2 + ‖xn+1 − x∗‖2)

+(1− λn)αn〈x∗, x∗ − xn+1〉,

which implies that

‖xn+1 − x∗‖2 ≤ [1− (1− λn)αn]‖xn − x∗‖+ 2(1− λn)αn〈x∗, x∗ − xn+1〉.

We can check that all the assumptions of Lemma 4 are satisfied. Therefore, we deduce xn → x∗.
Case II. Assume that the sequence {‖xn−x∗‖} is not monotonically decreasing. Set Bn = ‖xn−x∗‖ and

τ : N→ N be a mapping for all n ≥ (for some n0 large enough) by τ(n) = max{k ∈ N : k ≤ n, Bk ≤ Bk+1}.
We have τ is a non-decreasing such that τ(n)→∞ as n→∞ and Bτ(n) ≤ Bτ(n)+1 for n ≥ n0. From (11),
we have

(1− ατ(n))(1− θτ(n))θτ(n)‖xτ(n) − T1 ◦ T2xτ(n)‖2 ≤ ατ(n)‖λτ(n)xτ(n) − x∗‖2 → 0 as n→∞.

Since θn ∈]0, 1[ and lim infn→∞(1− θτ(n))θτ(n) > 0, we can deduce

lim
n→∞

‖xτ(n) − T1 ◦ T2xτ(n)‖ = 0. (17)

By a similar argument as in case 1, we can show that xτ(n) converges weakly inH and lim sup
n→+∞

〈x∗, x∗−xτ(n)〉 ≤

0. We have for all n ≥ n0,

0 ≤ ‖xτ(n)+1 − x∗‖2 − ‖xτ(n) − x∗‖2 ≤
(

1− λτ(n)

)
ατ(n)[−‖xτ(n) − x∗‖2 + 2〈x∗, x∗ − xτ(n)+1〉],

which implies that
‖xτ(n) − x∗‖2 ≤ 2〈x∗, x∗ − xτ(n)+1〉.

Then, we have
lim
n→∞

‖xτ(n) − x∗‖2 = 0.

Therefore,
lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.
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Thus, by Lemma 5, we conclude that

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗. This completes the proof.
We now apply Theorem 11 when T1 is a nonexpansive mapping. In this case demiclosedness assump-

tion (I − T1 ◦ T2 is demiclosed at origin) is not necessary.

Theorem 12 Let H be a real Hilbert space and K a nonempty, closed convex cone of H. Let g : K → R
be a continuously Fréchet differentiable, convex functional on K with a

1

α
-Lipschitz continuous ∇g. Let

T1 : K → K be a nonexpansive mapping and T2 : K → K be a firmly nonexpansive mapping such that
Γ := Ω∩ Fix(T1)∩ Fix(T2) 6= ∅. Assume that λ ∈ (0, 2α). Let {xn} be a sequence generated iteratively from
arbitrary x0 ∈ K by

zn = θnxn + (1− θn)T1 ◦ T2xn, yn = βnzn + (1− βn)PK(I − λ∇g)zn, xn+1 = αn(λnxn) + (1− αn)yn,

yn = βnzn + (1− βn)PK(I − λ∇g)zn, xn+1 = αn(λnxn) + (1− αn)yn,

xn+1 = αn(λnxn) + (1− αn)yn,

where {αn}, {θn}, {λn} and {βn} be sequences in (0, 1). Suppose the following conditions hold:

(i) limn→∞ αn = 0, limn→∞ λn = 1 and
∑∞
n=0(1− λn)αn =∞,

(ii) lim infn→∞ θn(1− θn) > 0,

(iii) lim infn→∞ βn(1− βn) > 0.

Then, the sequence {xn} converges strongly to x∗ ∈ Γ where x∗ = PΓ(0).

Proof. We have T1 ◦ T2 is nonexpansive mapping, then, the proof follows Lemma 2 and Theorem 11.
If Ti ≡ I, for i = 1, 2, then Theorem 11 is reduced to the following:

Theorem 13 Let H be a real Hilbert space and K a nonempty, closed convex cone of H. Let g : K → R
be a continuously Fréchet differentiable, convex functional on K with a

1

α
-Lipschitz continuous ∇g. Suppose

that the minimization problem (1) is consistent and λ ∈ (0, 2α). Let {xn} be a sequence generated iteratively
from arbitrary x0 ∈ K by: yn = βnxn + (1− βn)PK(I − λ∇g)xn, xn+1 = αn(λnxn) + (1− αn)yn,

xn+1 = αn(λnxn) + (1− αn)yn,

where {αn}, {λn} and {βn} be sequences in (0, 1). Suppose the following conditions hold:

(i) limn→∞ αn = 0, limn→∞ λn = 1 and
∑∞
n=0(1− λn)αn =∞,

(ii) lim infn→∞ βn(1− βn) > 0.

Then, the sequence {xn} converges strongly to a minimizer of g.

If g ≡ 0, then Theorem 11 is reduced to the following:
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Theorem 14 Let H be a real Hilbert space and K a nonempty, closed convex cone of H. Let T1 : K → K be
a nonexpansive mapping and T2 : K → K be a firmly nonexpansive mapping such that Fix(T1)∩Fix(T2) 6= ∅.
Let {xn} be a sequence defined as follows:

x0 ∈ K, choosenarbitrarily , zn = θnxn + (1− θn)T1 ◦ T2xn, xn+1 = αn(λnxn) + (1− αn)zn,

zn = θnxn + (1− θn)T1 ◦ T2xn, xn+1 = αn(λnxn) + (1− αn)zn,

xn+1 = αn(λnxn) + (1− αn)zn,

where {αn}, {λn} and {θn} be sequences in (0, 1). Suppose the following conditions hold:

(i) limn→∞ αn = 0, limn→∞ λn = 1 and
∑∞
n=0(1− λn)αn =∞,

(ii) lim infn→∞ θn(1− θn) > 0.

Then, the sequence {xn} converges strongly to a common fixed point of T1 and T2.

Remark 3 In our theorems, we assume that K is a cone. But, in some cases, for example, if K is the
closed unit ball, we can weaken this assumption to the following: λx ∈ K for all λ ∈ (0, 1) and x ∈ K.
Therefore, our results can be used to approximate a common solution of convex minimization problem and
fixed point problem involving composed operators from the closed unit ball to itself.

4 Application to Some Nonlinear Problems

In this section, we apply our main results for finding a common solution of fixed points problem, convex
minimization problem and equlibrium problem.

Problem 1 Let K be a nonempty, closed convex subset of a real Hilbert space H. We consider the following
minimization problem :

min
x∈K

g(x), (18)

where g be a continuously Fréchet differentiable, convex functional on K.

We denote the set of solutions of Problem 1 by Ω1.

Problem 2 Let K be a nonempty, closed convex subset of a real Hilbert space H. We consider the following
fixed point problem :

findx ∈ K such thatx = Tx, (19)

where T : K → K be a quasi-nonexpansive mapping.

We denote the set of solutions of Problem 2 by Ω2.

Problem 3 Let G : K×K → R be a bifunction where R is the set of real numbers. The equilibrium problem
corresponding to G is to find x∗ ∈ K such that

G(x∗, y) ≥ 0, ∀ y ∈ K. (20)

The set of solutions of Problem 3 is denoted by EP (G). Numerous problems in physics, optimization,
and economics are reduced to find the solution of an equilibrium problem (e.g., see [18]). For solving the
equilibrium problem we assume that the bifunction G satisfies the following conditions:

(A1) G(x, x) = 0 for all x ∈ K;
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(A2) G is monotone, i.e., G(x, y) +G(y, x) ≤ 0 for all x, y ∈ K;

(A3) for each x, y, z ∈ K,
lim
t→0

G(tz + (1− t)x, y) ≤ G(x, y);

(A4) for each x ∈ K, y → G(x, y) is convex and lower semicontinuous.

For solving Problem 3, we introduce the following lemma.

Lemma 15 ([32]) Assume that G : K×K → R satisfies (A1)-(A4). For r > 0 and x ∈ H, define a mapping
TGr : H → K as follows

TGr (x) = {z ∈ K, G(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ K},

for all x ∈ H. Then, the following hold:

1. TGr is single-valued;

2. TGr is firmly nonexpansive;

3. Fix(TGr ) = EP (G);

4. EP (G) is closed and convex.

Therefore, by Theorem 11, the following result is obtained.

Theorem 16 Let H be a real Hilbert space and K a nonempty, closed convex cone of H. Let g : K → R be
a continuously Fréchet differentiable, convex functional on K with a

1

α
-Lipschitz continuous ∇g such that

λ ∈ (0, 2α) and, let T : K → K be a quasi-nonexpansive mapping. Let G be a bifunction from K ×K → R
satisfies (A1)-(A4) Such that Ω1 ∩ Ω2 ∩ EP (G) 6= ∅ and I − T ◦ TGλ is demiclosed at origin. Let {xn} be a
sequence defined as follows:

x0 ∈ K, choosenarbitrarily , zn = θnxn + (1− θn)T ◦ TGλ xn, yn = βnzn + (1− βn)PK(I − λ∇g)zn,

zn = θnxn + (1− θn)T ◦ TGλ xn, yn = βnzn + (1− βn)PK(I − λ∇g)zn, xn+1 = αn(λnxn) + (1− αn)yn,

yn = βnzn + (1− βn)PK(I − λ∇g)zn, xn+1 = αn(λnxn) + (1− αn)yn,

xn+1 = αn(λnxn) + (1− αn)yn,

where {αn}, {θn}, {λn} and {βn} be sequences in (0, 1). Suppose the following conditions hold:

(i) limn→∞ αn = 0, limn→∞ λn = 1 and
∑∞
n=0(1− λn)αn =∞,

(ii) lim infn→∞ θn(1− θn) > 0,

(iii) lim infn→∞ βn(1− βn) > 0.

Then, the sequences {xn} converges a strongly to common solution of Problem 1, Problem 2 and Problem 3.
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5 Open Problems

In this paper, we have only shown that Fix(T1 ◦ T2) = Fix(T1) ∩ Fix(T2) with T1 and T2 are quasi-
nonexpansive and firmly nonexpansive mappings respectively. It is well known that there are other nonlinear
mappings more general than firmly nonexpansive mappings and quasi-nonexpansive mappings. Therefore,
the results of this paper open up many forthcoming results regarding convex minimization problem coupled
with the fixed point problem studied in this paper. These following questions are open for researchers
interested in this field:

(i) Can we extend Lemma 10 to mappings that are more general than firmly nonexpansive and quasi-
nonexpansive mappings mappings ?

(ii) Do the results hold in the setting of a more general Banach space by using our algorithm defined in
Theorem 11?
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