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Abstract

In this article, we introduce a new three-parameter odd log-logistic logarithmic Lindley distribution
and discuss some of its properties. These include the shapes of the density and hazard rate functions,
mixture representation, the moments, the quantile function, and order statistics. Maximum likelihood
estimation of the parameters and their estimated asymptotic standard errors are derived. Three algo-
rithms are proposed for generating random data from the proposed distribution. A simulation study
is carried out to examine the bias and mean square error of the maximum likelihood estimators of the
parameters. An application of the model to two real data sets is presented finally and compared with the
fit attained by some other well-known two and three-parameter distributions for illustrative purposes.
It is observed that the proposed model has some advantages in analyzing lifetime data as compared to
other popular models in the sense that it exhibits varying shapes and shows more flexibility than many
currently available distributions.

1 Introduction

Statistical distributions are very useful in describing and predicting real world phenomena. Numerous ex-
tended distributions have been extensively used over the last decades for modeling data in several areas.
Recent developments focus on defining new families that extend well-known distributions and at the same
time provide greater flexibility in modelling data in practice. Hence, several classes to generate new distri-
butions by adding one or more parameters have been proposed in the statistical literature. Some well-known
generators are the Marshall-Olkin generated (MO-G) by Marshall and Olkin [21], beta-G by Eugene et al. [8],
Kumaraswamy-G (Kw-G) by Cordeiro and de Castro [5],Weibull-G by Bourguignon et. al.[4], exponentiated
half-logistic-G by Cordeiro et al. [6], among others.

Let G(x; ξ) be a baseline cumulative distribution function (cdf) and ξ be the vector of associated param-
eters. Gleaton and Lynch ([11, 12, 13]) defined the cdf of the odd log-logistic family with one extra shape
parameter α > 0 by

H(x) =
G(x; ξ)α

G(x; ξ)α + Ḡ(x; ξ)α
,

where Ḡ(x; ξ) = 1 − G(x; ξ). In addition, Gleaton and Rahman ([14, 15]) obtained asymptotic results
for the maximum likelihood estimates (MLEs) of the parameters of these two distributions. They proved
that for distributions generated from either a two-parameter Weibull or a two-parameter inverse Gaussian
distributions by a GLL transformation, the joint MLEs of the parameters are asymptotically normal and
efficient, provided the GLL transformation parameter exceeds three.

Recently, Alizadeh et al. [2] defined the cdf of the odd log-logistic logarithmic-G (OLLL-G) family by

H(x, α, β, ξ) =
log(1 − β G(x;ξ)α

G(x;ξ)α+Ḡ(x;ξ)α )

log(1 − β)
, (1)
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where G(x; ξ) is the baseline cdf depending on a parameter vector ξ and α > 0 and β < 1 are two additional
shape parameters. It includes the odd log-logistic-G (OLL-G) family (Gleaton and Lynch 2004,2006) and
the logarithmic-G family. In addition, the pdf of the family is

h(x, α, β, ξ) =
α β g(x, ξ)G(x, ξ)α−1Ḡ(x, ξ)α−1

−[G(x; ξ)α + Ḡ(x; ξ)α][(1 − β)G(x; ξ)α + Ḡ(x; ξ)α] log(1 − β)

A motivation of this family can be explained as follows. Suppose that a parallel system is made up of N
components and the lifetimes of the components are independent and identically distributed (iid) random
variables, denoted by Z1, ZN , with common cdf (1). Then, the system fails as soon as the last component
fails, namely the lifetime of the whole system is represented by X = max{Z1, ZN}. In many survival parallel
systems, it is almost impossible to have a fixed number of components because some of them get lost or
censored for various reasons. Therefore we may assume that N is a discrete random variable. Suppose that
N has the logarithmic distribution with probability mass function given by

P (N = n) =
−1

log(1 − β)
.
βn

n
, n = 1, 2, ...; 0 < β < 1.

Then, the cdf of the life length of the whole system, X, is obtained as

F (x) =

∞∑

n=1

P (X ≤ x|N = n)P (N = n)

=

∞∑

n=1

[
G(x, ξ)α

G(x, ξ)α + (1 − G(x, ξ))α

]n −1

log(1 − β)
.
βn

n

=
− log

[
1 − β G(x,ξ)α

G(x,ξ)α+(1−G(x,ξ))α

]

− log(1 − β)

which is identical to (1).
On the other hand, the Lindley distribution specified by the probability density function (pdf)

f(x) =
λ2

λ + 1
(1 + x) exp(−λx), x > 0, λ > 0, (2)

was introduced by Lindley [20] in the context of Bayesian statistics. Ghitany et al. [10] investigated properties
of the Lindley distribution with application and outlined that the Lindley distribution is a better model
than one based on the exponential distribution, in other words many mathematical properties of the Lindley
distribution are more flexible than those of the exponential distribution. Ghitany et al. [10] showed that the
Lindley distribution can be written as a mixture of an exponential distribution and a gamma distribution
with shape parameter 2.

Now, by letting G(x; ξ) in (1) to be the cdf of the Lindley distribution, where ξ = λ, we can obtain a
new extension of the Lindley distribution, called the odd log-logistic logarithmic Lindley (henceforth, OLLL-
L) distribution. The new distribution is very flexible in the sense that it can be skewed and symmetric
depending upon the specific choices of the parameters. Furthermore, the associated cdf is in closed form.
Consequently, this distribution can be applied to modelling censored data too.

The article is outlined as follows: In section 2, we introduce the OLLL-L distribution and provide plots of
the density and hazard rate functions. Shapes, quantile function, moments, and moment generating function
are also obtained. Moreover, mean deviation, Lorenz and Bonferroni curves, order statistics. In section 3, the
asymptotic properties and extreme values are obtained. Estimation by the method of maximum likelihood
and an explicit expression for the observed information matrix are presented in Section 4. The simulation
study is presented in section 5. The applications to real data sets are considered in section 6. Finally, section
7 offers some concluding remarks.
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2 Main Properties

2.1 Probability Density and Cumulative Density Functions

Inserting (2) in (1), the cdf of the OLLL-L with three parameters α, β, λ is defined as

F (x, α, β, λ) =

log

[
1 − β [1−(1+ λx

1+λ )e−λx]α

[1−(1+ λx
1+λ )e−λx]α+[(1+ λx

1+λ )e−λx ]α

]

log(1 − β)
, (3)

f(x, α, β, λ) =
αβ λ2(1 + x) e−λ xk(x)α−1(1 − k(x))α−1

−(λ + 1) log(1 − β) [k(x)α + (1 − k(x))α] [k(x)α + (1 − β)(1 − k(x))α]
, (4)

respectively, where

k(x) = (1 +
λx

1 + λ
)e−λx

and α, λ > 0 and β < 1. We write X ∼ OLLLL(α, β, λ, ) if the pdf of X can be written as (4).
It is easy to see that:

(i) When β ↑ 1, we obtain OLL-L.

(ii) When α = 1, we obtain the Logarithmic-Lindley distribution.

(iii) When β ↑ 1 and α = 1, we obtain the Lindley distribution.

Some of the possible shapes of the density function (4) for the selected parameter values are illustrated
in Figure 1. As seen in Figure 1, the density function can take various forms depending on the parameter
values. It is evident that the OLLL-L distribution is much more flexible than the Lindley distribution, i.e.
the additional shape parameter allows for a high degree of flexibility of the OLLL-L distribution. Both
unimodal and monotonically decreasing and increasing shapes appear to be possible.

2.2 Survival and Hazard Rate Functions

Central role is played in the reliability theory by the quotient of the pdf and survival function. We obtain
the survival function corresponding to (3) as

S(x; λ, α, γ) =
1

log(1 − β)
log




1 − β

1 − β [1−(1+ λx
1+λ )e−λx ]α

[1−(1+ λx
1+λ )e−λx]α+[(1+ λx

1+λ )e−λx]α


 .

In reliability studies, the hrf is an important characteristic and fundamental to the design of safe systems
in a wide variety of applications. Therefore, we discuss these properties of the OLLL-L distribution. The
hrf of X takes the form

h(x; λ, α, γ) =

α β λ2(1+x) e−λ xk(x)α−1(1−k(x))α−1

−(λ+1)(log(1−β))2[k(x)α+(1−k(x))α][k(x)α+(1−β)(1−k(x))α]

log( 1−β

1−
β [1−(1+ λx

1+λ
)e−λx ]α

[1−(1+ λx
1+λ

)e−λx ]α+[(1+ λx
1+λ

)e−λx ]α

)
.

Plots of the hrf of the OLLL-L distribution for several parameter values are displayed in Figure 1. Figure
1 shows that the hrf of theOLL-L distribution can have very flexible shapes, such as increasing, decreasing,
upside-down bathtub, and bathtub. This attractive flexibility makes the hrf of the OLLL-L useful and
suitable for non-monotone empirical hazard behaviors which are more likely to be encountered or observed
in real-life situations
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Figure 1: Plots of pdfs and hazard functions of the OLLL-L model for selected α, β and λ.

2.3 Mixture Representations for the Pdf and Cdf

In this subsection, we provide alternative mixture representations for the pdf and cdf of X. Some useful

expansions for (3) can be derived by using the concept of power series. We know − log(1 − u) =
∑

∞

i=1
ui

i
(which converges for |u| < 1), the OLLL-G family cdf can be expanded as

F (x) =
−1

log(1 − β)

∞∑

i=1

βi

i

[
G(x)α

G(x)α + (1 − G(x))α

]i

. (5)

On the other hand, for |u| < 1, we have, (see Gradshteyn and Ryzhik [16], Section 0.313)

ua

ua + (1 − u)a
=

∑
∞

k=1 ak(α)uk

∑
∞

k=1 bk(α)uk
=

∞∑

k=1

ck(α)uk, (6)

where

ak(α) =

∞∑

j=k

(−1)k+j

(
j

α

)(
k

j

)
,

bk(α) = ak(α) + (−1)k

(
k

α

)
,

and

ck(α) =
1

b0(α)
[ak(α) − 1

b0(α)

k∑

r=1

br Ch−r(α)].

Based on (6) and using a result of Gradshteyn and Ryzhik ([16] Section 0.314) for a power series raised to
a positive integer number, we obtain

[
ua

ua + (1 − u)a

]m

=

[
∞∑

i=1

ck(α)uk

]m

=

∞∑

k=1

hk(α, m)uk, (7)
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the coefficients hk(α, i) can be determined from the recursive formula as bellow:

hk(α, i) =
1

k c0(α)

k∑

q=1

[(m + 1)q − k]cq(α)hk−q(α, i).

From (5) and (7), we obtain

F (x) =

∞∑

k=0

dkHk(x), (8)

where Hk(x) is the Exp-G cdf with power parameter k (Hk(x) = G(x)k) and

dk =

∞∑

i=0

−βi hk(α, i)

i log(1 − β)
. (9)

By differentiating (8), the pdf of X follows as

f(x) =

∞∑

k=1

dkhk(x), (10)

where hk(x) = k G(x)k−1g(x) is the Exp-G density function with power parameter k.
Equation (10) reveals that the OLLL-G density function is a linear combination of Exp-G densities.

Some structural properties of the new family such as the ordinary and incomplete moments and generating
function can be determined from well-established properties of the Exp-G distribution.

The EL distribution has the pdf

f(x, α, λ) =
α λ2

λ + 1
(1 + x)e−λ x

[
1 − (1 +

λx

1 + λ
)e−λ x

]α−1

, x > 0; α, λ > 0. (11)

We write X ∼ EL(x; α, λ) if the pdf of X can be expressed as (11). In addition, the cdf of the EL model is

F (x, α, λ) =

[
1 − (1 +

λx

1 + λ
)e−λ x

]α

, x > 0; α, λ > 0.

Now, using (8), we show that the OLLL-L distribution can be viewed as a mixture of EL distributions as
bellow:

F (x) =

∞∑

k=0

dkFEL(x; k, λ) and f(x) =

∞∑

k=0

dkfEL(x; k, λ).

2.4 Moments and Moment Generating Function

Some of the most important features and characteristics of a distribution can be studied through moments
(e.g. tendency, dispersion, skewness and kurtosis). Now we obtain ordinary moments and the moment
generating function of the OLLL-L distribution. We define and compute

A(a1, a2, a3; λ) =

∫
∞

0

xa1 (1 + x) e−a2 x

[
1 − (1 +

λ

1 + λ
x)e−λx

]a3

dx.

Using generalized binomial expansion, one can obtain

A(a1, a2, a3; λ) =

∞∑

i=0

l∑

j=0

1∑

l=0

(−1)l

(
a3

i

)(
j

i

)
(

λ

1 + λ
)j × Γ(a1 + j + l + 1)

(λ i + a2)a1+j+l+1
.
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Next, the nth moment of the OLLL-L distribution is given by

E [Xm] =
λ2

1 + λ

∞∑

k=0

(k + 1)A(m, λ, k; λ). (12)

For integer values of k, let µ′

k = E(Xk) and µ = µ′

1 = E(X), then one can also find the kth central moment
of the EGL distribution through the following well-known equation

µk = E(X − µ)k =

k∑

r=0

(
k

r

)
µ′

r(−µ)k−r. (13)

The moment generating function of a random variable provides the basis of an alternative route to analytical
results compared with working directly with its pdf and cdf. Using (12) and (13), we obtain

MX(t) = E
[
et X
]

=
λ2

1 + λ

∞∑

k=0

(k + 1)A(0, λ − t, k; λ).

Using (13), the variance, skewness and kurtosis measures can be obtained. Skewness measures the degree
of the long tail and kurtosis is a measure of the degree of tail heaviness. For the OLLL-L distribution, the
skewness can be computed as

S =
µ3

µ
3/2
2

=
µ′

3 − 3µ′

2µ
′

1 + 2µ′3
1

(µ′

2 − µ′2
1 )3/2

and the kurtosis is based on octiles as

K =
µ4

µ2
2

=
µ′

4 − 4µ′

1µ
′

3 + 6µ′2
1 µ′

2 − 3µ′4
1

µ′

2 − µ′2
1

.

When the distribution is symmetric S = 0, and when the distribution is right (or left) skewed S > 0(or S < 0).
As K increases, the tail of the distribution becomes heavier. These measures are less sensitive to outliers
and they exist even for distributions without moments. Plots for skewness and kurtosis are presented in
Figure 3.

Next, we define and compute

B(a1, a2, a3; y, λ) =

∫ y

0

xa1 (1 + x) e−a2 x

[
1 − (1 +

λ

1 + λ
x)e−λx

]a3

dx.

From the generalized binomial expansion, we have

B(a1, a2, a3; λ, y) =

∞∑

i=0

l∑

j=0

1∑

l=0

(−1)l

(
a3

i

)(
j

i

)
(

λ

1 + λ
)j × γ(a1 + j + l + 1, y(a2 + iλ))

(λ i + a2)a1+j+l+1
,

where γ(λ, z) =
∫ z

0
tλ−1 e−t dt denotes the incomplete gamma function. Now, the nth incomplete moment

of the EGL distribution is found to be

mn(y) = E [Xn |X < y] =
λ2

1 + λ

∞∑

k=0

(k + 1)B(n, λ, k; λ, y).

2.5 Stochastic Ordering

Let X and Y be two random variables. X is said to be stochastically less than or equal to Y , denoted by
X ≤st Y if P (X > x) = P (Y > x) for all x in the support set of X.

Theorem 1 Suppose X ∼ OLLL − L(α1, β1, λ) and Y ∼ OLLL − L(α2, β2, λ). If α1 < α2 and β1 < β2,

then X ≤st Y .

Proof. Straightforward and hence omitted.
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Figure 2: Plots of the skewness (left) and kurtosis (right) of the OLLL-L distribution for λ = 2.

2.6 Quantile Function

Quantile functions are in widespread use in statistics and often find representations in terms of lookup tables
for key percentiles. Let X ∼ OLLL − L(α, β, λ). The quantile function of X, say Q(p), is defined by
F (Q(p)) = p and is the root of the following equation

(1 + λ + λQ(p))e−λ Q(p) =
(1 + λ)(β − 1 + (1 − β)p)1/α

(1 − (1 − β)p)1/α + (β − 1 + (1 − β)p)1/α
. (14)

Inserting Z(p) = −1 − λ − λQ(p) into (14), we have

Z(p)eZ(p) =
−(1 + λ)(β − 1 + (1 − β)p)1/αe−1−λ

(1 − (1 − β)p)1/α + (β − 1 + (1 − β)p)1/α
.

Hence, the solution of Z(p) is

Z(p) = W−1

[ −(1 + λ)(β − 1 + (1 − β)p)1/αe−1−λ

(1 − (1 − β)p)1/α + (β − 1 + (1 − β)p)1/α

]
,

where W−1[.] is the negative branch of the Lambert W function (Corless et al. 1996). Thus, we obtain the
quantile function as

Q(p) =

{
−1 − 1

λ
− 1

λ
W−1

[ −(1 + λ)(β − 1 + (1 − β)p)1/αe−1−λ

(1 − (1 − β)p)1/α + (β − 1 − (1 − β)p)1/α

]}
.

Here, we also propose three different algorithms for generating random data from the OLLL-L distri-
bution. The first algorithm is based on generating random data from the Lindley distribution using the
exponential-gamma mixture (see Ghitany et al., [16])

• Algorithm 1 (Mixture Form of the Lindley Distribution)

1. Generate Ui ∼ Uniform(0, 1), i = 1, . . . , n;

2. Generate Vi ∼ Exponential(λ), i = 1, . . . , n;

3. Generate Wi ∼ Gamma(2, λ), i = 1, . . . , n;
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4. If (1−(1−β)ui)1/α

(1−(1−β)ui)1/α+(β−1+(1−β)ui )1/α ≤ λ
1+λ set Xi = Vi, otherwise, set Xi = Wi, i = 1, . . . , n.

• Algorithm 2 (Inverse cdf)

1. Generate Ui ∼ Uniform(0, 1), i = 1, . . . , n;

2. Set

Xi =

{
−1 − 1

λ
− 1

λ
W−1

[ −(1 + λ)(β − 1 + (1 − β)Ui )1/αe−1−λ

(1 − (1 − β)Ui)1/α + (β − 1 − (1 − β)Ui )1/α

]}
, i = 1, . . . , n.

Algorithm 1 is the simplest data generation algorithm and therefore is preferable. Data generation from
the classical distributions like uniform, exponential and gamma distributions is included normally in many
statistical software. We have used Algorithm 1 in our simulation study. Algorithm 2 involves the Lambert W
function and therefore is somehow complicated, see Corless et al. [7] for more details regarding the Lambert
W function.

2.7 Mean Deviations

The amount of scatter in a population may be measured to some extent by deviations from the mean and
median. These are known as the mean deviation about the mean and the mean deviation about the median,
defined by

δ1 (X) =

∫
∞

0

|x− µ| f(x) dx,

and

δ2 (X) =

∫
∞

0

|x− M | f(x) dx

respectively, where µ = E(X) and M = Median(X) = Q(0.5) denotes the median and Q(p) is the quantile
function. The measures δ1 (X) and δ2 (X) can be calculated using the relationships

δ1 (X) = 2µ F (µ) − 2

∫ µ

0

x f(x) dx and δ2 (X) = µ − 2

∫ M

0

x f(x) dx.

Finally using (14), we have

δ1 (X) = 2µ F (µ) − λ2

1 + λ

∞∑

k=0

(k + 1)B(1, λ, k; λ, µ)

and

δ2 (X) = µ − 2 λ2

1 + λ

∞∑

k=0

(k + 1)B(1, λ, k; λ, M).

2.8 Bonferroni and Lorenz Curves

The Bonferroni and Lorenz curves have applications in economics as well as other fields like reliability,
medicine and insurance. Let X ∼ OLLL − L(λ, α, β) and F (x) be the cdf of X, then the Bonferroni curve
of the OLLL-L distribution is given by

B(F (x)) =
1

µ F (x)

∫ x

0

tf(t)dt,

where µ = E(Y ). Therefore, from (14), we have

B(F (x)) =
1

µ F (x)
× λ2

1 + λ

∞∑

k=0

(k + 1)B(1, λ, k; λ, x).
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The Lorenz curve of the EGL distribution can be obtained using the relation

L(F (x)) = F (x)B(F (x)) =
1

µ
× λ2

1 + λ

∞∑

k=0

(k + 1)B(1, λ, k; λ, x).

2.9 Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice. Suppose X1, . . . , Xn

is a random sample from any EGL distribution. Let Xi:n denote the ith order statistic. The pdf of Xi:n can
be expressed as

fi:n(x) = K f(x)F i−1(x) {1 − F (x)}n−i
= K

n−i∑

j=0

(−1)j

(
n − i

j

)
f(x)F (x)j+i−1,

where K = 1/B(i, n − i + 1). We use the result of Gradshteyn and Ryzhik [16] for a power series raised to
a positive integer n (for n ≥ 1) (

∞∑

i=0

ai ui

)n

=

∞∑

i=0

dn,i ui,

where the coefficients dn,i (for i = 1, 2, . . .) are determined from the recurrence equation (with dn,0 = an
0 )

dn,i = (i a0)
−1

i∑

m=1

[m(n + 1) − i] am dn,i−m. (15)

We can show that the density function of the ith order statistic of any OLLL-L distribution can be expressed
as

fi:n(x) =

∞∑

r,k=0

mr,k fEL(x; λ, r + k), (16)

where fGL(x; λ, r + k) denotes the density function of exponentiated Lindley distribution with parameters λ
and r + k,

mr,k =
n! r dr

(i − 1)! (r + k + 1)

n−i∑

j=0

(−1)j cj+i−1,k

(n − i − j)! j!
.

Here, dr is given by (9) and the quantities cj+i−1,k can be determined given that cj+i−1,0 = dj+i−1
0 and

recursively we have:

cj+i−1,k = (k d0)
−1

k∑

m=1

[m (j + i) − k] cm dj+i−1,k−m, k ≥ 1.

Equation (16) is the main result of this section. It reveals that the pdf of the ith order statistic is a
linear combination of exponentiated Lindley distributions. Therefore, several mathematical quantities of
these order statistics like ordinary and incomplete moments, factorial moments, mgf, mean deviations and
others can be derived using this result.

3 Asymptotic Properties and Extreme Value

One of the main usage of the idea of an asymptotic distribution is in providing approximations to the
cumulative distribution functions of the statistical estimators. Moreover, the extreme value theory is a
branch of statistics dealing with the extreme deviations from the median of probability distributions. It
seeks to assess, from a given ordered sample of a given random variable, the probability of events that are
more extreme than any previously observed. Extreme value analysis is widely used in many disciplines,
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3.1 Asymptotic Properties

The asymptotic of cdf, pdf and hrf of the OLLL-L distribution as x → 0 are, respectively, given by

F (x) ∼ β λα xα

− log(1 − β)
as x → 0,

f(x) ∼ α β λα xα−1

− log(1 − β)
as x → 0,

h(x) ∼ αβ λα xα−1

− log(1 − β)
as x → 0.

The asymptotic of cdf, pdf and hrf of the OLLL-L distribution as x → ∞ are, respectively, given by

1 − F (x) ∼ 1 −
log
{
1 − β

[
1 − λ

1+λ
x e−λ x

]α}

log(1 − β)
as x → ∞,

f(x) ∼ α β λα xα e−αλ x

−(1 + λ)α (1 − β) log(1 − β)
as x → ∞,

h(x) ∼ αβ λα xα e−αλ x

−(1 + λ)α (1 − β) log

{
1−β

1−β[1− λ
1+λ x e−λ x]

α

} as x → ∞.

These equations show the effect of parameters on the tails of the OLLL-L distribution.

3.2 Extreme Value

If X1, ..., Xn is a random sample from (3) and if X̄ = (X1 + ... + Xn)/n denotes the sample mean, then
by the usual central limit theorem,

√
n(X̄ − E(X))/

√
Var(X) approaches the standard normal distribution

as n → ∞. One may be interested in the asymptotic of the extreme values Mn = max(X1, ..., Xn) and
mn = min(X1, ..., Xn). Let τ (x) = 1

λ , we obtain following equations for the cdf in (3) as

lim
t→0

F (t x)

F (t)
= lim

t→0

x f(t x)

f(t)
= xα

and

lim
t→∞

1 − F (t + x τ(t))

1 − F (t)
= lim

t→∞

f(t + x τ(t))

f(t)
= e−α x.

Thus, from Leadbetter et al. [18], there must be norming constants an > 0, bn, cn > 0 and dn such that

Pr [an(Mn − bn) ≤ x] → e−e−αx

and

Pr [cn(mn − dn) ≤ x] → 1 − e−xα

as n → ∞. The form of the norming constants can also be determined. For instance, using Corollary 1.6.3
in Leadbetter et al. [18], one can see that bn = F−1(1 − 1

n) and an = λ, where F−1(.) denotes the inverse
function of F (.).
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4 Estimation

Several approaches for parameter estimation have been proposed in the literature but the maximum likelihood
method is the most commonly employed. In this section, we discuss maximum likelihood estimation (MLE)
and inference for the OLLL-L distribution. Let x1, x2, ..., xn be observed values from the OLLL-L distribution
with parameters α, β and λ. The log-likelihood function for (α; β; λ ) is given by

`n = n log(
λ2

1 + λ
) + n log(α) + n log(β) − n log(− log(1 − β))

+

n∑

i=1

log(1 + xi) − λ

n∑

i=1

xi + α

n∑

i=1

log ki − (α − 1)

n∑

i=1

log (1 − ki)

−
n∑

i=1

log(kα
i + (1 − ki)

α) −
n∑

i=1

log ((1 − β)kα
i + (1 − ki)

α) ,

where

ki = 1 − (1 +
λ

1 + λ
xi)e

−λxi .

The derivatives of the log-likelihood function with respect to the parameters α, γ and λ are given respectively,
by

∂`n

∂α
=

n

α
+

n∑

i=1

log ki −
n∑

i=1

log (1 − ki) −
n∑

i=1

log(ki)k
α
i + log(1 − ki)(1 − ki)

α

kα
i − (1 − ki)α

−
n∑

i=1

(1 − β) log(ki)k
α
i + log(1 − ki)(1 − ki)

α

(1 − β)kα
i − (1 − ki)α

,

∂`n

∂β
=

n

β
− n

(1 − β) log(1 − β)
+

n∑

i=1

kα
i

(1 − β)kα
i − (1 − ki)α

,

∂`n

∂λ
=

2n

λ
− n

1 + λ
−

n∑

i=1

xi + α

n∑

i=1

k′

i

ki
+ (α − 1)

n∑

i=1

k′

i

1 − ki

−
n∑

i=1

α k′

i

(
kα−1

i − (1 − ki)
α−1

)

kα
i − (1 − ki)α

−
n∑

i=1

α k′

i

(
(1 − β)kα−1

i − (1 − ki)
α−1

)

(1 − β)kα
i − (1 − ki)α

,

where

k′

i =
∂ki

∂λ
= xie

−λxi

[
1 +

λ

λ + 1
xi +

1

(1 + λ)2

]
.

The maximum likelihood estimates (MLEs) of (α; β; λ), say (α̂; β̂; λ̂), are the simultaneous solution of the
equations ∂`n

∂α
= 0; ∂`n

∂β
= 0; ∂`n

∂λ
= 0.

For estimating the model parameters, numerical iterative techniques should be used to solve these equa-
tions.We can investigate the global maxima of the log-likelihood by setting different starting values for the
parameters. The information matrix will be required for interval estimation. Let θ = (α, β, λ)T , then the

asymptotic distribution of
√

n(θ − θ̂) is N4(0, K(θ)−1), under standard regularity conditions (see Lehmann
and Casella, [19], pp. 461-463), where K(θ) is the expected information matrix. The asymptotic behavior
remains valid if K(θ)) is superseded by the observed information matrix multiplied by 1/n, say I(θ)/n,

approximated by θ̂, i.e. I(θ̂)/n. We have

I(θ) = −




Iαα Iαβ Iαλ

Iβα Iγβ Iβλ

Iλα Iλβ Iλλ



 ,



556 The Odd Log-Logistic Logarithmic Lindley Distribution

where

Iαα =
∂2`n

∂α2
; Iαβ = Iβα =

∂2`n

∂α∂β
,

Iβλ = Iλβ =
∂2`n

∂β∂λ
; Iαλ = Iλα =

∂2`n

∂α∂λ
.

5 Simulation Study

The performance of the maximum likelihood method is evaluated for estimating the OLLL-L parameters
using a Monte Carlo simulation study. The mean square error (MSEs) and the bias of the parameter estimates
are calculated. We generate N = 10, 000 samples of sizes n = 50, 55, ..., 100 from the OLLL-L distribution
with α = 1.5, β = 0.3, λ = 2.0. Let (α̂, γ̂, λ̂) be the MLEs of the new model parameters and (sbα, sbγ , sbλ) be
the standard errors of the MLEs. The estimated biases and MSEs are given by

B̂iasε(n) =
1

N

N∑

i=1

(ε̂i − ε) and M̂SEε(n) =
1

N

N∑

i=1

(ε̂i − ε)2,

for ε = α, γ, λ. Figure 3 displays the numerical results for the above measures. We conclude below results
from these plots:

(i) The estimated biases decrease when the sample size n increases.

(ii) The estimated MSEs decay toward zero as n increases.

These results reveal the consistency property of the MLEs.

(a) (b)

Figure 3: Estimated biases and MSEs for the selected parameter values.

6 Application

In this section, we illustrate the fitting performance of the OLLL-L distribution using two real data sets.
For the purpose of comparison, we fitted the following models to show the fitting performance of OLLL-L
distribution by means of real data set:
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• Lindley Distribution, L(λ).

• Power Lindley distribution, PL(β, λ).

• Generalized Lindley, GL(α, λ), (Nadarajah et al. [22], with distribution function given by

F (x) = L(λ)α =

(
1 − (1 +

λx

1 + λ
)e−λ x

)α

.

• Beta Lindley, BL(α, β, λ), with distribution function given by

F (x) =

∫ L(λ)

0

tα−1(1 − t)β−1dt.

• Exponentiated power Lindley distribution, EPL(α, β, λ), with distribution function given by

F (x) = PL(β, λ)α =

(
1 − (1 +

λxβ

1 + λ
)e−λ xβ

)α.

• Odd log-logistic power Lindley distribution OLL−PL(α, β, λ), (Alizadeh et al. [1]), with distribution
function given by

F (x) =
PL(x, β, λ)α

PL(x, β, λ)α + (1 − PL(x, β, λ))α
.

• Kumaraswamy Power Lindley, KPL(α, β, γ, λ) (Broderick et al. [23])

F (x) = 1 − (1 − PL(x, β, λ)α)
γ

.

• Log-Lindley, LL(β, λ)

F (x) =
log(1 − β L(λ))

log(1 − β)
.

Estimates of the parameters of OLLL-L distribution, Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Cramer Von Mises and Anderson-Darling statistics (W ∗ and A∗) are presented
for each dataset. We have also considered the Kolmogorov-Smirnov (K-S) statistic and its corresponding
p-value and the minimum value of the minus log-likelihood function (-Log(L)) for the sake of comparison.
Generally speaking, the smaller values of AIC, BIC, W ∗ and A∗, the better fit to a data set. All the
computations were carried out using the software R.

Note that initial values of model parameters are quite important to obtain the correct MLEs of param-
eters. To avoid local minima problem, we first obtain the parameter estimate of the Lindley distribution.
Then, the estimated parameter of the Lindley distribution is used as the initial value of the parameter of the
PL and GL distributions. Then, the estimated parameters of PL distribution, λ and β, are used as the initial
values of the OLLL-L distribution. This approach is quite useful to obtain correct parameter estimates of
extended models.

6.1 First Application

Fonseca and Franca [9] studied the soil fertility in influence and the characterization of the biologic fixation
of N2 for the Dimorphandra wilsonii rizz growth. For 128 plants, they made measures of the phosphorus
concentration in the leaves. The data, which have also been analyzed by Bidram and Nekoukhou [3], are
listed in Table 1.
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Table 1: First data set.

0.22 0.17 0.11 0.10 0.15 0.06 0.05 0.07 0.12 0.09 0.23 0.25 0.23 0.24 0.20
0.08 0.11 0.12 0.10 0.06 0.20 0.17 0.20 0.11 0.16 0.09 0.10 0.12 0.12 0.10
0.09 0.17 0.19 0.21 0.18 0.26 0.19 0.17 0.18 0.20 0.24 0.19 0.21 0.22 0.17
0.08 0.08 0.06 0.09 0.22 0.23 0.22 0.19 0.27 0.16 0.28 0.11 0.10 0.20 0.12
0.15 0.08 0.12 0.09 0.14 0.07 0.09 0.05 0.06 0.11 0.16 0.20 0.25 0.16 0.13
0.11 0.11 0.11 0.08 0.22 0.11 0.13 0.12 0.15 0.12 0.11 0.11 0.15 0.10 0.15
0.17 0.14 0.12 0.18 0.14 0.18 0.13 0.12 0.14 0.09 0.10 0.13 0.09 0.11 0.11
0.14 0.07 0.07 0.19 0.17 0.18 0.16 0.19 0.15 0.07 0.09 0.17 0.10 0.08 0.15
0.21 0.16 0.08 0.10 0.06 0.08 0.12 0.13

The ML estimates of the parameters and the goodness-of-fit test statistics for the real data set is presented
in Table 2 and 3 respectively. As we can see, the smallest values of AIC, BIC, A∗, W ∗ and −l statistics and
the largest p-values belong to the OLLL-L distribution. Therefore the OLLL-L distribution outperforms the
other competitive considered distribution in the sense of this criteria.

Table 2: Parameter ML estimates and theirs standard errors (in parentheses) for first data set.

Model α β γ λ

Lindley(λ) – – – 7.901
(0.6343)

GL(α, λ) 10.5303 – – 21.9739
(2.0203) (1.6518)

PL(β, λ) – 2.8183 – 180.7664
(0.1919) (60.2260)

BL(α, β,λ) 6.3358 45.4292 – 1.5111
(0.8070 (64.7580) (1.5113)

EPL(α, β, λ) 1.5150 3.5946 – 37.6386
(0.5103) (2.8255) (22.0225)

OLLL(α, λ) 2.9955 – – 6.0085
(0.2183) (0.1971)

OLLPL(α, β, λ) 1.1537 2.4982 – 99.0435
(0.3756) (0.7218) (134.6303)

KPL(α,β, γ, λ) 6.6698 0.9258 3.0713 10.7987
(3.2657) (0.0598) (1.2352) (14.3619)

EGL(α, γ, λ) 19.3599 – 69.6518 30.4042
(6.1287) (53.5897) (3.6772)

OLLL − L(α,β, λ) 6.5780 -13939.221 — 3.7721
(0.6889) 1704.24 (0.1382)

Table 3: Goodness-of-fit test statistics for first data set.

Model W∗ A∗ AIC BIC CAIC −l

Lindley(λ) 0.1332 0.7556 -245.3218 -242.4697 -245.2900 123.6609
GL(α, λ) 0.1323 0.8146 -388.0868 -382.3827 -387.9908 196.0434
PL(β, λ) 0.2071 1.1569 -385.6296 -379.9255 -385.5336 194.8148
BL(α, β,λ) 0.1348 0.7607 -387.9407 -379.3846 -387.7471 196.9703
EPL(α, β, λ) 0.1378 0.7824 -387.4424 -378.8863 -387.2489 196.7212
OLLL(α, λ) 0.1883 1.0973 -383.0465 -377.3424 -382.9505 193.5232
OLLPL(α, β, λ) 0.1986 1.1065 -383.8543 -375.2982 -383.6607 194.9271
KPL(α,β, γ, λ) 0.1406 0.8002 -385.0695 -373.6613 -384.7443 196.5347
EGL(α, γ, λ) 0.0818 0.4857 -391.0308 -382.4747 -390.8373 198.5154
OLLLL(α, γ, λ) 0.0623 0.3879 -393.4425 -384.8864 -393.2489 199.7212

Here, we also applied likelihood ratio (LR) tests. The LR tests can be used for comparing the EGL
distribution with its sub-models. For example, the test of H0 : α = 1 against H1 : α 6= 1 is equivalent to
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comparing the OLLL-L and Log-Lindley distributions with each other. For this test, the LR statistic can be
calculated by the following relation

LR = 2
[
l(α̂, β̂, λ̂) − l(1, β̂∗, λ̂∗)

]
,

where α̂∗, β̂∗ and λ̂∗ are the ML estimators of α, β and λ, respectively, obtained under H0. Under the
regularity conditions and if H0 is assumed to be true, the LR test statistic converges in distribution to a chi
square with r degrees of freedom, where r equals the difference between the number of parameters estimated
under H0 and the number of parameters estimated in general, (for H0 : β = 1, we have r = 1). Table 4 gives
the LR statistics and the corresponding p-values.

Table 4: The LR test results for first data set.

Hypotheses LR p-value

OLLL-L versus OLL-L H0 : β = 1 12.396 0.0004
OLLL-L versus Log-Lindley H0 : α = 1 9.5236 0.0012
OLLL-L versus Lindley H0 : α = β = 1 152.1206 0

From Table 4, we observe that the computed p-values are too small so we reject all the null hypotheses and
conclude that the OLLL-L fits the first data better than the considered sub-models according to the LR
criterion.

We also plotted the fitted pdfs and cdfs of the considered models for the sake of visual comparison, in
Figure 4. Figure 4 suggests that the OLLL-L fits the skewed data very well.

Table 5: Second data set.

0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142 0.165 0.212
0.381 0.464 0.479 0.556 0.574 0.839 0.917 0.969 0.991 1.064
1.088 1.091 1.174 1.271 1.275 1.355 1.397 1.477 1.578 1.649
1.702 1.893 1.932 2.001 2.161 2.292 2.326 2.337 2.628 2.785
2.811 2.886 2.993 3.122 3.248 3.715 3.791 3.857 3.912 4.121
4.106 4.116 4.315 4.510 4.580 5.267 5.299 5.583 6.065 9.701

6.2 Second Application

In this example, we analyze a real data set from Lawless [17]. It shows the number of 1000s of cycles to failure
for electrical appliances in a life test. Table 6 and 7 present the parameter ML estimates and the goodness-
of- fit test statistics for the second data, respectively. We see that the OLLL-L distribution outperforms the
considered models according to the considered goodness-of-fit criteria.
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Figure 4: Fitted densities of distributions for first data set.

Table 6: Parameter ML estimates and theirs standard errors (in parentheses) for second data set.

Model α β γ λ

Lindley(λ) – – – 0.7210
– – – (0.068)

GL(α, λ) 0.6202 – – 0.7522
(0.0873) – – (0.1274)

PL(β, λ) – 0.8039 – 0.8882
– (0.1030) – (0.0891)

BL(α, β,λ) 0.0589 0.6247 – 34.2119
(0.0598) (0.1029) – (61.4033)

EPL(α, β, λ) 0.2803 1.4252 – 0.4353
(0.2012) (0.3684) – (0.1866)

OLLL(α, λ) 0.7857 – – 0.8144
(0.0976) – – (0.1003)

OLLPL(α, β, λ) 0.5668 1.3608 – 0.6220
(0.1547) (0.2771) – (0.1668)

KPL(α,β, γ, λ) 0.3946 2.9333 1.6113 0.0626
(0.1825) (2.9166) (0.5376) (0.0992)

LL(β, λ) 0.6426 -0.8572 – –
(0.1674) (2.3433) – –

OLLLL(α, β,λ) 0.6739 0.8329 – 1.2644
(0.1283) (0.1907) – (0.4047)
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Figure 5: Fitted densities of distributions for first data set.

Table 7: Goodness-of-fit test statistics for second data set.

Model W∗ A∗ AIC BIC CAIC −l

Lindley(λ) 0.0635 0.4756 216.5948 218.6892 216.6638 107.7974
GL(α, λ) 0.0591 0.4478 215.6075 219.7962 215.8180 105.8038
PL(β, λ) 0.0965 0.6768 217.0997 221.2884 217.3102 106.5499
BL(α, β, λ) 1.5545 8.4762 216.1607 222.4437 216.5892 105.0803
EPL(α, β, λ) 0.2886 1.7720 215.9393 222.2223 216.3679 104.9696
OLLL(α, λ) 0.0610 0.4525 215.4906 219.6793 215.7011 106.7453
OLLPL(α, β, λ) 0.0301 0.2511 215.7051 221.9881 216.1337 104.8525
KPL(α,β, γ, λ) 0.0240 0.2194 217.7420 226.1194 218.4693 104.8710
LL(β, λ) 0.0820 0.5881 218.3651 222.5538 218.5756 107.1825
OLLLL(α, β,λ) 0.0240 0.2070 215.3536 221.6366 215.7821 104.6768

Here, we also applied likelihood ratio (LR) tests for the second data set. The LR test results for the second
data set are given in Table 8. The null hypotheses are all rejected in favor of the OLLL-L distribution since



562 The Odd Log-Logistic Logarithmic Lindley Distribution

the p-values are less than 0.01.

Table 8: The LR test results for second data set.

Hypotheses LR p-value

OLLL-L versus OLL-L H0 : β = 1 4.137 0.0419
OLLL-L versus Log-Lindley H0 : α = 1 5.0114 0.0251
OLLL-L versus Lindley H0 : α = β = 1 6.2412 0.0441

We also plotted the fitted pdfs and cdfs of the considered models for the sake of visual comparison, in Figure
5. Figure 5 suggests that the OLLL-L fits the skewed data very well.

7 Conclusion

In this paper, a new distribution called odd log-logistic logarithmic Lindley (OLLL-L) distribution was in-
troduced. The statistical properties of the OLLL-L distribution including the hazard and reverse hazard
functions, quantile function, moments, incomplete moments, generating functions, mean deviations, Bonfer-
roni and Lorenz curves, order statistics and maximum likelihood estimation for the model parameters are
given. Simulation studies was conducted to examine the performance of the new OLLL-L distribution. We
also presented applications of this new model to a real life data set in order to illustrate the usefulness of
the distribution.
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