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Abstract

In this paper, we establish some new recurrence relations for the single and
product moments of progressively Type-II right censored order statistics from the
doubly truncated generalized exponential distribution. These relations general-
ize the results given by Balakrishnan et al. [1] for the progressively Type-II right
censored order statistics for standard exponential and right truncated exponential
distributions. These results, also generalize the corresponding results for usual
order statistics due to Saran and Pushkarna [2] for the doubly truncated general-
ized exponential distribution. In the last section, some deduction and particular
cases are also discussed.

1 Introduction

Progressive Type-II censored sampling scheme is a versatile censoring scheme because
it allows the experimenter to save time and cost of the life-testing experiment and is
quite useful in reliability and life-time studies. This progressive censoring scheme can
be briefly described as follows.
Consider an experiment in which n independent and identical items are put on test

and their failure times are recorded. These failure times are assumed to be continuous
and identically distributed. Suppose a censoring scheme is defined using a set of prefixed
integers R̃ = (R1, R2, . . . , Rm) such that at the time of the first failure, R1 surviving
items are removed from the experiment at random from the remaining n− 1 surviving
items, at the time of the second observed failure, R2 surviving items are removed from
the experiment at random from the remaining n − 2 − R1 surviving items, and so
on. The process continues until the m − th failure time at which, all the remaining
Rm = n −m −

∑m−1
i=1 Ri surviving items are removed from the experiment. We shall

denote the m ordered observed failure times by XR̃
1:m:n, . . . , X

R̃
m:m:n, and call them the

progressively Type-II right censored order statistics of size m from a sample of size n
with progressive censoring scheme R̃ = (R1, R2, . . . , Rm), m ≤ n. If the failure times
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of the n items originally on test are based on the absolutely continuous distribution
function (df) F (x) and the probability density function (pdf) f(x), then the joint
probability density function of XR̃

1:m:n, . . . , X
R̃
m:m:n is given by Balakrishnan et al. [1],

Balakrishnan and Sandhu [3] and Balakrishnan [4] as

fX
R̃
1:m:n,...,X

R̃
m:m:n(x1, . . . , xm) = c(n,m− 1)

m∏
j=1

f(xj)[1− F (xj)]Rj , (1)

Q1 ≤ x1 < x2 < · · · < xm ≤ P1,
where

n = m+

m∑
j=1

Rj , n,m ∈ N, Rj = N0 , 1 ≤ j ≤ m, R̃ = (R1, . . . , Rm),

and

c(n,m− 1) =
m∏
j=1

(
n−

j−1∑
i=1

Ri − j + 1
)
=

{ ∏m
j=1R

∗
j , if m ≥ 1,

1, if m < 1,
(2)

with

R∗j =

m∑
k=j

(Rk + 1). Observe that R∗1 = n.

The model of ordinary order statistics is contained in the above set up by choosing
R̃ = (0, . . . , 0) (i.e. m = n ) as censoring schemes, where no withdrawals are made.
Progressive censoring and associated inferential procedures have been extensively

studied in the literature for a number of distributions by Cohen [5, 6, 7, 8, 9], Mann
[10, 11], Cohen and Whitten [12], Viveros and Balakrishnan [13], and among others.
Aggarwala and Balakrishnan [14] and Balakrishnan and Aggarwala [15] have derived
recurrence relations for single and product moments of progressively Type-II right
censored order statistics from exponential, Pareto and power function distribution and
their truncated forms. Also, Saran and Pushkarna [16] have obtained several recurrence
relations for the single and product moments of progressively Type-II right censored
order statistics from doubly truncated Burr distribution. Mahmoud et al. [17] derived
some recurrence relations for single and product moments of progressively Type-II right
censored order statistics from linear exponential distribution and also obtained maxi-
mum likelihood estimates (MLEs) of the location and scale parameters. Balakrishnan
et al. [18] and Balakrishnan and Saleh [19, 20, 21] have established several recur-
rence relations for single and product moments of progressively Type-II right censored
order statistics from logistic, half-logistic, log-logistic and generalized half logistic dis-
tributions respectively and the moments so determined are then utilized in inferential
method to derive best linear unbiased estimators of the scale and location parame-
ters. For more results, one may refer to Athar et al. [22], Athar and Akhter [23] and
references therein.
Hosking [24, 25] suggested, discussed and applied many generalizations of standard

distributions. The family of generalized exponential distribution is an example of such
a generalization. This distribution is from an IFR (Increasing Failure Rate) family and
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is widely used as a life-span model (cf. Cohen and Whitten [12]). The truncated form
of life-span models are often of great interest in reliability studies, for more detail one
may see Cohen [9].
Let XR̃

1:m:n < XR̃
2:m:n < · · · < XR̃

m:m:n be the m ordered observed failure times in a
sample of size n under progressive Type-II right censoring scheme R̃ = (R1, R2, . . . , Rm)
from the doubly truncated generalized exponential distribution with pdf ,

f(x) =
(1− αx) 1α−1

P −Q , Q1 ≤ x ≤ P1 and 0 ≤ α < 1, (3)

with the corresponding df ,

F (x) =
(1− αQ1)

1
α − (1− αx) 1α
P −Q , Q1 ≤ x ≤ P1, (4)

where (1 − P ) and Q respectively, are the proportion of truncation on the right and
the left of the distribution.
The exponential distribution is considered as special cases of (3), when the shape

parameter α→ 0.

Here

Q1 =
1− (1−Q)α

α
and P1 =

1− (1− P )α
α

.

Let

P2 =
(1− P )
(P −Q) and Q2 =

(1−Q)
(P −Q) .

It is noted that from (3) and (4),

(1− αx)f(x) = P2 + [1− F (x)]. (5)

The relation in (5) is the "characterizing differential equation" for the distribution in
(3).

Now, we shall denote

µ(R1,...,Rm)
(k1)

r:m:n = E[{XR̃
r:m:n}k1 ] = µ

(R1,...,Rr−1,R
∗
r−1)

(k1)

r:r:n , (6)

where 1 ≤ r ≤ m ≤ n, k1 ≥ 0, R∗r − 1 ≥ m− r ≥ 0, and

µ(R1,...,Rm)
(k1,k2)

r,s:m:n = E[{XR̃
r:m:n}k1{XR̃

r:m:n}k2 ] = µ
(R1,...,Rs−1,R

∗
s−1)

(k1,k2)

r,s:s:n , (7)

where 1 ≤ r < s ≤ m ≤ n, k1, k2 ≥ 0, as given by Balakrishnan et al. [1].
Saran and Pushkarna [2] utilized the general results obtained by Khan et al. [26, 27]

and established some recurrence relations for single and product moments of order
statistics from the doubly truncated generalized exponential distribution.
The progressively type II right censored order statistics of the distribution given in

(3) to the best of our knowledge have not been studied in the literature. The main
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aim of this paper is to fill this gap. Therefore, in this article, we have obtained the
recurrence relations for the single and product moments of progressively Type-II right
censored order statistics from a doubly truncated generalized exponential distribution.
These relations, when used in a systematic manner, enable the recursive computation
of moments for all sample sizes and all possible progressive censoring schemes. Further,
the contents of the paper also generalize the results given by Balakrishnan et al. [1]
for the progressively Type-II right censored order statistics for standard exponential
and right truncated exponential distributions. These results, also generalize the cor-
responding results for usual order statistics due to Saran and Pushkarna [2] for the
doubly truncated generalized exponential distribution.
The rest of the paper is organized as follows. In Section 2, we derive expressions

for the single moments of progressively Type-II right censored order statistics from
the doubly truncated generalized exponential distribution. Section 3 is devoted to
expressions for product moments. In Section 4, some deduction and particular cases
are discussed. Section 5 ends with some concluding remarks.

2 Single Moments

In this section, we shall exploit the relation (5) to derive recurrence relations for the
single moments of progressively Type-II right censored order statistics from the doubly
truncated generalized exponential distribution. In view of (1) the kth1 single moment
of the rth progressively Type-II right censored order statistic is given as

µ(R1,...,Rm)
(k1)

r:m:n = E[{XR̃
r:m:n}k1 ]

= c(n,m− 1)
∫∫
· · ·
∫

Q1≤x1<···<xm≤P1

xk1r f(x1)[1− F (x1)]R1f(x2)[1− F (x2)]R2

× · · · × f(xm)[1− F (xm)]Rmdx1 · · · dxm, (8)

where c(n,m− 1) is defined in (2). The single moments of progressively Type-II right
censored order statistics in (8) satisfy the following recurrence relations.

THEOREM 2.1. For the doubly truncated generalized exponential distribution as
given in (3) and for 2 ≤ m ≤ n− 1 and k1 ≥ 0,

µ
(R1,...,R

∗
m−1)

(k1+1)

m:m:n =
1

[R∗m + α(k1 + 1)]

[
(i+ 1)µ

(R1,...,R
∗
m−1)

(k1)

m:m:n

+P2

{
c(n,m− 1)

c(n− 1,m− 2)µ
(R1,...,Rm−2,R

∗
m−1−2)

(k1+1)

m−1:m−1:n−1

− c(n,m− 1)
c(n− 1,m− 1)(R

∗
m − 1)µ

(R1,...,Rm−1,R
∗
m−2)

(k1+1)

m:m:n−1

}
+R∗mµ

(R1,...,Rm−2,R
∗
m−1−1)

(k1+1)

m−1:m−1:n

]
. (9)
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PROOF. From (8), we have

µ(R1,...,Rm)
(k1)

m:m:n − αµ(R1,...,Rm)
(k1+1)

m:m:n

= c(n,m− 1)
∫∫
· · ·
∫

Q1≤x1<···<xm−1≤P1

Z(xm−1)f(x1)[1− F (x1)]R1

× · · · × f(xm−1)[1− F (xm−1)]Rm−1dx1 · · · dxm−1, (10)

where

Z(xm−1) =

∫ P1

xm−1

xk1m [1− αxm]f(xm)[1− F (xm)]Rmdxm. (11)

Now using relation (5) in (11), we get

Z(xm−1) =

∫ P1

xm−1

xk1m {P2 + [1− F (xm)]}[1− F (xm)]Rmdxm

= P2

∫ P1

xm−1

xk1m [1− F (xm)]Rmdxm +
∫ P1

xm−1

xk1m [1− F (xm)]Rm+1dxm(12)

=
1

(k1 + 1)

[
P2

{
− xk1+1m−1 [1− F (xm−1)]Rm

+Rm

∫ P1

xm−1

xk1+1m [1− F (xm)]Rm−1f(xm)dxm

}
−xk1+1m−1 [1− F (xm−1)]Rm+1

+(Rm + 1)

∫ P1

xm−1

xk1+1m [1− F (xm)]Rmf(xm)dxm]
]
. (13)

Substituting the resultant expression of Z(xm−1) from (13) in (10), we get

µ(R1,...,Rm)
(k1)

m:m:n − αµ(R1,...,Rm)
(k1+1)

m:m:n

=
1

(k1 + 1)

[
P2

{
− c(n,m− 1)

∫∫
· · ·
∫

Q1≤x1<···<xm−1≤P1

xk1+1m−1f(x1)[1− F (x1)]R1

× · · · × f(xm−1)[1− F (xm−1)]Rm−1+Rmdx1 · · · dxm−1

+Rmc(n,m− 1)
∫∫
· · ·
∫

Q1≤x1<···<xm≤P1

xk1+1m f(x1)[1− F (x1)]R1

× · · · × f(xm−1)[1− F (xm−1)]Rm−1f(xm)[1− F (xm)]Rm−1dx1 · · · dxm

}

−c(n,m− 1)
∫ ∫

· · ·
∫

Q1≤x1<···<xm−1≤P1

xk1+1m−1f(x1)[1− F (x1)]R1

× · · · × f(xm−1)[1− F (xm−1)]Rm−1+Rm+1dx1 · · · dxm−1
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+(Rm + 1)c(n,m− 1)
∫∫
· · ·
∫

Q1≤x1<···<xm≤P1

xk1+1m f(x1)[1− F (x1)]R1

× · · · × f(xm−1)[1− F (xm−1)]Rm−1f(xm)[1− F (xm)]Rmdx1 · · · dxm

]

=
1

(k1 + 1)

[
P2

{
− c(n,m− 1)
c(n− 1,m− 2)µ

(R1,...,Rm−2,Rm−1+Rm)
(k1+1)

m−1:m−1:n−1

+
c(n,m− 1)

c(n− 1,m− 1)Rmµ
(R1,...,Rm−1,Rm−1)(k1+1)
m:m:n−1

}
−(n−R1− · · · −Rm−1 −m+1)µ(R1,...,Rm−2,Rm−1+Rm+1)

(k1+1)

m−1:m−1:n

+(Rm + 1)µ
(R1,...,Rm)

(k1+1)

m:m:n

]
,

or

µ
(R1,...,R

∗
m−1)

(k1)

m:m:n − αµ(R1,...,R
∗
m−1)

(k1+1)

m:m:n

=
1

(k1 + 1)

[
P2

{
− c(n,m− 1)
c(n− 1,m− 2)µ

(R1,...,Rm−2,R
∗
m−1−2)

(k1+1)

m−1:m−1:n−1

+
c(n,m− 1)

c(n− 1,m− 1)(R
∗
m − 1)µ

(R1,...,Rm−1,R
∗
m−2)

(k1+1)

m:m:n−1

}
−R∗mµ

(R1,...,Rm−2,R
∗
m−1−1)

(k1+1)

m−1:m−1:n +R∗mµ
(R1,...,R

∗
m−1)

(k1+1)

m:m:n

]
.

After rearranging the terms, we get

µ
(R1,...,R

∗
m−1)

(k1+1)

m:m:n =
1

[R∗m + α(k1 + 1)]

[
(k1 + 1)µ

(R1,...,R
∗
m−1)

(k1)

m:m:n

+P2

{
c(n,m− 1)

c(n− 1,m− 2)µ
(R1,...,Rm−2,R

∗
m−1−2)

(k1+1)

m−1:m−1:n−1

− c(n,m− 1)
c(n− 1,m− 1)(R

∗
m − 1)µ

(R1,...,Rm−1,R
∗
m−2)

(k1+1)

m:m:n−1

}
+R∗mµ

(R1,...,Rm−2,R
∗
m−1−1)

(k1+1)

m−1:m−1:n

]
,

and, hence the theorem.

THEOREM 2.2. For 2 ≤ r ≤ m− 1, m ≤ n− 1 and k1 ≥ 0,

µ(R1,...,Rm)
(k1+1)

r:m:n = µ
(R1,...,Rr−1,R

∗
r−1)

(k1+1)

r:r:n

=
1

[R∗r + α(k1 + 1)]

[
(k1 + 1)µ

(R1,...,R
∗
r−1)

(k1)

r:r:n
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+P2

{
c(n, r − 1)

c(n− 1, r − 2)µ
(R1,...,Rr−2,R

∗
r−1−2)

(k1+1)

r−1:r−1:n−1

− c(n, r − 1)
c(n− 1, r − 1)(R

∗
r − 1)µ

(R1,...,Rr−1,R
∗
r−2)

(k1+1)

r:r:n−1

}

+R∗rµ
(R1,...,Rr−2,R

∗
r−1−1)

(k1+1)

r−1:r−1:n

]
, (14)

where R∗r − 2 ≥ m− r − 1 ≥ 0.

PROOF. The theorem can be proved on the lines of Theorem 2.1 and using (6).

COROLLARY 2.1. Under the conditions as stated in Theorem 2.2

µ
(R1,...,Rm)

(k1+1)

1:m:n

= µ
(R∗

1−1)
(k1+1)

1:1:n

=
1

[n+ α(k1 + 1)]

[
(k1 + 1)µ

(R∗
1−1)

(k1)

1:1:n − nP2µ(R
∗
1−2)

(k1+1)

1:1:n−1 + nQ2Q
k1+1
1

]
(15)

and subsequently for n = 1,

µ
(0)(k1+1)

1:1:1 =
1

[1 + α(k1 + 1)]

[
(k1 + 1)µ

(0)(k1)

1:1:1 − P2P k1+11 +Q2Q
k1+1
1

]
. (16)

PROOF. We shall denote by convention

c(n, 0) = R∗1 = n,

c(n,−1) = 1

and

µ
(R∗

0−1)
(k1+1)

0:0:n = µ
(R∗

0−2)
(k1+1)

0:0:n = Qk1+11 .

Therefore, at r = 1 in (14), we get

µ
(R1,...,Rm)

(k1+1)

1:m:n = µ
(R∗

1−1)
(k1+1)

1:1:n

=
1

[n+ α(k1 + 1)]

[
(k1 + 1)µ

(R∗
1−1)

(k1)

1:1:n

+P2

{
nQ1

(k1+1) − n

(n− 1)(n− 1)µ
(R∗

1−2)
(k1+1)

1:1:n−1

}
+ nQ

(k1+1)

1

]
.

After rearranging the terms, yields (15). The equation (16) is obvious.
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3 Product Moments

The product moments of rth and sth progressively Type-II right censored order statis-
tics in view of (1) is given as

µ(R1,...,Rm)
(k1,k2)

r,s:m:n = E[{XR̃
r:m:n}k1{XR̃

s:m:n}k2 ]

= c(n,m− 1)
∫∫
· · ·
∫

Q1≤x1<···<xm≤P1

xk1r x
k2
s f(x1)[1− F (x1)]R1f(x2)[1− F (x2)]R2

× · · · × f(xm)[1− F (xm)]Rmdx1 · · · dxm. (17)

The following theorems contain the recurrence relations for the product moments of
progressively Type-II right censored order statistics from the doubly truncated gener-
alized exponential distribution.

THEOREM 3.1. For 1 ≤ r < m ≤ n− 1 and k1, k2 ≥ 0,

µ
(R1,...,R

∗
m−1)

(k1,k2+1)

r,m:m:n =
1

[R∗m + α(k2 + 1)]

[
(k2 + 1)µ

(R1,...,R
∗
m−1)

(k1,k2)

r,m:m:n

+P2

{
c(n,m− 1)

c(n− 1,m− 2)µ
(R1,...,Rm−2,R

∗
m−1−2)

(k1,k2+1)

r,m−1:m−1:n−1

− c(n,m− 1)
c(n− 1,m− 1)(R

∗
m − 1)µ

(R1,...,Rm−1,R
∗
m−2)

(k1,k2+1)

r,m:m:n−1

}
+ R∗mµ

(R1,...,Rm−2,R
∗
m−1−1)

(k1,k2+1)

r,m−1:m−1:n

]
. (18)

PROOF. From (17), we have

µ(R1,...,Rm)
(k1,k2)

r,m:m:n − αµ(R1,...,Rm)
(k1,k2+1)

r,m:m:n

= c(n,m− 1)
∫∫
· · ·
∫

Q1≤x1<···<xm−1≤P1

xk1r Z(xm−1)f(x1)[1− F (x1)]R1

× · · · × f(xm−1)[1− F (xm−1)]Rm−1dx1 · · · dxm−1, (19)

where Z(xm−1) is same as in (11).
Now substituting the value of Z(xm−1) from (13) in (19) after replacing k1 with k2,

we get

µ(R1,...,Rm)
(k1,k2)

r,m:m:n − αµ(R1,...,Rm)
(k1,k2+1)

r,m:m:n

=
1

(k2 + 1)

[
P2

{
− c(n,m− 1)

∫∫
· · ·
∫

Q1≤x1<···<xm−1≤P1

xk1r x
k2+1
m−1f(x1)[1− F (x1)]R1

× · · · × f(xm−1)[1− F (xm−1)]Rm−1+Rmdx1 · · · dxm−1



726 Progressively Type-II Right Censored Order Statistics

+Rmc(n,m− 1)
∫∫
· · ·
∫

Q1≤x1<···<xm≤P1

xk1r x
k2+1
m f(x1)[1− F (x1)]R1

× · · · × f(xm−1)[1− F (xm−1)]Rm−1f(xm)[1− F (xm)]Rm−1dx1 · · · dxm

}

−c(n,m− 1)
∫ ∫

· · ·
∫

Q1≤x1<···<xm−1≤P1

xk1r x
k2+1
m−1f(x1)[1− F (x1)]R1

× · · · × f(xm−1)[1− F (xm−1)]Rm−1+Rm+1dx1 · · · dxm−1

+(Rm + 1)c(n,m− 1)
∫∫
· · ·
∫

Q1≤x1<···<xm≤P1

xk1r x
k2+1
m f(x1)[1− F (x1)]R1

× · · · × f(xm−1)[1− F (xm−1)]Rm−1f(xm)[1− F (xm)]Rmdx1 · · · dxm

]

=
1

(k2 + 1)

[
P2

{
− c(n,m− 1)
c(n− 1,m− 2)µ

(R1,...,Rm−2,Rm−1+Rm)
(k1,k2+1)

r,m−1:m−1:n−1

+
c(n,m− 1)

c(n− 1,m− 1)Rmµ
(R1,...,Rm−1,Rm−1)(k1,k2+1)
r,m:m:n−1

}
−(n−R1 − · · · −Rm−1 −m+ 1)µ(R1,...,Rm−2,Rm−1+Rm+1)

(k1,k2+1)

r,m−1:m−1:n

+(Rm + 1)µ
(R1,...,Rm)

(k1,k2+1)

r,m:m:n

]
or

µ
(R1,...,R

∗
m−1)

(k1,k2)

r,m:m:n − αµ(R1,...,R
∗
m−1)

(k1,k2+1)

r,m:m:n

=
1

(k2 + 1)

[
P2

{
− c(n,m− 1)
c(n− 1,m− 2)µ

(R1,...,Rm−2,R
∗
m−1−2)

(k1,k2+1)

r,m−1:m−1:n−1

+
c(n,m− 1)

c(n− 1,m− 1)(R
∗
m − 1)µ

(R1,...,Rm−1,R
∗
m−2)

(k1,k2+1)

r,m:m:n−1

}
−R∗mµ

(R1,...,Rm−2,R
∗
m−1−1)

(k1,k2+1)

r,m−1:m−1:n +R∗mµ
(R1,...,R

∗
m−1)

(k1,k2+1)

r,m:m:n

]
and after rearranging the terms, we get the result in (18).

THEOREM 3.2. For 1 ≤ r < s ≤ n− 1 and k1, k2 ≥ 0,

µ(R1,...,Rm)
(k1,k2+1)

r,s:m:n = µ
(R1,...,Rs−1,R

∗
s−1)

(k1,k2+1)

r,s:s:n

=
1

[R∗s + α(k2 + 1)]

[
(k2 + 1)µ

(R1,...,R
∗
s−1)

(k1,k2)

r,s:s:n

+P2

{
c(n, s− 1)

c(n− 1, s− 2)µ
(R1,...,Rs−2,R

∗
s−1−2)

(k1,k2+1)

r,s−1:s−1:n−1



Akhter et al. 727

− c(n, s− 1)
c(n− 1, s− 1)(R

∗
s − 1)µ

(R1,...,Rs−1,R
∗
s−2)

(k1+1)

r,s:s:n−1

}
+R∗sµ

(R1,...,Rs−2,R
∗
s−1−1)

(k1,k2+1)

r,s−1:s−1:n

]
. (20)

PROOF. This follows from Theorem 3.1 and (7).

4 Special Cases

REMARK 4.1. By letting P → 1, Q→ 0 and shape parameter α→ 0, we can get
the corresponding recurrence relations for the exponential distribution and at Q → 0
and α → 0, we can get the corresponding recurrence relations for the right truncated
exponential distribution as obtained by Balakrishnan et al. [1], by noting down that

P1 =
1− (1− P )α

α

or

(1− P ) = (1− αP1)
1
α → e−P1 as α→ 0 or

1

α
→∞.

REMARK 4.2. By letting P → 1, Q → 0 in the Theorems, we can get the
corresponding recurrence relations for the generalized exponential distribution as,

µ(R1,...,Rm)
(k1+1)

r:m:n

= µ
(R1,...,Rr−1,R

∗
r−1)

(k1+1)

r:r:n

=
1

[R∗r + α(k1 + 1)]

[
(k1 + 1)µ

(R1,...,R
∗
r−1)

(k1)

r:r:n +R∗rµ
(R1,...,Rr−2,R

∗
r−1−1)

(k1+1)

r−1:r−1:n

]
and

µ(R1,...,Rm)
(k1,k2+1)

r,s:m:n

= µ
(R1,...,Rs−1,R

∗
s−1)

(k1,k2+1)

r,s:s:n

=
1

[R∗s + α(k2 + 1)]

[
(k2 + 1)µ

(R1,...,R
∗
s−1)

(k1,k2)

r,s:s:n +R∗sµ
(R1,...,Rs−2,R

∗
s−1−1)

(k1,k2+1)

r,s−1:s−1:n

]
.

REMARK 4.3. For a special case R1 = R2 = · · · = Rm = 0, so that m = n,
the recurrence relations established in section 2 and 3 reduce to the recurrence rela-
tions for the single and product moments of order statistics from the doubly truncated
generalized exponential distribution by Saran and Pushkarna [2]

REMARK 4.4. Theorem 3.2 reduces to Theorem 2.2 as k1 → 0.
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5 Conclusions

The above study demonstrates that the recurrence relations developed here can be used
to compute the single as well as product moments and hence means, variances and
covariances of progressively Type-II right censored order statistics for all sample sizes
and all censoring schemes in a simple recursive way from doubly truncated generalized
exponential distribution for different values of P and Q.

Acknowledgment. Authors are thankful to the anonymous Referees and Edi-
tor, AMEN for their fruitful suggestions, which led to an overall improvement in the
manuscript.
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