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Abstract

In this paper, we define new contractive conditions on a complex valued S-metric space. These
contractive conditions generalize the classical Rhoades’contractive condition, Nemytskii-Edelstein con-
tractive condition and Ćiríc’s contractive condition. Also we prove some fixed-point theorems using these
contractive conditions on a complex valued S-metric space.

1 Introduction and Mathematical Preliminaries

It is a very famous problem studying the existence and uniqueness fixed-point theorems for a self-mapping on
various metric spaces. Recently, new generalized metric spaces such as S-metric, G-metric, b-metric spaces
have been presented and some fixed-point theorems have been proved for self-mappings on these generalized
metric spaces (for example, see [1, 2, 4, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19]). In 2012, Sedghi et al. defined
the notion of an S-metric space and proved some fixed-point theorems such as the Banach’s contraction
principle and the Nemytskii-Edelstein fixed-point theorem on an S-metric space [15]. In 2014, Sedghi and
Dung proved new generalized fixed-point theorems such as the Ćiríc’s fixed-point result on an S-metric
space [16]. The present authors obtained the generalizations of the Banach’s contraction principle and the
Rhoades’condition on an S-metric space (see [12, 13] for more details).
In 2011, Azam et al. introduced the notion of a complex valued metric space [3]. In 2013, Verma and

Pathak defined the concept of property (E.A) on a complex valued metric space to obtain some common
fixed-point results for two pairs of weakly compatible mappings, satisfying a contractive condition “max”
type [18]. More recent studies in this context can be found in [5, 6]. In 2014, Mlaiki presented the notion of
a complex valued S-metric space as a generalization of a complex valued metric space [7]. Also the present
authors proved new fixed-point theorems on a complex valued S-metric space (see [11] for more details).
At first, we recall some known definitions and lemmas before stating our aims. Let C be the set of

complex numbers and z1, z2 ∈ C. The partial order - is defined on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2)

and
z1 ≺ z2 if and only if Re(z1) < Re(z2), Im(z1) < Im(z2).

Also we write z1 - z2 if one of the following conditions holds:

1. Re(z1) = Re(z2) and Im(z1) < Im(z2),

2. Re(z1) < Re(z2) and Im(z1) = Im(z2),

3. Re(z1) = Re(z2) and Im(z1) = Im(z2).
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Note that
0 - z1 � z2 ⇒ |z1| < |z2|

and
z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.

Definition 1 ([7]) Let X be a nonempty set. A complex valued S-metric on X is a function S : X×X×X →
C that satisfies the following conditions for all z, w, q, t ∈ X:

(CS1) 0 - S(z, w, q),

(CS2) S(z, w, q) = 0 if and only if z = w = q,

(CS3) S(z, w, q) - S(z, z, t) + S(w,w, t) + S(q, q, t).

The pair (X,S) is called a complex valued S-metric space.

Definition 2 ([7]) Let (X,S) be a complex valued S-metric space.

1. A sequence {zn} in X converges to z if and only if for all ε such that 0 ≺ ε ∈ C there exists a natural
number n0 such that for all n ≥ n0, we have S(zn, zn, z) ≺ ε and it is denoted by lim

n→∞
zn = z.

2. A sequence {zn} in X is called a Cauchy sequence if for all ε such that 0 ≺ ε ∈ C there exists a natural
number n0 such that for all n,m ≥ n0, we have S(zn, zn, zm) ≺ ε.

3. A complex valued S-metric space (X,S) is called complete if every Cauchy sequence is convergent.

Lemma 1 ([7]) Let (X,S) be a complex valued S-metric space and {zn} a sequence in X. Then {zn}
converges to z if and only if |S(zn, zn, z)| → 0 as n→∞.

Lemma 2 ([7]) Let (X,S) be a complex valued S-metric space and {zn} a sequence in X. Then {zn} is a
Cauchy sequence if and only if |S(zn, zn, zn+m)| → 0 as n→∞.

Lemma 3 ([7]) If (X,S) be a complex valued S-metric space, then S(z, z, w) = S(w,w, z) for all z, w ∈ X.

Definition 3 ([18]) The “max” function is defined for the partial order relation - as follow:

1. max {z1, z2} = z2 ⇔ z1 - z2.

2. z1 - max {z2, z3} ⇒ z1 - z2 or z1 - z3.

3. max {z1, z2} = z2 ⇔ z1 - z2 or |z1| < |z2|.

Lemma 4 ([18]) Let z1, z2, z3, . . . ∈ C and the partial order relation - be defined on C. Then the following
statements are satisfied:

1. If z1 - max {z2, z3} then z1 - z2 if z3 - z2,

2. If z1 - max {z2, z3, z4} then z1 - z2 if max {z3, z4} - z2,

3. If z1 - max {z2, z3, z4, z5} then z1 - z2 if max {z3, z4, z5} - z2, and so on.

Motivated by the above studies, we define some new contractive conditions on a complex valued S-
metric space. These contractive conditions generalize the classical Rhoades’contractive condition, Nemytskii-
Edelstein contractive condition and Ćiríc’s contractive condition on a complex valued S-metric space. We
investigate the relationships among these contractive conditions with counterexamples. Also we prove
some fixed-point theorems as generalizations of the classical fixed-point theorems (for example, Nemytskii-
Edelstein fixed-point theorem and Ćiríc’s fixed-point result) on a complex valued S-metric space.
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2 Some Fixed-Point Results on Complex Valued S-Metric Spaces

At first, we define the Rhoades’condition on a complex valued S-metric space.

Definition 4 Let (X,S) be a complex valued S-metric space and T a self-mapping of X. We define

S(Tz, Tz, Tw) ≺ max {S(z, z, w), S(Tz, Tz, z), S(Tw, Tw,w), S(Tw, Tw, z), S(Tz, Tz, w)} , (1)

for all z, w ∈ X with z 6= w.

Now we introduce the notion of diameter on a complex valued S-metric space and present a generalization
of the condition (1).

Definition 5 Let (X,S) be a complex valued S-metric space and A a nonempty subset of X. Then we define

diam {A} = sup {|S(z, z, w)| : z, w ∈ A} ,

which is called the diameter of A. If A is a bounded set, then we will write diam {A} <∞.

Definition 6 Let (X,S) be a complex valued S-metric space, T a self-mapping of X and Uz = {Tnz : n ∈ N},
diam {Uz} <∞ and diam {Uw} <∞. We define

|S(Tz, Tz, Tw)| < diam {Uz ∪ Uw} , (2)

for all z, w ∈ X with z 6= w.

In the following proposition, we give the relationship between the conditions (1) and (2).

Proposition 1 Let (X,S) be a complex valued S-metric space and T a self-mapping of X. If T satisfies the
condition (1), then T satisfies the condition (2).

Proof. Suppose that the condition (1) is satisfied by T . Then we get

S(Tz, Tz, Tw) ≺ max {S(z, z, w), S(Tz, Tz, z), S(Tw, Tw,w), S(Tw, Tw, z), S(Tz, Tz, w)} = α

and so we obtain
|S(Tz, Tz, Tw)| < |α| < diam {Uz ∪ Uw} .

Hence the condition (2) is satisfied.

In the following example, we see that the converse of Proposition 1 is not always true.

Example 1 Let X = (0, 1) with the complex valued S-metric defined as

S(z, w, q) = 5eik (|z − q|+ |z + q − 2w|)
(
k ∈

[
0,
π

2

])
,

for all z, w, q ∈ X. Let us define the function T : X → X as

Tz =

 z if z ∈ (0, 1) , z 6= 1
2 , z 6=

1
3 ,

1
3 if z = 1

2 ,
1
2 if z = 1

3 ,

for all z ∈ X. Then T is a self-mapping on the complex valued S-metric space (X,S). For z = 1
4 , w =

1
5 ∈ X

we have

S(Tz, Tz, Tw) =
eik

2
, S(Tw, Tw,w) = 0, S(z, z, w) =

eik

2
,
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S(Tw, Tw, z) =
eik

2
, S(Tz, Tz, z) = 0, S(Tz, Tz, w) =

eik

2

and so we get

S(Tz, Tz, Tw) =
eik

2
≺ max

{
eik

2
, 0, 0,

eik

2
,
eik

2

}
,

which implies

|S(Tz, Tz, Tw)| = 1

2
<

∣∣∣∣eik2
∣∣∣∣ = 1

2
.

Therefore T does not satisfy the condition (1). It can be easily seen that T satisfies the condition (2) since
sup (0, 1) = 1.

We call the complex valued S-metric space X as compact if every sequence in X has a convergent
subsequence.
Let (X,S) and (Y, S∗) be two complex valued S-metric spaces and T : X → Y be a function. Then T is

continuous at x ∈ X if and only if Txn → Tx whenever xn → x. In the following theorem, we obtain a fixed
point theorem for a self-mapping satisfying the condition (2) on a compact complex valued S-metric space.

Theorem 1 Let (X,S) be a compact complex valued S-metric space and T a continuous self-mapping of X
satisfying the condition (2). Then T has a unique fixed point.

Proof. There exists a compact subset Y of X such that TX ⊂ Y since T is a continuous self-mapping and

X is compact. Hence we get TY ⊂ Y and Z =
∞⋂
n=1

TnY is a nonempty compact subset of X. We show that

Z is a singleton consisting of the unique fixed point z0 of T . Suppose that Z is not a singleton. Then we
get diam {Z} > 0. Since Z is compact subset, there exist z, w ∈ Z with |S(z, z, w)| = diam {Z}. Also there
exist z0, w0 ∈ Z with Tz0 = z and Tw0 = w since T maps Z onto itself. From the condition (2), we obtain

diam {Z} = |S(z, z, w)| = |S(Tz0, T z0, Tw0)| < diam {Z} ,

which is a contradiction. Therefore, T has a unique fixed point.

By Proposition 1, we deduce the following corollary.

Corollary 1 Let (X,S) be a compact complex valued S-metric space and T a continuous self-mapping of X
satisfying the condition (1). Then T has a unique fixed point.

In the following proposition, we see that a complex valued S-metric function is continuous.

Proposition 2 Let (X,S) be a complex valued S-metric space and {zn}, {wn} be two sequences. If {zn} → z
and {wn} → w, then S(zn, zn, wn)→ S(z, z, w).

Proof. Assume that {zn} → z and {wn} → w. Then there exist n1, n2 ∈ N such that

S(zn, zn, z) ≺
ε

4
for each n ≥ n1

and
S(wn, wn, w) ≺

ε

4
for each n ≥ n2.

If we take n0 = max {n1, n2} then using the condition (CS3) and Lemma 3, we get

S(zn, zn, wn) - 2S(zn, zn, z) + 2S(wn, wn, w) + S(z, z, w) ≺ ε+ S(z, z, w)
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and so
S(zn, zn, wn)− S(z, z, w) ≺ ε. (3)

Also we have

S(z, z, w) - 2S(z, z, zn) + 2S(w,w,wn) + S(zn, zn, wn)

≺ ε+ S(zn, zn, wn)

and so
S(z, z, w)− S(zn, zn, wn) ≺ ε. (4)

From the inequalities (3) and (4), we obtain

|S(zn, zn, wn)− S(z, z, w)| < ε,

that is, S(zn, zn, wn)→ S(z, z, w). Consequently, the complex valued S-metric function is continuous.

Now we introduce the Nemytskii-Edelstein condition on a complex valued S-metric space.

Definition 7 Let (X,S) be a complex valued S-metric space and T be a self-mapping of X. We define

S(Tz, Tz, Tw) ≺ S(z, z, w), (5)

for all z, w ∈ X with z 6= w.

In the following proposition, we give the relationship between the condition (1) and the condition (5).

Proposition 3 Let (X,S) be a complex valued S-metric space and T a self-mapping of X. If T satisfies the
condition (5), then T satisfies the condition (1).

Proof. The proof can be easily seen from Definitions 4 and 7.

Using Propositions 1 and 3, we deduce the following corollary.

Corollary 2 Let (X,S) be a complex valued S-metric space and T a self-mapping of X. If T satisfies the
condition (5), then T satisfies the condition (2).

In the following example, we see that the converses of Proposition 3 and Corollary 2 are not always true.

Example 2 Let X = [0, 1] with complex valued S-metric given in Example 1. Let us define the function
T : X → X as

Tz =

{
z + 4

5 if z ∈
[
0, 15
)
,

1 if z ∈
[
1
5 , 1
]
,

for all z ∈ X. Then T is a self-mapping on the complex valued S-metric space (X,S). For z = 1
6 , w =

1
7 ∈ X

we have
S(Tz, Tz, Tw) =

5

21
eik, S(z, z, w) =

5

21
eik

and so we get

S(Tz, Tz, Tw) =
5

21
eik ≺ S(z, z, w) = 5

21
eik,

which implies

|S(Tz, Tz, Tw)| = 5

21
< |S(z, z, w)| = 5

21
.

Therefore T does not satisfy the condition (5). It can be easily seen that T satisfies the conditions (1) and
(2).
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We prove the classical Nemytskii-Edelstein fixed-point theorem on a compact complex valued S-metric
space.

Theorem 2 Let (X,S) be a compact complex valued S-metric space and T a self-mapping of X satisfying
the condition (5). Then T has a unique fixed point.

Proof. Let us define the function ψ : X → [0, 1) as

ψ(z) = |S(z, z, Tz)| .

The function ψ takes on its minimum value since (X,S) is a compact complex valued S-metric space. That
is, there exists z0 ∈ X such that

|S(z0, z0, T z0)| < |S(z, z, Tz)| ,

for all z ∈ X. Now we prove that z0 is a fixed point of T . Suppose that z0 is not fixed point of T , that is,
Tz0 6= z0. Using the condition (5), we get

S(Tz0, T z0, TTz0) ≺ S(z0, z0, T z0)

and so
|S(Tz0, T z0, TTz0)| < |S(z0, z0, T z0)| ,

which contradicts the minimality of |S(z0, z0, T z0)| among all |S(z, z, Tz)|. Therefore, z0 is a fixed point of
T . We now show that the fixed point z0 is unique. Assume that w0 is another fixed point of T , that is,
Tw0 = w0 and z0 6= w0. Using the condition (5), we obtain

S(z0, z0, w0) = S(Tz0, T z0, Tw0) ≺ S(z0, z0, w0)

and so
|S(z0, z0, w0)| < |S(z0, z0, w0)| ,

which implies z0 = w0. Consequently, z0 is a unique fixed point of T .

Remark 1 We can deduce the following results for a continuous self-mapping on a compact complex valued
S-metric space.

1. Corollary 1 is a generalization of Theorem 2.

2. Theorem 1 is another generalization of Theorem 2 by Proposition 1.

3. If we consider Example 2 then T has a unique fixed point z = 1 since the conditions (1) and (2) are
satisfied.

4. If we take the metric function as S : X×X×X → [0,∞) in Theorem 2 then we get Theorem 3.3 given
in [15].

Finally we introduce the Ćiríc’s condition on a complex valued S-metric space.

Definition 8 Let (X,S) be a complex valued S-metric space and T a self-mapping of X. We define

S(Tz, Tz, Tw) - hmax {S(z, z, w), S(Tz, Tz, z), S(Tw, Tw,w), S(Tw, Tw, z), S(Tz, Tz, w)} , (6)

for all z, w ∈ X and some h ∈
[
0, 13
)
.

In the following proposition, we give the relationship between the condition (1) and (6).
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Proposition 4 Let (X,S) be a complex valued S-metric space and T a self-mapping of X. If T satisfies the
condition (6), then T satisfies the condition (1).

Proof. The proof can be easily seen from Definitions 4 and 8.

Using Propositions 1 and 4, we deduce the following corollary.

Corollary 3 Let (X,S) be a complex valued S-metric space and T a self-mapping of X. If T satisfies the
condition (6), then T satisfies the condition (2).

We note that the self-mapping T defined in Example 2 satisfies the conditions (1) and (2) but does not
satisfy the condition (6).
We prove the Ćiríc’s fixed-point result on a complete complex valued S-metric space.

Theorem 3 Let (X,S) be a complete complex valued S-metric space and T a self-mapping of X satisfying
the condition (6). Then T has a unique fixed point.

Proof. Let z0 ∈ X and the sequence {zn} be defined as follows:

Tzn = zn+1, n = 0, 1, 2, . . . .

Assume that zn 6= zn+1 for all n. By the condition (6) and Lemma 3, we get

S(zn, zn, zn+1)

= S(Tzn−1, T zn−1, T zn)

- hmax {S(zn−1, zn−1, zn), S(zn, zn, zn−1), S(zn+1, zn+1, zn), S(zn+1, zn+1, zn−1), S(zn, zn, zn)}
= hmax {S(zn−1, zn−1, zn), S(zn+1, zn+1, zn), S(zn+1, zn+1, zn−1)}
= hα

and so
|S(zn, zn, zn+1)| ≤ h |α| ≤ 2h |S(zn+1, zn+1, zn)|+ h |S(zn−1, zn−1, zn)| ,

which implies

|S(zn, zn, zn+1)| ≤
h

1− 2h |S(zn−1, zn−1, zn)| . (7)

Let a = h
1−2h . Then we have a < 1 since 3h < 1. We note that 1 − 2h 6= 0 since 0 ≤ h < 1

3 . Using
mathematical induction and the inequality (7), we obtain

|S(zn, zn, zn+1)| ≤ an |S(z0, z0, z1)| . (8)

We now prove that the sequence {zn} is Cauchy. For all n,m ∈ N, n < m, using the inequality (8) and the
condition (CS3), we get

|S(zn, zn, zm)| ≤
an

1− a |S(z0, z0, z1)| .

Hence |S(zn, zn, zm)| → 0 as n,m → ∞. Therefore {zn} is a Cauchy sequence. Using the completeness
hypothesis, there exists z ∈ X such that {zn} → z.

Now we show that z is a fixed point of T . On the contrary, assume that z is not a fixed point of T , that
is, Tz 6= z. Then using the condition (6), we obtain

S(zn, zn, z) = S(Tzn−1, T zn−1, T z)

- hmax {S(zn−1, zn−1, z), S(zn, zn, zn−1), S(Tz, Tz, z), S(Tz, Tz, zn−1), S(zn, zn, z)}

and so taking the limit for n→∞ we have

S(z, z, Tz) - hS(Tz, Tz, z)
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and by Lemma 3, we obtain

|S(z, z, Tz)| = |S(Tz, Tz, z)| ≤ h |S(Tz, Tz, z)| ,

which implies Tz = z, that is, z is a fixed point of T . We prove that z is the unique fixed point of T . Assume
that w is another fixed point of T such that z 6= w. Using the condition (6), we get

S(z, z, w) = S(Tz, Tz, Tw)

- hmax {S(z, z, w), S(z, z, z), S(w,w,w), S(w,w, z), S(z, z, w)}

and so by Lemma 3, we find
|S(z, z, w)| ≤ |S(z, z, w)| ,

which implies z = w since h ∈
[
0, 13
)
. Consequently, z is the unique fixed point of T .

Remark 2 We can deduce the following results for a continuous self-mapping on a compact complete complex
valued S-metric space.

1. Corollary 1 is a generalization of Theorem 3.

2. Theorem 1 is another generalization of Theorem 3 by Proposition 1.

3. If we take the metric function as S : X ×X ×X → [0,∞) in Theorem 3, then we get Corollary 2.21
given in [16].
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[19] N. Taş, Fixed Point Theorems and Their Various Applications, Ph. D. Thesis, 2017.


	Introduction and Mathematical Preliminaries
	Some Fixed-Point Results on Complex Valued S-Metric Spaces

