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Abstract

In this research, a childhood disease model that incorporates relapse and vaccination was developed
and systematically analyzed using sets of non-linear Ordinary Differential Equations. The model exhibits
disease-free equilibrium which is locally and globally asymptotically stable whenever the threshold pa-
rameter Ro is less than unity and unstable otherwise. It also exhibits endemic equilibrium which was
proved to be locally asymptotically stable whenever Ro is greater than unity. The model was then mod-
ified to include vaccination programme capable of reducing disease burden. The global stability analysis
of the endemic equilibrium points was carried out using geometric and compound matrix approach sat-
isfying the Bendixon criterion when Rv > 1. The numerical solution of the model was performed using
Adams method coded in Python Programming Language to explore the biological implication of force of
infection, vaccination and relapse. The result shows that for the disease to be eradicated, the vaccination
rate f must be robust, relapse rate ε reduced and the contact rate β among children should be avoided
or minimized.

1 Introduction

Recently, childhood diseases have been a major public health hazard in the world. About three decades ago,
more than 2 million children died of different forms of childhood diseases [24]. Typical examples of childhood
diseases are measles, chicken pox, rubella, etc. Children within the age bracket 4-8 years are prone to these
diseases due to their frequent contact with their peers at school, playing grounds and other places [7].
Honestly, the use of vaccines has typically reduced the incidence of infectious diseases among children,

but recent studies show that childhood diseases still remain a public health problem. Poor immunization
administration and unavailability of vaccine are some of the major reasons behind the resurgence of these
deadly diseases [9]. At this age bracket, particularly for the uninfected children, the administration of vaccine
may induce permanent immunity to the disease.
Some researchers like [8] studied the classical susceptible-exposed-infectious-removed (SEIR) model for

the transmission dynamics of measles to better understand its complex dynamics. But some of the recent
clinical researches have shown that the permanent immunity induced by the preventive vaccines for some of
the aforementioned diseases wanes in no time. For example, [16] estimated the mean duration of vaccine-
induced protection against measles in the absence of re-exposure to be 25 years. Similar clinical results
have shown additional cases of waning immunity in vaccines that are expected to offer permanent immunity
[20, 1, 3, 17, 21].
The immunity in preventive vaccines against childhood diseases also wanes. Therefore, the vaccine wanes

immediately from the body of the children, those children become susceptible to the disease again and get
relapsed. Hence, it becomes imperative to develop a model that incorporates vaccine-induced immunity with
no or negligible waning rate.
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Biologically speaking, the return of a disease weeks or months after its apparent cessation is called
relapse. That is, relapse is the return of a disease or the signs and symptoms of a disease after a period
of improvement. This phenomenon has partly contributed to the wide spread of disease in the community
[19]. As far as mathematical modeling is concerned, few researchers have incorporated this phenomenon in
childhood disease model.
The unquantifiable dangers posed by the menace of childhood diseases which made public health workers,

researchers, scientists and governments at both state and federal level to try their best to contain its spread
has necessitated the attempt to embark on this research.
To this end, we develop, analyze and carry out the numerical solution of a childhood disease model

incorporating vaccine-induced immunity to further understand its dynamics. It is worth noting here that, to
the best of our knowledge, no childhood disease model has incorporated vaccination and relapse combined
which necessitated the interest to embark on this work.
The work is arranged as follows; section two presents model 1 without vaccination, the meaning of some

basic parameters, invariant region, positivity solution and its stability analyses. In section three, we present
the vaccination model, its analyses and the contour plot. Section four contains the numerical solution of
the model using the Adams method coded in Python Programming Language and MATLAB. Section five
contains the conclusion and acknowledgment followed by references.

2 Model Formulation

The entire population of the model at time t, is divided in to four main classes namely: susceptible class
X(t), asymptomatic class I1(t), symptomatic class I2(t) and the recovered class R(t) using set of nonlinear
deterministic differential equations.
Taking βXI2(t)

N as the force of infection, ε as relapse rate, α as progression rate from asymptomatic to
symptomatic class. Both birth and death rates are represented by µ, recovery rate by γ and the total
population can be represented as

N(t) = X(t) + I1(t) + I2(t) +R(t). (1)

The basic model assumptions are:

1. The asymptomatic class are only infected but not infectious;

2. Eruption of relapse due to the absence of vaccine or low vaccine effi cacy;

3. The population is fixed;

4. The probability of been infected is not based on sex, race or tribe;

5. There is always homogeneous mixing and interaction between the four classes;

6. Individuals are recruited to the susceptible class only;

7. The vaccine is assumed to be perfect without waning.

The model is presented as follows:

Ẋ(t) = µN − βXI2(t)

N
− µX, (2)

İ1(t) =
βXI2(t)

N
− (α+ µ)I1, (3)

İ2(t) = αI1 + εR− (µ+ γ)I2, (4)



Rabiu et al. 501

Figure 1: Vaccination-free Model Diagram.

Ṙ(t) = γI2 − (ε+ µ)R. (5)

The above set of nonlinear differential equations can be normalized to give

dx(t)

dt
= µ− βxi2 − µx, (6)

di1(t)

dt
= βxi2 −m1i1, (7)

di2(t)

dt
= αi1 + εr −m2i2, (8)

dr(t)

dt
= γi2 −m3r, (9)

where

x =
X

N
, i1 =

I1
N
, i2 =

I2
N
, r =

R

N
,m1 = α+ µ,

m2 = µ+ γ,m3 = ε+ µ, n(t) = x(t) + i1(t) + i2(t) + r(t).

Parameter Description Value/year Reference
µ Recruitment & death rate 0.166 [7]
β Contact rate 0.8 [22]
ε Relapse rate 0.89 Assumed
α Progression from I1 to I2 0.9 Assumed
γ Recovery rate 0.5 [5]
f Vaccination rate (0,1) [22]

Table 1: Description of Parameters and Their Hypothetical Value.

2.1 Positivity and Boundedness of Solution

Theorem 1 The feasible region Γ defined by

Γ =
{

(x, i1, i2, r) ∈ R4+ : x(t) + i1(t) + i2(t) + r(t) = 1
}
,

with initial condition
x(0) ≥ 0, i1(0) ≥ 0, i2(0) ≥ 0, r(0) ≥ 0, (10)

is positively-invariant and attracting with respect to model equation (6)—(9).
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Proof. Using equation (6), we have

dx(t)

dt
= µ− (λ+ µ)x(t) where λ(i2) = βi2(t).

With the integrating factor θ(t) = exp
{
µt+

∫ τ
o
λ(τ)dτ

}
, the solution is given by

x(t) exp

{
µt+

∫ τ

o

λ(τ)dτ

}
= µ

∫ t

o

exp

{
µt+

∫ τ

o

λ(τ)dτ

}
dt+ x(0),

x(t) =

[
µ

∫ t

o

exp

{
µt+

∫ τ

o

λ(τ)dτ

}
dt+ x(0)

]
exp

{
−µt−

∫ τ

o

λ(τ)dτ

}
,

where x(0) is given by (10). This shows that the variable x(t) is positive. Hence, the positiveness of the
solution of x(t) is guaranteed. The same approach can be extended to other variables i1(t), i2(t) and r(t) to
prove the positivity of their respective solution.
Moreover, adding all equations of the system (6)—(9) gives,

dn(t)

dt
= µ− µn(t).

Using the integrating factor eµt, the solution is given by

n(t) = 1 + (n(0)− 1) e−µt,

where n(t) = 1 for any t > 0. This indicates that the solutions of system (6)—(9) are bounded above by 1 in
a positive region R4+. This implies that

Γ =
{

(x(t), i1(t), i2(t), r(t)) ∈ R+4 : x(t) + i1(t) + i2(t) + r(t) = 1
}
,

is positively invariant set of the system (6)—(9). It is then suffi cient to study the childhood model since it is
epidemiologically well-posed and biologically meaningful [10, 15, 11].

2.2 Equilibrium Points

The disease-free equilibrium of the model (6)—(9) is given as

E
′

= (1, 0, 0, 0), that is, x∗ = 1, i∗1 = 0, i∗2 = 0, r∗ = 0. (11)

2.3 The Basic Reproduction Number

According to [18], the linear stability of E
′
can be established using the next generation operator method

on the model equation. The reproduction number is termed as the average number of secondary infection
that can be obtained in the cause of a single primary infection introduced into a population of susceptible
individuals [23]. Let u = (i1(t), i2(t), r(t))

T ∈ R3. Then the model equation can be written in the form
du
dt = F(u)− V(u), where

F(u) =

 βxi2
0
0

 , V(u) =

 m1i1
m2i2 − αi1 − εr
m3r − γi2

 .

The derivative of the above expressions with respect to i1, i2, r evaluated at disease-free equilibrium gives

F =

 0 β 0
0 0 0
0 0 0

 , V =

 m1 0 0
−α m2 −ε
0 −γ m3

 .
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The reproduction number expressed as ρ(FV −1) which is the spectra radius of FV −1 is given by

Ro =
βαm3

m1(m2m3 − εγ)
.

The spread of the childhood disease among children is dependent on the value of the reproduction number.

2.4 Endemic Points

The endemic equilibrium point is known as the positive steady state solution where the disease is still
prevalent in the population. The endemic equilibrium points E are given as

x∗∗ =
1

Ro
, i∗∗1 =

µ2(ε+ γ + µ)(Ro − 1)

αm3β
, i∗∗2 =

µ(Ro − 1)

β
, r∗∗ =

γµ(Ro − 1)

βm3
, (12)

where the endemic equilibrium exists only when Ro > 1.

2.5 Stability Analysis of the System

Using Theorem 2 in [18], the following result is established.

Theorem 2 The disease-free equilibrium of the model (6)—(9) is locally asymptotically stable if Ro < 1 and
unstable if Ro > 1.

Theorem 3 The endemic equilibrium of the model (6)—(9) is locally asymptotically stable if Ro > 1 and
unstable if Ro < 1.

Proof. We evaluate the Jacobian matrix of the model equation at endemic equilibrium points as follows:

J(E) =


−βi∗∗2 − µ 0 −βx∗∗ 0
βi∗∗2 −m1 βx∗∗ 0

0 α −m2 ε
0 0 γ −m3

 .

The characteristic equation of J(E1) is given as

f2(λ) = λ4 + h3λ
3 + h2λ

2 + h1λ+ ho = 0. (13)

where h4, h3, h2, h1, ho are given as
h4 = 1 > 0,

h3 = m1 +m2 +m3 + βi∗∗2 + µ > 0,

h2 = βi∗∗2 (m1 +m2 +m3) + µ(m1 +m2 +m3) +m2m3 +m1(m2 +m3)− βx∗∗α− εγ,
where

−βx∗∗α− εγ = −βα
[
µ(ε+ µ+ γ)(α+ µ)

αβ(ε+ µ)

]
− εγ =

εγm1

m3
−m1m2 − εγ

from the provision of the expressions in (12). Hence,

h2 = βi∗∗2 (m1 +m2 +m3) + µ(m1 +m2 +m3) +m1m3 +
εγm1

m3
+ µ(µ+ ε+ γ) > 0,

h1 = βi∗∗2 (m2m3 − εγ) + βi∗∗2 m1(m2 +m3)− βx∗∗αµ− εγµ− βx∗∗αm3

−εγm1 + µ(m1m2 +m1m3 +m2m3) +m1m2m3,
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which can also be re-expressed as

h1 = βi∗∗2 m1(m2 +m3) +A1 +A2 +A3,

where
A1 = −βx∗∗αm3 − εγm1 = −m1m2m3,

A2 = −βx∗∗αµ− εγµ = µ

(
γεm1

m3
−m1m2 − εγ

)
,

A3 = βi∗∗2 (m2m3 − εγ) = µ2(µ+ γ + ε)(Ro − 1).

Substituting back A1, A2, A3 gives

h1 = βi∗∗2 m1(m2 +m3)

+µ

[
γεm1

m3
+ µ(µ+ ε+ γ) +m1m3 + µ(µ+ γ + ε)(Ro − 1)

]
> 0.

Following the same approach we have, ho = αβm3µ
[
Ro−1
Ro

]
> 0. Since all the coeffi cients are positive, we

now finalize the proof by establishing the Routh-Hurwitz criterion given in Appendix 1. Hence, the endemic
equilibrium of the model (6)—(9) is locally asymptotically stable if Ro > 1.

Theorem 4 The disease-free equilibrium point of the model (6)—(9) is globally asymptotically stable if Ro < 1
and unstable if Ro > 1.

Proof. We construct the Lyapunov function

V = αm3i1 +m1m3i2 +m1εr.

Obtaining the time derivative gives

V̇ = αm3i̇1 +m1m3i̇2 +m1εṙ.

Substituting equations (7), (8) and (9), to have

V̇ = αm3(βxi2 −m1i1) +m1m3(αi1 + εr −m2i2) +m1ε(γi2 −m3r)

= i2[m1(εγ −m2m3) + αβm3x] = −i2[m1(m2m3 − εγ)− αβm3x]

≤ −i2
[
1− αβm3

m1(m2m3 − εγ)

]
by the feasible region Γ.

Then V̇ ≤ i2µ(Ro − 1)(µ + ε + γ). Vividly, V̇ ≤ 0 when Ro ≤ 1 and V̇ = 0 if i2 = 0. Then, by Lassalle’s
In-variance Principle [12], every solution of the system (6)—(9) having the stated initial conditions in Γ
approaches the disease-free equilibrium as t tends to infinity. Hence, since the region Γ is positively invariant
as established earlier, the disease-free equilibrium is globally asymptotically stable if Ro < 1 [6]. For the
global stability of the endemic equilibrium points, we state the following theorem without proof.

Theorem 5 The endemic equilibrium point of the model (6)—(9) is globally asymptotically stable if Ro > 1
and unstable if Ro < 1.

For the proof, please see the proof of Theorem 9.

3 The Vaccination Model of Childhood Disease

Biologically speaking, it has been established that childhood disease can be prevented using vaccine with
no or very negligible waning rate and high effi cacy. To this end, we modified the model to include the
vaccination group where the vaccine is being administered to the children from birth (susceptible children)
so that we can determine the effect of such vaccine via mathematical modeling technique.
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3.1 The Vaccination Model Formulation

The basic model (6)—(9) is extended to include the population of vaccinated individuals represented by V (t)
so that the total population becomes N = X(t) + I1(t) + I2(t) + V (t) +R(t). This compartment is obtained
by vaccination of susceptible group at birth at the rate f . The model is as follows

dx(t)

dt
= (1− f)µ− βxi2 − µx, (14)

dv(t)

dt
= µf − µv, (15)

di1(t)

dt
= βxi2 −m1i1, (16)

di2(t)

dt
= αi1 + εr −m2i2, (17)

dr(t)

dt
= γi2 −m3r. (18)

The invariant region of the above model is given as:

Γ1 =
{

(x(t), v(t), i1(t), i2(t), r(t)) ∈ R5+ : x(t) + v(t) + i1(t) + i2(t) + r(t) = 1
}
. (19)

The disease-free equilibrium is given by

Eo = {1− f, f, 0, 0, 0} i.e. x∗ = 1− f, v∗ = f, i∗1 = 0, i∗2 = 0, r∗ = 0.

As usual, the basic reproduction number is calculated as follows:

F(u) =

 βxi2
0
0

 , V(u) =

 m1i1
m2i2 − αi1 − εr
m3r − γi2

 .

The derivative of the above expressions with respect to i1, i2, r evaluated at disease-free equilibrium gives

F =

 0 β(1− f) 0
0 0 0
0 0 0

 , V =

 m1 0 0
−α m2 −ε
0 −γ m3

 .

The reproduction number expressed as ρ(FV −1) which is the spectra radius of FV −1 is given by

Rv =
(1− f)βαm3

m1(m2m3 − εγ)
.

Hence,
Rv = (1− f)Ro.

The endemic equilibrium points E1 can also be presented as follows

x∗∗ =
1− f
Rv

, v∗∗ = f, i∗∗1 =
µ2(ε+ γ + µ)(Rv − 1)

αm3β
, i∗∗2 =

µ(Rv − 1)

β
,

r∗∗ =
γµ(Rv − 1)

βm3
. (20)
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3.2 Local Stability Analysis of the Vaccination Model

We establish the theorem below without proof, using Theorem 2 in [18].

Theorem 6 The disease-free equilibrium points of the model (14)—(18) is locally asymptotically stable if
Rv < 1 and unstable otherwise.

For the endemic equilibrium, we evaluate the Jacobian matrix of the model equation at endemic equilib-
rium points as follows:

J(E1) =


−βi∗∗2 − µ 0 0 −βx∗∗ 0

0 −µ 0 0 0
βi∗∗2 0 −m1 βx∗∗ 0

0 0 α −m2 ε
0 0 0 γ −m3

 .

Obviously, λ1 = −µ is the first eigenvalue, the sign of the remaining eigenvalues can be determined by the
reduced matrix:

J(E1) =


−βi∗∗2 − µ 0 −βx∗∗ 0
βi∗∗2 −m1 βx∗∗ 0

0 α −m2 ε
0 0 γ −m3

 ,

f4(λ) = λ4 + b1λ
3 + b2λ

2 + b3λ+ b4,

where
b1 = m1 +m2 +m3 + βi∗∗2 + µ > 0,

b2 = βi∗∗2 (m1 +m2 +m3) + µ(m1 +m2 +m3) +m1m3 +
εγm1

m3
+ µ(µ+ ε+ γ) > 0,

b3 = βi∗∗2 m1(m2 +m3) + µ

[
γεm1

m3
+ (µ+ ε+ γ) +m1m2 + µ(µ+ γ + ε)(Rv − 1)

]
> 0,

b4 = αβm3µ

[
Rv − 1

Rv

]
> 0,

where i∗∗2 is as given in equation (20). Since all the coeffi cients are positive when Rv > 1, the proof can be
finalized by establishing the Routh-Hurwitz criterion similar to the one presented in Appendix 1. Therefore,
the endemic equilibrium point is locally asymptotically stable if Rv > 1. Hence, we establish the theorem
below.

Theorem 7 The endemic equilibrium points of the model (14)—(18) is locally asymptotically stable if Rv > 1
and unstable if Rv < 1.

3.3 Global Stability Analysis of the Vaccination Model

The global stability analysis of the disease-free equilibrium can be obtained using the following Theorem.

Theorem 8 The disease-free equilibrium point of the model (14)—(18) is globally asymptotically stable if
Rv < 1 and unstable if Rv > 1.

We construct the Lyapunov candidate function

L = αm3i1 +m1m3i2 +m1εr.

Obtaining the time derivative gives

L̇ = αm3i̇1 +m1m3i̇2 +m1εṙ.
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Substituting the respective values of i̇1, i̇2 and ṙ, we have

L̇ = αm3(βxi2 −m1i1) +m1m3(αi1 + εr −m2i2) +m1ε(γi2 −m3r)

= i2[m1(εγ −m2m3) + αβxm3] = −i2[m1(m2m3 − εγ)− αβm3x]

= −i2
[
1− αβm3x

m1(m2m3 − εγ)

]
m1(m2m3 − εγ)

≤ i2

[
αβm3(1− f)

m1(m2m3 − εγ)
− 1

]
m1(m2m3 − εγ) by the feasible region Γ1.

Then
L̇ ≤ i2µ(α+ ε)(µ+ ε+ γ)(Rv − 1).

Vividly, L̇ ≤ 0 if Rv ≤ 1 and L̇ = 0 if and only if i2 = 0. Then, by Lassalle’s Invariance Principle [12], every
solution of the system (14)—(18) having the stated initial conditions s(0), i1(0), i2(0), r(0) in Γ1 approaches
the disease-free equilibrium as t tends to infinity. Hence, since the region Γ1 is positively invariant as
established before, the disease-free equilibrium is globally asymptotically stable if Rv < 1 [6].

3.4 Global Stability Analysis of the Endemic Equilibrium by Geometric Method.

Here, we shall examine the global stability analysis of the endemic equilibrium E1 of the system (14)—(18)
when Rv > 1. A geometrical approach developed by [13] for proving global stability will be adopted. This
kind of approach is specifically based on the use of higher-order generalization of Bendixions’criterion which
precludes the existence of non-constant periodic solution [14]. The instability of Eo implies the uniform
persistence, i.e. there exists a constant a > 0 such that any solution x(t), i1(t), i2(t), r(t) with x(0), i1(0),
i2(0), r(0) in the orbit of the system (14)—(18) satisfies

min
{

lim inf
t−→∞

x(t), lim inf
t−→∞

i1(t), lim inf
t−→∞

i2(t), lim inf
t−→∞

r(t)
}
> a.

The following Lemma will provide some insight in the analysis.

Lemma 1 (Li and Muldowney [13]) If the system

dx

dt
= f(x),

where x→ f(x) ∈ Rn, be a C1 function for x in an open set Γ1 ⊂ Rn such that

(i) it has a unique equilibrium x∗ in Γ1 and

(ii) [3], there exists a compact absorbing set Z ⊂ Γ1, then the equilibrium x∗ in Γ1 is globally asymptotically

stable provided that a
(
n
2

)
×
(
n
2

)
matrix-valued function P (x) and Lozinskii measure θ of F with

respect to a vector norm | · | in RN , N =

(
n
2

)
(where N is the number of combinations of n by 2

and n is the number of compartments) exist such that the quantity B is given by

B = lim sup
t→∞

sup
x∈Z

1

t

∫ t

0

θ[F (x, i1, i2, r)]ds < 0,

under the condition that
F = PfP

−1 + PJ [2]P−1, (21)

the matrix Pf is obtained by replacing each entry Pij of P by its derivative in the direction of f and
J [2] is the second additive compound matrix [2, 13] of the Jacobian matrix J i.e, J(x) = Df(x) and

θ(F ) = lim
h→0+

||I + hF || − 1

h

where I is an identity matrix.
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Theorem 9 If Rv > 1, then the endemic equilibrium E1 of system (14)—(18) is globally asymptotically stable
provided that z = max {γ −m2, ε−m3}, and

q̂ = min {β − (µ+m1), α+ z − (2β + µ), 2β + z −m3, α− (m2 +m3)} .

Proof. The provision of Theorem 1 is enough to show that the model equations is uniformly persistent
whenever Rv > 1. In other words, the system (14)—(18) is uniformly persistent in the bounded set Γ1 is
the same as the existence of a compact absorbing set Z ⊂ Γ1. Hence, conditions (i) and (ii) are satisfied
since Rv > 1. Since v doesn’t appear elsewhere in the model equations, equation (15) will be consequently
ignored.
The Jacobian matrix of the model equation can be expressed as follows:

J(E1) =


−βi∗∗2 − µ 0 −βx∗∗ 0
βi∗∗2 −m1 βx∗∗ 0

0 α −m2 ε
0 0 γ −m3

 .
The second additive compound matrix is given below

J [2] =


g11 βx∗∗ 0 βx∗∗ 0 0
α g22 ε 0 0 0
0 γ g33 0 0 −βx∗∗
0 βi∗∗2 0 g44 ε 0
0 0 βi∗∗2 γ g55 βx∗∗

0 0 0 0 α g66

 ,

where
g11 = −(βi∗∗2 + µ+m1), g22 = −(βi∗∗2 + µ+m2), g33 = −(βi∗∗2 + µ+m3)

g44 = −(m1 +m2), g55 = −(m1 +m3), g66 = −(m2 +m3).

Let

P = diag
(

1

I
,

1

I
,

1

I
,

1

I
,

1

I
,

1

I
,

)
, P−1 = diag(I, I, I, I, I, I),

Pf = −diag
(
I
′

I2
,
I
′

I2
,
I
′

I2
,
I
′

I2
,
I
′

I2
,
I
′

I2

)
,

PfP
−1 = −diag

(
I
′

I
,
I
′

I
,
I
′

I
,
I
′

I
,
I
′

I
,
I
′

I
,

)
. (22)

We evaluate

F = PfP
−1 + PJ [2]P−1 =



g11 − I
′

I βx∗∗ 0 βx∗∗ 0 0

α g22 − I
′

I ε 0 0 0

0 γ g33 − I
′

I 0 0 −βx∗∗

0 βi∗∗2 0 g44 − I
′

I ε 0

0 0 βi∗∗2 γ g55 − I
′

I βx∗∗

0 0 0 0 α g66 − I
′

I


.

From here, we have the following sets

F11 = g11 −
I
′

I
, F12 = (βx∗∗, 0), F13 = (βx∗∗, 0), F14 = (0),
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F21 = (α, 0)T , F22 =

(
g22 − I

′

I ε

γ g33 − I
′

I

)
, F23 = 0, F24 = (0,−βx∗∗)T ,

F31 = (0), F32 =

(
βi∗∗2 0

0 βi∗∗2

)
, F33 =

(
g44 − I

′

I ε

γ g55 − I
′

I

)
,

F34 = (0, βx∗∗)T , F41 = (0), F42 = (0), F43 = (0, α), F44 =

(
g66 −

I
′

I

)
.

Let u = (u1, u2, u3, u4, u5, u6) denote a vector in R6 u R

 4
2


, we select a norm in R6 as

‖(u1, u2, u3, u4, u5, u6)‖ = max {|u1|, |u2|+ |u3|, |u4|+ |u5|, |u6|} .

Now we have
θ[F (x, i1, i2, r)] ≤ sup {u1, u2, u3, u4}

where
u1 = θ1(F11) + |F12|+ |F13|+ |F14| , u2 = θ1(F22) + |F21|+ |F23|+ |F24| ,
u3 = θ1(F33) + |F31|+ |F32|+ |F34| , u4 = θ1(F44) + |F41|+ |F42|+ |F43| ,

θ1(F11) = −(βi∗∗2 + µ+m1 +
I
′

I
), θ1(F22) = −I

′

I
− (βi∗∗2 + µ) + z,

and

θ1(F33) = −I
′

I
−m3 + z,

where z = max {γ −m2, ε−m3}. After some simplifications, we have the following

u1 = θ1(F11) + |F12|+ |F13|+ |F14| ≤ −
I
′

I
− (β + µ+m1) + 2β,

u2 = θ1(F22) + |F21|+ |F23|+ |F24| ≤ −
I
′

I
− (2β + µ) + α+ z,

u3 = θ1(F33) + |F31|+ |F32|+ |F34| ≤ −
I
′

I
+ 2β −m3 + z,

u4 = θ1(F44) + |F41|+ |F42|+ |F43| ≤ −
I
′

I
− (m2 +m3) + α.

And the non differential part is given as

q̂ = min {β − (µ+m1), α+ z − (2β + µ), 2β + z −m3, α− (m2 +m3)}

such that

θ(F ) ≤ −I
′

I
− q̂. (23)

Given [x(0), i1(0), i2(0), r(0)] ∈ n as the initial conditions of the system (16)—(20) when t→∞, we have

1

t

∫ t

0

θ(F )ds ≤ 1

t

∫ t

0

(
−I

′

I
− q̂
)
ds =

ln I(0)− ln I(t)

t
− q̂ =

1

t
ln

(
I(0)

I(t)

)
− q̂.

Therefore,

B = lim sup
t→∞

sup
x∈Z

1

t

∫ t

0

θ[F (x, i1, i2, r)]ds ≤ −q̂ < 0.

Provided that q̂ > 0. This completes the proof.
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3.5 Threshold Analysis, Vaccine Impact and Effect of Relapse.

To further understand the effect of vaccine and contact rate, we carry out the threshold analysis by obtaining
the partial derivative of the reproduction number with respect to f and β as follows:

∂Rv
∂f

=
−αβm3

m1(m2m3 − εγ)
= −Ro,

∂Rv
∂β

=
αm3(1− f)

m1(m2m3 − εγ)
= (1− f)

Ro
β
,

∂Rv
∂ε

=
αβ(1− f)γ

µm1(µ+ ε+ γ)2
.

It follows that
∂Rv
∂f

< 0 for 0 ≤ f < 1. Hence, Rv is a decreasing function of f . Since the reproduction

number is expected to signify reduction in disease persistence. This shows that the proposed vaccine would
have a positive impact for any f > 0 since the vaccination of any fraction of the susceptible child would
reduce the disease burden. Furthermore there is a unique f̄ such that Rv(f̄) = 1 given by

f̄ = 1− 1

Ro
.

On the other-hand,
∂Rv
∂β

> 0 for 0 ≤ f < 1. Hence, Rv is an increasing function of β. This shows that

increase in the contact rate β will increase Rv and results in the increase in disease burden. Furthermore
there is a unique β̄ such that Rv(β̄) = 1 given by

β̄ =
m1(m2m3 − εγ)

αm3(1− f)
=

β

Rv
.

Finally,
∂Rv
∂ε

> 0 for 0 ≤ f < 1. Hence, Rv is an increasing function of ε. This shows that an increase in the

relapse rate ε will increase Rv and results in the increase in disease burden. Furthermore there is a unique ε̄
such that Rv(ε̄) = 1 given by

ε̄ =
µ[αβ(1− f)− {µ(µ+ γ + α) + αγ}]

µ(µ+ α) + αβ(f − 1)
.

The effect of contact rate β and relapse rate ε on the reproduction number Rv is better understood using
the contour plot presented in Figure 2. Parameter value used are µ = 0.016, α = 0.9, γ = 0.5, f = 0.1,
β = ε = (0, 1). Figure 2 is the contour plot that shows that the reproduction number increases with increase
in both contact rate and relapse rate. The reproduction number is minimal when both ε and β are minimal
and maximal when both parameters are maximal. This consequently confirms the analytic result presented
earlier that Rv is an increasing function of β and ε hence, to ensure disease eradication, effort must be made
to reduce them to the barest minimum.

4 Numerical Solution of the System and Discussion of Results.

Numerical solution of the system of equation is always carried out to understand the behavior of the model
and its parameters. In this section, we present the solution of the model equation which are numerically
verified using Python Programming Language and Maple 18 software. Firstly, we consider the case when
the reproduction number is more than unity (Rv = 2.3471) with parameter value β = 0.8, µ = 0.166, ε =
0.89, α = 0.9, γ = 0.5, f = 0.15 which biologically signifies endemicity of the childhood disease in the
community.
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Figure 2: Effect of contact rate β and relapse rate ε on reproduction number Rv.

According to Figure 3, we carried out the solution in a small population size distributed over the five
compartments with the following initial values

(x(0), v(0), i1(0), i2(0), r(0)) = (0.32, 0.31, 0.2, 0.11, 0.06),

(0.42, 0.22, 0.04, 0.23, 0.09), (0.57, 0.19, 0.11, 0.02, 0.11), (0.54, 0.1, 0.07, 0.11, 0.18),

where in each case, x(0) + v(0) + i1(0) + i2(0) + r(0) = 1. We discovered that the susceptible and vaccinated
population declined steadily, while the other three infected population classes grow up steadily as time goes
on due to high contact rate β, relapse rate ε and low vaccination rate f which consequently makes Rv > 1.
This is in confirmation with theorem 7 and disease-free equilibrium points become unstable when Rv > 1.

Figure 3: Graphical solution of x, v, i1, i2, r with Rv > 1.

With the same initial conditions, the graphical solution is presented in Figure 4 when (Rv = 0.0588 < 1)
using parameter values β = 0.1, µ = 0.166, ε = 0.2, α = 0.12, γ = 0.5, f = 0.45. It can be easily seen that the
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susceptible and vaccinated population classes grow up steadily, while the other three infected populations
decrease drastically (almost zero level) due to low contact rate β, relapse rate ε and high vaccination rate f
which consequently makes Rv < 1. This is in confirmation with theorem 6 and endemic equilibrium points
becomes unstable when Rv < 1.

Figure 4: Graphical solution of x, v, i1, i2, r with Rv < 1.

In both figures, we can easily verify that when the relapse and the rate of contact between the children
are high under low/no vaccination programme more people will get infected and the whole population will
consequently wiped out in no time. Conversely, if the contact rate is low (with negligible relapse rate) under
a very robust vaccination programme, few children will be infected and the disease spread will be kept at
minimal level and under control. This underlines the effect of vaccination, relapse rate and contact rate in the
spread of childhood disease. Finally, we present here the effect of relapse on the recovered population. It is
worth noting that relapse contribute to the spread of childhood disease and this is graphically represented in
Figure 5. It can be seen that the higher the rate at which children relapse, the fewer the recovered population
and vice-versa. The recovered population is maximum when relapse rate ε = 0 and the population is minimal
when ε = 1.

5 Conclusion and Acknowledgment

5.1 Conclusion

In this research, we developed a new childhood disease model that incorporates vaccine-induced immunity
with relapse. The two models were rigorously analyzed to understand their dynamics. The global stability
of the disease-free equilibrium points of model 2 was done using Lyapunov direct method while that of the
endemic equilibrium was carried out using geometric method and compound matrix approach satisfying the
Bendixon criterion. The threshold analysis, vaccine impact and effect of relapse rate were also investigated
using the basic reproduction number of the vaccination model to understand the effect of vaccine and relapse
in disease transmission. The results obtained show that, for the disease to be eradicated, the contact rate
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Figure 5: Effect of Relapse on Recovered Population.

β and relapse rate ε must be kept as minimal as possible while vaccine administration is at maximum level
which in turn ensure that Rv is less than unity, hence disease is eradicated.

Acknowledgment. The authors of this research acknowledge the effort of the unknown and impartial
reviewers whose comments and instructions were helpful in improving the quality of this work.

6 Appendix 1: Proof of Routh-Hurwitz criterion of Equation (13)

Clearly, hi > 0 for i = 0, 1, 2, 3, 4 and matrices Mi > 0 for i = 1, 2, 3, 4. The matrices are found positive as
follows:

M1 = h3 > 0, M2 =

∣∣∣∣ h3 h4
h1 h2

∣∣∣∣ > 0, M3 =

∣∣∣∣∣∣
h3 h4 0
h1 h2 h3
0 ho h1

∣∣∣∣∣∣ > 0,

M4 =

∣∣∣∣∣∣∣∣
h3 h4 0 0
h1 h2 h3 h4
0 ho h1 h2
0 0 0 ho

∣∣∣∣∣∣∣∣ > 0.

We will prove M2 > 0 only as the proof of M3 > 0 and M4 > 0 directly follows.

M2 = h2h3 − h1h4

=

[
(βi∗∗2 + µ)(m1 +m2 +m3) +m1m3 +

εγm1

m3
+ µ(µ+ ε+ γ)

]
A

−
[
βi∗∗2 m1(m2 +m3) + µ

[
γεm1

m3
+B +m1m2 + µ(µ+ γ + ε)(Ro − 1)

]]
.

where A = (m1 + m2 + m3 + βi∗∗2 + µ), B = (µ + ε + γ). By putting back the original value of Ro and
expressions in (12) coupled with some serious algebraic simplifications, we expand with Maple 18 and the
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result is as follows:

2γm1ε+ βi∗∗2 (m1m2 +m2m3 + γε+ 2m1m3) + βx∗∗(αµ+ αm3) + µ(γε+ µ2)

+m1(µm1 + 2µ2 +m1m3) +m2(µm2 + 2µ2) + µ2(γ + ε) + µ(γm3 + εm2)

+m3µ(m3 + 2µ) + 2βi∗∗2 µ(m1 +m2 +m3) +
εγm2

1

m3
+ βi∗∗2 (γµ+ µε+m2

1 + µ2 + βi∗∗2 m2)

+µγ(m1 +m2) + βi∗∗2

[
βi∗∗2 m1 +m2

2 + βi∗∗2 m3 +
εγm1

m3

]
+ βi∗∗2 m

2
3

+µm3ε+
εγm1

m3
(µ+m2) +m1(µm2 +m2

3) + 2µm3(m1 +m2) > 0

which is strictly greater than zero.
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