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Abstract
In this paper, we study the stability and instability of positive weak solution for the (p, q)-Laplacian

nonlinear system
−∆pu+ λp|u|p−2u = a(x)f(u)g(v) in Ω,
−∆qv + λq|v|q−2v = b(x)h(u)k(v) in Ω,

Bu = 0 = Bv on ∂Ω.


where ∆p with p > 1 denotes the p-Laplacian defined by ∆pu ≡ div[|∇u|p−2∇u], λp, λq are positive
parameters, a(x), b(x) : Ω→ R are continuous functions, f, g, h, k : [0,∞)× [0,∞)→ R are c1 functions
and Ω ⊂ Rn is a bounded domain with smooth boundary Bu = rm(x)u + (1 − r) ∂u

∂n
where r ∈ [0, 1],

m : ∂Ω→ R+ with m = 1 when r = 1. We provide a simple proof to establish that every positive weak
solution for the given system is stable (unstable) under certian conditions.

1 Introduction

Nonlinear boundary value problems with p-Laplacian operator arise in a variety of physical phenomena, such
as: reaction-diffusion problems, non-Newtonian fluids, petroleum extraction, flow through porous media,
etc. Consequently, the study of such problems and their far reaching generalizations have attracted several
mathematicians in recent years.
Many authors are interested in the study of the stability and instability of nonnegative solutions of linear

[4] , semilinear (see [10, 19, 20, 23]), semiposiotne (see [7, 8, 22]) and nonlinear (see [1, 3, 7, 18]) systems,
due to the great number of applications in reaction-diffusion problems, in fluid mechanics, in Newtonian
fluids, glaciology, population dynamics, etc.; see [5, 6, 9, 11, 14, 15, 16] and references therein. Also, in the
recent past, many authors devoted their attention to study the singular p-Laplacian nonlinear systems (see
[12, 13, 21]).
In this paper we consider the stability and instability of positive weak solution for the (p, q)-Laplacian

nonlinear system
−∆pu+ λp|u|p−2u = a(x)f(u)g(v) in Ω,
−∆qv + λq|v|q−2v = b(x)h(u)k(v) in Ω,
Bu = 0 = Bv on ∂Ω.

 (1)

where ∆p with p > 1 denotes the p-Laplacian defined by ∆pu ≡ div[|∇u|p−2∇u], λp, λq are positive para-
meters, a(x), b(x) : Ω → R are continuous functions satisfying either a(x), b(x) > 0 or a(x), b(x) < 0 for all
x ∈ Ω, f, g, h, k : [0,∞) × [0,∞) → R are c1 functions and Ω ⊂ Rn is a bounded domain with smooth
boundary Bu = rm(x)u + (1 − r) ∂u∂n where r ∈ [0, 1], m : ∂Ω → R+ with m = 1 when r = 1. We provide
a simple proof to establish that every positive solution is stable (unstable) under certain conditions on the
functions a(x), b(x), f(u), g(v), h(u) and k(v).
Tertikas in [22] proved the stability and instability results of positive solutions for the semilinear system

−∆u = λf(u) in Ω, Bu = 0 on ∂Ω,
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under various choices of the function f . In [7], the authors studied the uniqueness and stability of nonnegative
solutions for classes of nonlinear elliptic Dirichlet problems in a ball, when the nonlinearity is monotone,
negative at the origin, and either concave or convex.
Khafagy in [17] studied the stability and instability for the nonlinear system

−∆P,pu+ a(x)|u|p−2u = λb(x)uα in Ω,
Bu = 0 on ∂Ω.

}
(2)

where ∆P,p with p > 1 and P = P (x) is a weight function, denotes the weighted p-Laplacian defined by
∆P,pu ≡ div[P (x)|∇u|p−2∇u], a(x) is a weight function, the continuous function b(x) : Ω → R satisfies
either b(x) > 0 or b(x) < 0 for all x ∈ Ω, λ is a positive parameter, 0 < α < p− 1 and Ω ⊂ RN is a bounded
domain with smooth boundary Bu = δh(x)u + (1 − δ) ∂u∂n where δ ∈ [0, 1], h : ∂Ω → R+ with h = 1 when
δ = 1. He proved that if 0 < α < p− 1 and b(x) > 0(< 0) for all x ∈ Ω, then every positive weak solution u
of (2) is linearly stable (unstable) respectively.
Finally, let us explain the plan of the paper. In section 2, we study the stability and instability of the

positive weak solution of (1). In section 3, we introduce some applications regarding the stability properties
of the positive weak solution of some special cases of system (1).
We recall that, if (u, v) is any positive weak solution of (1), then the linearized equation about (u, v) is

given by
−(p− 1)[ div[|∇u|p−2∇w]− λp|u|p−2w]− a(x)fu(u)g(v)w

−a(x)f(u)gv(v)z = µw, in Ω,

−(q − 1)[ div[|∇v|q−2∇z]− λq|v|q−2z]− b(x)hu(u)k(v)w
−b(x)h(u)kv(v)z = µz, in Ω,

Bw = 0 = Bz, on ∂Ω,


(3)

where fu (u) denotes the derivative of f(u) with respect to u, µ is the eigenvalue corresponding to the
eigenfunction (φ, ψ).

Definition 1 We call a solution (u, v) of (1) a linearly stable solution if all eigenvalues of (3) are strictly
positive (which can be implied if the principal eigenvalue µ1 > 0). Otherwise (u, v) is linearly unstable.

2 Main Results

In this section, we assume the following hypotheses

(H1) f(u)/up−1 is strictly increasing (decreasing), i.e., ufu(u)− (p− 1)f(u) > 0(< 0).

(H2) k(v)/vq−1 is strictly increasing (decreasing), i.e., vkv(v)− (q − 1)k(v) > 0(< 0).

(H3) h(u) > 0, ∀u > 0 and g(v) > 0 ∀v > 0.

(H4) f(u)gv(v) and hu(u)k(v) have the same sign, i.e., f(u)gv(v), hu(u)k(v) > 0 (< 0).

(H5) a(x) and b(x) have the same sign, i.e., a(x), b(x) > 0 (< 0).

We shall prove the stability and instability of the positive weak solution (u, v) of (1) under the above
conditions. Our main results are the following theorems.

Theorem 1 If f(u)/up−1 and k(v)/vq−1are strictly increasing, f(u)gv(v), hu(u)k(v) > 0 and a(x), b(x) > 0,
then every positive weak solution (u, v) of (1) is linearly unstable.
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Proof. Let (u0, v0) be any positive weak solution of (1). Then the linearized equation about (u0, v0) is

−(p− 1)[ div[|∇u0|p−2∇w]− λp|u0|p−2w]− a(x)fu(u0)g(v0)w
+a(x)f(u0)gv(v0)z = µw, in Ω,

−(q − 1)[ div[|∇v0|q−2∇z]− λq|v0|q−2z]− b(x)hu(u0)k(v0)w
+b(x)h(u0)kv(v0)z = µz, in Ω,

Bw = 0 = Bz, on ∂Ω.


(4)

Let µ1 be the first eigenvalue of (4) and let (φ, ψ), (φ, ψ ≥ 0) be the corresponding eigenfunction. Multiplying
the first equation of (1) by (p− 1)φ and integrating over Ω, we have

(p− 1)[

∫
Ω

− div[|∇u0|p−2∇u0] + λp

∫
Ω

|u0|p−2u0 −
∫
Ω

a(x)f(u0)g(v0)]φdx = 0. (5)

Also, multiplying the second equation of (1) by (q − 1)ψ and integrating over Ω, we have

(q − 1)[

∫
Ω

− div[|∇v0|q−2∇v0] + λq

∫
Ω

|v0|q−2v0 − λ
∫
Ω

b(x)h(u0)k(v0)]ψdx = 0. (6)

On the other hand, multiplying the first equation of (4) by u0 and integrating over Ω, we have

µ1

∫
Ω

u0φdx = −(p− 1)[

∫
Ω

div[|∇u0|p−2∇φ]u0 − λp
∫
Ω

|u0|p−2u0φ]dx

−
∫
Ω

b(x)hu(u0)k(v0)v0φdx−
∫
Ω

b(x)h(u0)kv(v0)v0ψdx. (7)

Also, multiplying the second equation of (4) by v0 and integrating over Ω, we have

µ1

∫
Ω

v0ψdx = −(q − 1)[

∫
Ω

div[|∇v0|q−2∇ψ]v0 − λq
∫
Ω

|v0|q−2v0ψ]dx

−
∫
Ω

b(x)hu(u0)k(v0)v0φdx−
∫
Ω

b(x)h(u0)kv(v0)v0ψdx. (8)

Now, by combining (5) and (7), we have

− µ1

∫
Ω

u0φdx = (p− 1)[

∫
Ω

div[|∇u0|p−2∇φ]u0 −
∫
Ω

div[|∇u0|p−2∇u0]φ]dx

+

∫
Ω

a(x)[u0fu(u0)− (p− 1)f(u0)]g(v0)φdx

+

∫
Ω

a(x)u0f(u0)gv(v0)ψdx. (9)

Applying Green’s first identity on the first term of the R.H.S of (9), we have∫
Ω

[ div[|∇u0|p−2∇φ]u0 − div[|∇u0|p−2∇u0]φ]dx =

∫
∂Ω

|∇u0|p−2[u0
∂φ

∂n
− φ∂u0

∂n
]ds. (10)
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From (10) in (9), we have

− µ1

∫
Ω

u0φdx = (p− 1)

∫
∂Ω

|∇u0|p−2[u0
∂φ

∂n
− φ∂u0

∂n
]ds

+

∫
Ω

a(x)[u0fu(u0)− (p− 1)f(u0)]g(v0)φdx

+

∫
Ω

a(x)u0f(u0)gv(v0)ψdx. (11)

Also, (6) and (8) give

− µ1

∫
Ω

v0ψdx = (q − 1)[

∫
Ω

div[|∇v0|q−2∇ψ]v0dx−
∫
Ω

div[|∇v0|q−2∇v0]ψdx]

+

∫
Ω

b(x)[v0kv(v0)− (q − 1)k(v0)]h(u0)ψdx

+

∫
Ω

b(x)v0hu(u0)k(v0)φdx. (12)

Applying Green’s first identity on the first term of the R.H.S. of (12), we have∫
Ω

[ div[|∇v0|q−2∇ψ]v0 − div[|∇v0|q−2∇v0]ψ]dx =

∫
∂Ω

|∇v0|q−2[v0
∂ψ

∂n
− ψ∂v0

∂n
]ds. (13)

From (13) in (12), we have

− µ1

∫
Ω

v0ψdx = (q − 1)

∫
∂Ω

|∇v0|q−2[v0
∂ψ

∂n
− ψ∂v0

∂n
]ds

+

∫
Ω

b(x)[v0kv(v0)− (q − 1)k(v0)]h(u0)ψdx

+

∫
Ω

b(x)v0hu(u0)k(v0)φdx. (14)

Adding (11) and (14), we have

− µ1

∫
Ω

[u0φ+ v0ψ]dx = (p− 1)

∫
∂Ω

|∇u0|p−2[u0
∂φ

∂n
− φ∂u0

∂n
]ds

+(q − 1)

∫
∂Ω

|∇v0|q−2[v0
∂ψ

∂n
− ψ∂v0

∂n
]ds

+

∫
Ω

a(x)[u0fu(u0)− (p− 1)f(u0)]g(v0)φdx

+

∫
Ω

b(x)[v0kv(v0)− (q − 1)k(v0)]h(u0)ψdx

+

∫
Ω

a(x)u0f(u0)gv(v0)ψdx

+

∫
Ω

b(x)v0hu(u0)k(v0)φdx. (15)
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Now, when r = 1, we have Bu0 = u0 = 0 and Bv0 = v0 = 0 for s ∈ ∂Ω and also we have φ = ψ = 0 for
s ∈ ∂Ω. Then ∫

∂Ω

|∇u0|p−2[u0
∂φ(s)

∂n
− φ∂u0(s)

∂n
]ds =

∫
∂Ω

|∇v0|q−2[v0
∂ψ(s)

∂n
− ψ∂v0(s)

∂n
]ds = 0 (16)

Also, when r 6= 1, we have
∂u0

∂n
= −rmu0

1− r ,
∂φ

∂n
= − rmφ

1− r ,

and
∂v0

∂n
= −rmv0

1− r ,
∂ψ

∂n
= − rmψ

1− r ,

which implies again the result given by (16). Hence (15) becomes

− µ1

∫
Ω

[u0φ+ v0ψ]dx =

∫
Ω

a(x)[u0fu(u0)− (p− 1)f(u0)]g(v0)φdx

+

∫
Ω

b(x)[v0kv(v0)− (q − 1)k(v0)]h(u0)ψdx

+

∫
Ω

a(x)u0f(u0)gv(v0)ψdx

+

∫
Ω

b(x)v0hu(u0)k(v0)φdx. (17)

Since f(u)/up−1 and k(v)/vq−1are strictly increasing, we have from C1 that

[u0fu(u0)− (p− 1)f(u0)] > 0 and [v0kv(v0)− (q − 1)k(v0)] > 0. (18)

Using equation (18), hypothesis H3, the fact that f(u)gv(v), hu(u)k(v) > 0, a(x) > 0 and b(x) > 0 for all
x ∈ Ω, (17) becomes

−µ1

∫
Ω

[u0φ+ v0ψ]dx > 0.

So µ1 < 0 and the result follows. This completes the proof.

Theorem 2 If f(u)/up−1 and k(v)/vq−1are strictly increasing, f(u)gv(v), hu(u)k(v) > 0, and a(x), b(x) < 0
for all x ∈ Ω, then every positive weak solution (u, v) of (1) is linearly stable.

Proof. The proof is similar to that of Theorem 1. We obtain

−µ1

∫
Ω

[u0φ+ v0ψ]dx > 0,

and so µ1 < 0 and the result follows.

Theorem 3 If f(u)/up−1 and k(v)/vq−1are strictly decreasing, f(u)gv(v), hu(u)k(v) < 0, and a(x), b(x) > 0
for all x ∈ Ω, then every positive weak solution (u, v) of (1) is linearly stable.

Proof. The proof proceeds in the same way as for previous Theorems and we can easily obtain that

−µ1

∫
Ω

[u0φ+ v0ψ]dx < 0.

Then µ1 > 0 and the result follows.

Remark 1 In (1), when f(u) = uβ , g(v) = vγ , h(u) = ur, k(v) = vδ, a(x) = b(x) = λ where λ, β, γ, δ, r are
positive constants, β > p− 1 and δ > q − 1, we have some results in [2].
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3 Applications

Here we introduce some examples.

Example 1 Consider the Reaction-Diffusion system with unequal diffusion coeffi cients involving the Lapla-
cian

−∆u = λf(u)g(v) in Ω,
−∆v = µh(u)k(v) in Ω,
Bu = 0 = Bv on ∂Ω.

 (19)

where λ, µ are positive parameters, f, k are strictly increasing (decreasing) functions, h(u) > 0, ∀u > 0,
g(v) > 0 ∀v > 0 and f(u)gv(v), hu(u)k(v) > 0(< 0) . Hence according to Theorems 1 and 3 in the case
p = q = 2 and λp = λq = 0, any positive weak solution (u, v) of (19) is linearly unstable (stable) respectively.

Example 2 Consider the Reaction-Diffusion system with unequal diffusion coeffi cients involving the (p, q)-
Laplacian

−∆pu = λ uαvβ in Ω,
−∆qv = µ uγvδ in Ω,
Bu = 0 = Bv on ∂Ω.

 (20)

where λ, µ, α, β, γ, δ are positive constants, α > p − 1 and δ > q − 1. Hence according to Theorem 1, any
positive weak solution (u, v) of (20) is linearly unstable.
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