Some Generalized Fixed-Point Theorems on Complex Valued S-Metric Spaces*

Nihal Yılmaz Özgür ${ }^{\dagger}$, Nihal Taş ${ }^{\ddagger}$

Received 27 February 2019

Abstract

In this paper, we define new contractive conditions on a complex valued S-metric space. These contractive conditions generalize the classical Rhoades' contractive condition, Nemytskii-Edelstein contractive condition and Ciric's contractive condition. Also we prove some fixed-point theorems using these contractive conditions on a complex valued S-metric space.

1 Introduction and Mathematical Preliminaries

It is a very famous problem studying the existence and uniqueness fixed-point theorems for a self-mapping on various metric spaces. Recently, new generalized metric spaces such as S-metric, G-metric, b-metric spaces have been presented and some fixed-point theorems have been proved for self-mappings on these generalized metric spaces (for example, see $[1,2,4,8,9,10,12,13,14,15,16,17,19]$). In 2012, Sedghi et al. defined the notion of an S-metric space and proved some fixed-point theorems such as the Banach's contraction principle and the Nemytskii-Edelstein fixed-point theorem on an S-metric space [15]. In 2014, Sedghi and Dung proved new generalized fixed-point theorems such as the Ćirić's fixed-point result on an S-metric space [16]. The present authors obtained the generalizations of the Banach's contraction principle and the Rhoades' condition on an S-metric space (see [12, 13] for more details).

In 2011, Azam et al. introduced the notion of a complex valued metric space [3]. In 2013, Verma and Pathak defined the concept of property ($E . A$) on a complex valued metric space to obtain some common fixed-point results for two pairs of weakly compatible mappings, satisfying a contractive condition "max" type [18]. More recent studies in this context can be found in [5, 6]. In 2014, Mlaiki presented the notion of a complex valued S-metric space as a generalization of a complex valued metric space [7]. Also the present authors proved new fixed-point theorems on a complex valued S-metric space (see [11] for more details).

At first, we recall some known definitions and lemmas before stating our aims. Let \mathbb{C} be the set of complex numbers and $z_{1}, z_{2} \in \mathbb{C}$. The partial order \precsim is defined on \mathbb{C} as follows:

$$
z_{1} \precsim z_{2} \text { if and only if } \operatorname{Re}\left(z_{1}\right) \leq \operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right) \leq \operatorname{Im}\left(z_{2}\right)
$$

and

$$
z_{1} \prec z_{2} \text { if and only if } \operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right) .
$$

Also we write $z_{1} \precsim z_{2}$ if one of the following conditions holds:

1. $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$,
2. $\operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$,
3. $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$.
[^0]Note that

$$
0 \precsim z_{1} \precsim z_{2} \Rightarrow\left|z_{1}\right|<\left|z_{2}\right|
$$

and

$$
z_{1} \precsim z_{2}, z_{2} \prec z_{3} \Rightarrow z_{1} \prec z_{3} .
$$

Definition 1 ([7]) Let X be a nonempty set. A complex valued S-metric on X is a function $S: X \times X \times X \rightarrow$ \mathbb{C} that satisfies the following conditions for all $z, w, q, t \in X$:
(CS1) $0 \precsim S(z, w, q)$,
$(\mathcal{C S 2}) S(z, w, q)=0$ if and only if $z=w=q$,
(CS3) $S(z, w, q) \precsim S(z, z, t)+S(w, w, t)+S(q, q, t)$.
The pair (X, S) is called a complex valued S-metric space.
Definition $2([7])$ Let (X, S) be a complex valued S-metric space.

1. A sequence $\left\{z_{n}\right\}$ in X converges to z if and only if for all ε such that $0 \prec \varepsilon \in \mathbb{C}$ there exists a natural number n_{0} such that for all $n \geq n_{0}$, we have $S\left(z_{n}, z_{n}, z\right) \prec \varepsilon$ and it is denoted by $\lim _{n \rightarrow \infty} z_{n}=z$.
2. A sequence $\left\{z_{n}\right\}$ in X is called a Cauchy sequence if for all ε such that $0 \prec \varepsilon \in \mathbb{C}$ there exists a natural number n_{0} such that for all $n, m \geq n_{0}$, we have $S\left(z_{n}, z_{n}, z_{m}\right) \prec \varepsilon$.
3. A complex valued S-metric space (X, S) is called complete if every Cauchy sequence is convergent.

Lemma 1 ([7]) Let (X, S) be a complex valued S-metric space and $\left\{z_{n}\right\}$ a sequence in X. Then $\left\{z_{n}\right\}$ converges to z if and only if $\left|S\left(z_{n}, z_{n}, z\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Lemma $2([7])$ Let (X, S) be a complex valued S-metric space and $\left\{z_{n}\right\}$ a sequence in X. Then $\left\{z_{n}\right\}$ is a Cauchy sequence if and only if $\left|S\left(z_{n}, z_{n}, z_{n+m}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 3 ([7]) If (X, S) be a complex valued S-metric space, then $S(z, z, w)=S(w, w, z)$ for all $z, w \in X$.
Definition 3 ([18]) The "max" function is defined for the partial order relation \precsim as follow:

1. $\max \left\{z_{1}, z_{2}\right\}=z_{2} \Leftrightarrow z_{1} \precsim z_{2}$.
2. $z_{1} \precsim \max \left\{z_{2}, z_{3}\right\} \Rightarrow z_{1} \precsim z_{2}$ or $z_{1} \precsim z_{3}$.
3. $\max \left\{z_{1}, z_{2}\right\}=z_{2} \Leftrightarrow z_{1} \precsim z_{2}$ or $\left|z_{1}\right|<\left|z_{2}\right|$.

Lemma $4([18])$ Let $z_{1}, z_{2}, z_{3}, \ldots \in \mathbb{C}$ and the partial order relation \precsim be defined on \mathbb{C}. Then the following statements are satisfied:

1. If $z_{1} \precsim \max \left\{z_{2}, z_{3}\right\}$ then $z_{1} \precsim z_{2}$ if $z_{3} \precsim z_{2}$,
2. If $z_{1} \precsim \max \left\{z_{2}, z_{3}, z_{4}\right\}$ then $z_{1} \precsim z_{2}$ if $\max \left\{z_{3}, z_{4}\right\} \precsim z_{2}$,
3. If $z_{1} \precsim \max \left\{z_{2}, z_{3}, z_{4}, z_{5}\right\}$ then $z_{1} \precsim z_{2}$ if $\max \left\{z_{3}, z_{4}, z_{5}\right\} \precsim z_{2}$, and so on.

Motivated by the above studies, we define some new contractive conditions on a complex valued S metric space. These contractive conditions generalize the classical Rhoades' contractive condition, NemytskiiEdelstein contractive condition and Ćirić's contractive condition on a complex valued S-metric space. We investigate the relationships among these contractive conditions with counterexamples. Also we prove some fixed-point theorems as generalizations of the classical fixed-point theorems (for example, NemytskiiEdelstein fixed-point theorem and Ćirić's fixed-point result) on a complex valued S-metric space.

2 Some Fixed-Point Results on Complex Valued S-Metric Spaces

At first, we define the Rhoades' condition on a complex valued S-metric space.
Definition 4 Let (X, S) be a complex valued S-metric space and T a self-mapping of X. We define

$$
\begin{equation*}
S(T z, T z, T w) \prec \max \{S(z, z, w), S(T z, T z, z), S(T w, T w, w), S(T w, T w, z), S(T z, T z, w)\} \tag{1}
\end{equation*}
$$

for all $z, w \in X$ with $z \neq w$.
Now we introduce the notion of diameter on a complex valued S-metric space and present a generalization of the condition (1).

Definition 5 Let (X, S) be a complex valued S-metric space and A a nonempty subset of X. Then we define

$$
\operatorname{diam}\{A\}=\sup \{|S(z, z, w)|: z, w \in A\}
$$

which is called the diameter of A. If A is a bounded set, then we will write diam $\{A\}<\infty$.
Definition $6 \operatorname{Let}(X, S)$ be a complex valued S-metric space, T a self-mapping of X and $U_{z}=\left\{T^{n} z: n \in \mathbb{N}\right\}$, $\operatorname{diam}\left\{U_{z}\right\}<\infty$ and diam $\left\{U_{w}\right\}<\infty$. We define

$$
\begin{equation*}
|S(T z, T z, T w)|<\operatorname{diam}\left\{U_{z} \cup U_{w}\right\} \tag{2}
\end{equation*}
$$

for all $z, w \in X$ with $z \neq w$.
In the following proposition, we give the relationship between the conditions (1) and (2).
Proposition 1 Let (X, S) be a complex valued S-metric space and T a self-mapping of X. If T satisfies the condition (1), then T satisfies the condition (2).

Proof. Suppose that the condition (1) is satisfied by T. Then we get

$$
S(T z, T z, T w) \prec \max \{S(z, z, w), S(T z, T z, z), S(T w, T w, w), S(T w, T w, z), S(T z, T z, w)\}=\alpha
$$

and so we obtain

$$
|S(T z, T z, T w)|<|\alpha|<\operatorname{diam}\left\{U_{z} \cup U_{w}\right\}
$$

Hence the condition (2) is satisfied.
In the following example, we see that the converse of Proposition 1 is not always true.
Example 1 Let $X=(0,1)$ with the complex valued S-metric defined as

$$
S(z, w, q)=5 e^{i k}(|z-q|+|z+q-2 w|) \quad\left(k \in\left[0, \frac{\pi}{2}\right]\right)
$$

for all $z, w, q \in X$. Let us define the function $T: X \rightarrow X$ as

$$
T z= \begin{cases}z & \text { if } z \in(0,1), z \neq \frac{1}{2}, \quad z \neq \frac{1}{3} \\ \frac{1}{3} & \text { if } z=\frac{1}{2} \\ \frac{1}{2} & \text { if } z=\frac{1}{3}\end{cases}
$$

for all $z \in X$. Then T is a self-mapping on the complex valued S-metric space (X, S). For $z=\frac{1}{4}, w=\frac{1}{5} \in X$ we have

$$
S(T z, T z, T w)=\frac{e^{i k}}{2}, \quad S(T w, T w, w)=0, \quad S(z, z, w)=\frac{e^{i k}}{2}
$$

$$
S(T w, T w, z)=\frac{e^{i k}}{2}, \quad S(T z, T z, z)=0, \quad S(T z, T z, w)=\frac{e^{i k}}{2}
$$

and so we get

$$
S(T z, T z, T w)=\frac{e^{i k}}{2} \prec \max \left\{\frac{e^{i k}}{2}, 0,0, \frac{e^{i k}}{2}, \frac{e^{i k}}{2}\right\},
$$

which implies

$$
|S(T z, T z, T w)|=\frac{1}{2}<\left|\frac{e^{i k}}{2}\right|=\frac{1}{2} .
$$

Therefore T does not satisfy the condition (1). It can be easily seen that T satisfies the condition (2) since $\sup (0,1)=1$.

We call the complex valued S-metric space X as compact if every sequence in X has a convergent subsequence.

Let (X, S) and $\left(Y, S^{*}\right)$ be two complex valued S-metric spaces and $T: X \rightarrow Y$ be a function. Then T is continuous at $x \in X$ if and only if $T x_{n} \rightarrow T x$ whenever $x_{n} \rightarrow x$. In the following theorem, we obtain a fixed point theorem for a self-mapping satisfying the condition (2) on a compact complex valued S-metric space.

Theorem 1 Let (X, S) be a compact complex valued S-metric space and T a continuous self-mapping of X satisfying the condition (2). Then T has a unique fixed point.

Proof. There exists a compact subset Y of X such that $T X \subset Y$ since T is a continuous self-mapping and X is compact. Hence we get $T Y \subset Y$ and $Z=\bigcap_{n=1}^{\infty} T^{n} Y$ is a nonempty compact subset of X. We show that Z is a singleton consisting of the unique fixed point z_{0} of T. Suppose that Z is not a singleton. Then we get $\operatorname{diam}\{Z\}>0$. Since Z is compact subset, there exist $z, w \in Z$ with $|S(z, z, w)|=\operatorname{diam}\{Z\}$. Also there exist $z_{0}, w_{0} \in Z$ with $T z_{0}=z$ and $T w_{0}=w$ since T maps Z onto itself. From the condition (2), we obtain

$$
\operatorname{diam}\{Z\}=|S(z, z, w)|=\left|S\left(T z_{0}, T z_{0}, T w_{0}\right)\right|<\operatorname{diam}\{Z\}
$$

which is a contradiction. Therefore, T has a unique fixed point.
By Proposition 1, we deduce the following corollary.
Corollary 1 Let (X, S) be a compact complex valued S-metric space and T a continuous self-mapping of X satisfying the condition (1). Then T has a unique fixed point.

In the following proposition, we see that a complex valued S-metric function is continuous.

Proposition 2 Let (X, S) be a complex valued S-metric space and $\left\{z_{n}\right\},\left\{w_{n}\right\}$ be two sequences. If $\left\{z_{n}\right\} \rightarrow z$ and $\left\{w_{n}\right\} \rightarrow w$, then $S\left(z_{n}, z_{n}, w_{n}\right) \rightarrow S(z, z, w)$.

Proof. Assume that $\left\{z_{n}\right\} \rightarrow z$ and $\left\{w_{n}\right\} \rightarrow w$. Then there exist $n_{1}, n_{2} \in \mathbb{N}$ such that

$$
S\left(z_{n}, z_{n}, z\right) \prec \frac{\varepsilon}{4} \text { for each } n \geq n_{1}
$$

and

$$
S\left(w_{n}, w_{n}, w\right) \prec \frac{\varepsilon}{4} \text { for each } n \geq n_{2} .
$$

If we take $n_{0}=\max \left\{n_{1}, n_{2}\right\}$ then using the condition $(\mathcal{C} S 3)$ and Lemma 3, we get

$$
S\left(z_{n}, z_{n}, w_{n}\right) \precsim 2 S\left(z_{n}, z_{n}, z\right)+2 S\left(w_{n}, w_{n}, w\right)+S(z, z, w) \prec \varepsilon+S(z, z, w)
$$

and so

$$
\begin{equation*}
S\left(z_{n}, z_{n}, w_{n}\right)-S(z, z, w) \prec \varepsilon . \tag{3}
\end{equation*}
$$

Also we have

$$
\begin{aligned}
S(z, z, w) & \precsim 2 S\left(z, z, z_{n}\right)+2 S\left(w, w, w_{n}\right)+S\left(z_{n}, z_{n}, w_{n}\right) \\
& \prec \varepsilon+S\left(z_{n}, z_{n}, w_{n}\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
S(z, z, w)-S\left(z_{n}, z_{n}, w_{n}\right) \prec \varepsilon . \tag{4}
\end{equation*}
$$

From the inequalities (3) and (4), we obtain

$$
\left|S\left(z_{n}, z_{n}, w_{n}\right)-S(z, z, w)\right|<\varepsilon
$$

that is, $S\left(z_{n}, z_{n}, w_{n}\right) \rightarrow S(z, z, w)$. Consequently, the complex valued S-metric function is continuous.
Now we introduce the Nemytskii-Edelstein condition on a complex valued S-metric space.
Definition 7 Let (X, S) be a complex valued S-metric space and T be a self-mapping of X. We define

$$
\begin{equation*}
S(T z, T z, T w) \prec S(z, z, w), \tag{5}
\end{equation*}
$$

for all $z, w \in X$ with $z \neq w$.
In the following proposition, we give the relationship between the condition (1) and the condition (5).
Proposition 3 Let (X, S) be a complex valued S-metric space and T a self-mapping of X. If T satisfies the condition (5), then T satisfies the condition (1).

Proof. The proof can be easily seen from Definitions 4 and 7.
Using Propositions 1 and 3, we deduce the following corollary.
Corollary 2 Let (X, S) be a complex valued S-metric space and T a self-mapping of X. If T satisfies the condition (5), then T satisfies the condition (2).

In the following example, we see that the converses of Proposition 3 and Corollary 2 are not always true.
Example 2 Let $X=[0,1]$ with complex valued S-metric given in Example 1. Let us define the function $T: X \rightarrow X$ as

$$
T z= \begin{cases}z+\frac{4}{5} & \text { if } z \in\left[0, \frac{1}{5}\right), \\ 1 & \text { if } z \in\left[\frac{1}{5}, 1\right],\end{cases}
$$

for all $z \in X$. Then T is a self-mapping on the complex valued S-metric space (X, S). For $z=\frac{1}{6}, w=\frac{1}{7} \in X$ we have

$$
S(T z, T z, T w)=\frac{5}{21} e^{i k}, \quad S(z, z, w)=\frac{5}{21} e^{i k}
$$

and so we get

$$
S(T z, T z, T w)=\frac{5}{21} e^{i k} \prec S(z, z, w)=\frac{5}{21} e^{i k},
$$

which implies

$$
|S(T z, T z, T w)|=\frac{5}{21}<|S(z, z, w)|=\frac{5}{21} .
$$

Therefore T does not satisfy the condition (5). It can be easily seen that T satisfies the conditions (1) and (2).

We prove the classical Nemytskii-Edelstein fixed-point theorem on a compact complex valued S-metric space.

Theorem 2 Let (X, S) be a compact complex valued S-metric space and T a self-mapping of X satisfying the condition (5). Then T has a unique fixed point.

Proof. Let us define the function $\psi: X \rightarrow[0,1)$ as

$$
\psi(z)=|S(z, z, T z)|
$$

The function ψ takes on its minimum value since (X, S) is a compact complex valued S-metric space. That is, there exists $z_{0} \in X$ such that

$$
\left|S\left(z_{0}, z_{0}, T z_{0}\right)\right|<|S(z, z, T z)|
$$

for all $z \in X$. Now we prove that z_{0} is a fixed point of T. Suppose that z_{0} is not fixed point of T, that is, $T z_{0} \neq z_{0}$. Using the condition (5), we get

$$
S\left(T z_{0}, T z_{0}, T T z_{0}\right) \prec S\left(z_{0}, z_{0}, T z_{0}\right)
$$

and so

$$
\left|S\left(T z_{0}, T z_{0}, T T z_{0}\right)\right|<\left|S\left(z_{0}, z_{0}, T z_{0}\right)\right|
$$

which contradicts the minimality of $\left|S\left(z_{0}, z_{0}, T z_{0}\right)\right|$ among all $|S(z, z, T z)|$. Therefore, z_{0} is a fixed point of T. We now show that the fixed point z_{0} is unique. Assume that w_{0} is another fixed point of T, that is, $T w_{0}=w_{0}$ and $z_{0} \neq w_{0}$. Using the condition (5), we obtain

$$
S\left(z_{0}, z_{0}, w_{0}\right)=S\left(T z_{0}, T z_{0}, T w_{0}\right) \prec S\left(z_{0}, z_{0}, w_{0}\right)
$$

and so

$$
\left|S\left(z_{0}, z_{0}, w_{0}\right)\right|<\left|S\left(z_{0}, z_{0}, w_{0}\right)\right|
$$

which implies $z_{0}=w_{0}$. Consequently, z_{0} is a unique fixed point of T.

Remark 1 We can deduce the following results for a continuous self-mapping on a compact complex valued S-metric space.

1. Corollary 1 is a generalization of Theorem 2.
2. Theorem 1 is another generalization of Theorem 2 by Proposition 1.
3. If we consider Example 2 then T has a unique fixed point $z=1$ since the conditions (1) and (2) are satisfied.
4. If we take the metric function as $S: X \times X \times X \rightarrow[0, \infty)$ in Theorem 2 then we get Theorem 3.3 given in [15].

Finally we introduce the Ćirić's condition on a complex valued S-metric space.

Definition 8 Let (X, S) be a complex valued S-metric space and T a self-mapping of X. We define

$$
\begin{equation*}
S(T z, T z, T w) \precsim h \max \{S(z, z, w), S(T z, T z, z), S(T w, T w, w), S(T w, T w, z), S(T z, T z, w)\} \tag{6}
\end{equation*}
$$

for all $z, w \in X$ and some $h \in\left[0, \frac{1}{3}\right)$.
In the following proposition, we give the relationship between the condition (1) and (6).

Proposition 4 Let (X, S) be a complex valued S-metric space and T a self-mapping of X. If T satisfies the condition (6), then T satisfies the condition (1).

Proof. The proof can be easily seen from Definitions 4 and 8 .
Using Propositions 1 and 4, we deduce the following corollary.
Corollary 3 Let (X, S) be a complex valued S-metric space and T a self-mapping of X. If T satisfies the condition (6), then T satisfies the condition (2).

We note that the self-mapping T defined in Example 2 satisfies the conditions (1) and (2) but does not satisfy the condition (6).

We prove the Cirić's fixed-point result on a complete complex valued S-metric space.
Theorem 3 Let (X, S) be a complete complex valued S-metric space and T a self-mapping of X satisfying the condition (6). Then T has a unique fixed point.

Proof. Let $z_{0} \in X$ and the sequence $\left\{z_{n}\right\}$ be defined as follows:

$$
T z_{n}=z_{n+1}, n=0,1,2, \ldots
$$

Assume that $z_{n} \neq z_{n+1}$ for all n. By the condition (6) and Lemma 3, we get

$$
\begin{aligned}
& S\left(z_{n}, z_{n}, z_{n+1}\right) \\
= & S\left(T z_{n-1}, T z_{n-1}, T z_{n}\right) \\
\precsim & h \max \left\{S\left(z_{n-1}, z_{n-1}, z_{n}\right), S\left(z_{n}, z_{n}, z_{n-1}\right), S\left(z_{n+1}, z_{n+1}, z_{n}\right), S\left(z_{n+1}, z_{n+1}, z_{n-1}\right), S\left(z_{n}, z_{n}, z_{n}\right)\right\} \\
= & h \max \left\{S\left(z_{n-1}, z_{n-1}, z_{n}\right), S\left(z_{n+1}, z_{n+1}, z_{n}\right), S\left(z_{n+1}, z_{n+1}, z_{n-1}\right)\right\} \\
= & h \alpha
\end{aligned}
$$

and so

$$
\left|S\left(z_{n}, z_{n}, z_{n+1}\right)\right| \leq h|\alpha| \leq 2 h\left|S\left(z_{n+1}, z_{n+1}, z_{n}\right)\right|+h\left|S\left(z_{n-1}, z_{n-1}, z_{n}\right)\right|
$$

which implies

$$
\begin{equation*}
\left|S\left(z_{n}, z_{n}, z_{n+1}\right)\right| \leq \frac{h}{1-2 h}\left|S\left(z_{n-1}, z_{n-1}, z_{n}\right)\right| \tag{7}
\end{equation*}
$$

Let $a=\frac{h}{1-2 h}$. Then we have $a<1$ since $3 h<1$. We note that $1-2 h \neq 0$ since $0 \leq h<\frac{1}{3}$. Using mathematical induction and the inequality (7), we obtain

$$
\begin{equation*}
\left|S\left(z_{n}, z_{n}, z_{n+1}\right)\right| \leq a^{n}\left|S\left(z_{0}, z_{0}, z_{1}\right)\right| \tag{8}
\end{equation*}
$$

We now prove that the sequence $\left\{z_{n}\right\}$ is Cauchy. For all $n, m \in \mathbb{N}, n<m$, using the inequality (8) and the condition ($\mathcal{C} S 3$), we get

$$
\left|S\left(z_{n}, z_{n}, z_{m}\right)\right| \leq \frac{a^{n}}{1-a}\left|S\left(z_{0}, z_{0}, z_{1}\right)\right|
$$

Hence $\left|S\left(z_{n}, z_{n}, z_{m}\right)\right| \rightarrow 0$ as $n, m \rightarrow \infty$. Therefore $\left\{z_{n}\right\}$ is a Cauchy sequence. Using the completeness hypothesis, there exists $z \in X$ such that $\left\{z_{n}\right\} \rightarrow z$.

Now we show that z is a fixed point of T. On the contrary, assume that z is not a fixed point of T, that is, $T z \neq z$. Then using the condition (6), we obtain

$$
\begin{aligned}
S\left(z_{n}, z_{n}, z\right) & =S\left(T z_{n-1}, T z_{n-1}, T z\right) \\
& \precsim h \max \left\{S\left(z_{n-1}, z_{n-1}, z\right), S\left(z_{n}, z_{n}, z_{n-1}\right), S(T z, T z, z), S\left(T z, T z, z_{n-1}\right), S\left(z_{n}, z_{n}, z\right)\right\}
\end{aligned}
$$

and so taking the limit for $n \rightarrow \infty$ we have

$$
S(z, z, T z) \precsim h S(T z, T z, z)
$$

and by Lemma 3, we obtain

$$
|S(z, z, T z)|=|S(T z, T z, z)| \leq h|S(T z, T z, z)|
$$

which implies $T z=z$, that is, z is a fixed point of T. We prove that z is the unique fixed point of T. Assume that w is another fixed point of T such that $z \neq w$. Using the condition (6), we get

$$
\begin{aligned}
S(z, z, w) & =S(T z, T z, T w) \\
& \precsim h \max \{S(z, z, w), S(z, z, z), S(w, w, w), S(w, w, z), S(z, z, w)\}
\end{aligned}
$$

and so by Lemma 3, we find

$$
|S(z, z, w)| \leq|S(z, z, w)|
$$

which implies $z=w$ since $h \in\left[0, \frac{1}{3}\right)$. Consequently, z is the unique fixed point of T.
Remark 2 We can deduce the following results for a continuous self-mapping on a compact complete complex valued S-metric space.

1. Corollary 1 is a generalization of Theorem 3.
2. Theorem 1 is another generalization of Theorem 3 by Proposition 1.
3. If we take the metric function as $S: X \times X \times X \rightarrow[0, \infty)$ in Theorem 3, then we get Corollary 2.21 given in [16].

Acknowledgment. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] G. M. Abd-Elhamed, Fixed point theorems for contractions and generalized contractions in compact G-metric spaces, J. Interpolat. Approx. Sci. Comput., 1(2015), 20-27.
[2] T. Abdeljawad, N. Mlaiki, H. Aydi and N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6(2018), 320.
[3] A. Azam, B. Fisher and M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32(2011), 243-253.
[4] N. T. Hieu, N. T. Ly and N. V. Dung, A generalization of Ciric quasi-contractions for maps on S-metric spaces, Thai J. Math., 13(2015), 369-380.
[5] N. Hussain, A. Azam, J. Ahmad and M. Arshad, Common fixed point results in complex valued metric spaces with application to integral equations, Filomat, 28(2014), 1363-1380.
[6] M. Kumar, P. Kumar, S. Kumar and S. Araci, Weakly compatible maps in complex valued metric spaces and an application to solve Urysohn integral equation, Filomat, 30(2016), 2695-2709.
[7] N. M. Mlaiki, Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4(2014), 509-524.
[8] N. Mlaiki, H. Aydi, N. Souayah and T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6(2018), 194.
[9] B. Moeini, P. Kumar and H. Aydi, Zamfrescu type contractions on C^{*}-algebra-valued metric spaces, J. Math. Anal., 9(2018), 150-161.
[10] B. Moeini, M. Asasi, H. Aydi, H. Alsamir and M. S. Noorani, C^{*}-algebra-valued M-metric spaces and some related fixed point results, Ital. J. Pure Appl. Math., 41(2019), 708-723.
[11] N. Y. Özgür and N. Taş, Some generalizations of the Banach's contraction principle on a complex valued S-metric space, J. New Theory, 2(2016), 26-36.
[12] N. Y. Özgür and N. Taş, Some fixed point theorems on S-metric spaces, Mat. Vesnik, 69(2017), 39-52.
[13] N. Y. Özgür and N. Taş, Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci., 11(2017), 7-16.
[14] M. Sarwar and M. U. Rahman, Fixed point theorems for Ciric's and generalized contractions in b-metric spaces, Int. J. Anal. Appl., 7(2015), 70-78.
[15] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64(2012), 258-266.
[16] S. Sedghi and N. V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik, 66(2014), 113-124.
[17] S. Sedghi, İ. Altun, N. Shobe and M. Salahshour, Some properties of S-metric space and fixed point results, Kyungpook Math. J., 54(2014), 113-122.
[18] R. K. Verma and H. K. Pathak, Common fixed point theorems using property ($E . A$) in complex-valued metric spaces, Thai J. Math., 11(2013), 347-355.
[19] N. Taş, Fixed Point Theorems and Their Various Applications, Ph. D. Thesis, 2017.

[^0]: *Mathematics Subject Classifications: 47H10, 54H25.
 ${ }^{\dagger}$ Department of Mathematics, Balıkesir University, Balıkesir 10145, Turkey
 \ddagger Department of Mathematics, Balıkesir University, Balıkesir 10145, Turkey

