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Abstract
The aim of this paper is to establish some coincidence point results for self-

mappings satisfying rational type contractions in Branciari distance spaces. In
this direction, we correct some false essential steps given in the papers [9], [40]
and [44]. Our presented coincidence point theorems extend numerous existing
theorems in the literature. We also provide an illustrated application.

1 Introduction

The Banach contraction principle [15] has been generalized and extended in many
directions, see [1, 13, 20, 29, 33, 35, 37, 38, 39, 41, 46]. In 1973, Dass and Gupta [25]
defined the following rational type contraction which is more general than the Banach
contraction condition:

d (Ax,Ay) ≤ ad (x, y) +
bd (y,Ay) (d(x,Ax) + 1)

1 + d(x, y)
(1)

for all x, y ∈ X and a, b ≥ 0 with a + b < 1, where A : X → X is a mapping from
a metric space X into itself. There are many generalizations of this principle (see
[20], [29], [41], [46]). Later, Almeida, Roldan-Lopez-de-Hierro and Sadarangani [5]
introduced an extension of the condition (1) of Dass and Gupta [25] as follows

d (Ax,Ay) ≤ φ(P (x, y)) + C min {d(x,Ax), d (y,Ay) , d (x,Ay) , d (y,Ax)} , (2)

for all x, y ∈ X with C ≥ 0, where φ : [0,∞) → [0,∞) is a non-decreasing upper
semi-continuous function with φ(t) < t for all t > 0, and P (x, y) is defined by

P (x, y) = max

{
d (x, y) ,

d (x,Ax) (d(y,Ay) + 1)

1 + d(x, y)
,
d (y,Ay) (d(x,Ax) + 1)

1 + d(x, y)

}
.
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It is worth to mention that the use of triangle inequality in a metric space (X, d) is of
extreme importance since it implies that d is continuous, each open ball is an open set,
a sequence may converge to a unique point and every convergent sequence is Cauchy.
In 2000, Branciari [18] introduced a new concept of a generalized distance space by
replacing the triangle inequality by a so-called quadrilateral inequality. Since then,
various works have dealt with fixed point results in such spaces (see [3, 4, 7, 9, 10, 11,
12, 14, 16, 17, 22, 23, 24, 26, 27, 28, 31, 32, 43, 44]). Following the paper of Suzuki
[45], these spaces are called Branciari distance spaces (B.D.S, for short).
The following definitions and results will be needed in the sequel.

DEFINITION 1 ([18]). Suppose that X be a nonempty set and d : X×X → [0,∞)
be a distance function such that for all w, x ∈ X and all distinct points y, z ∈ X, each
distinct from w and x:

(i) d(w, x) = 0⇔ w = x;

(ii) d(w, x) = d(x,w);

(iii) d(w, x) ≤ d(x, y) + d(y, z) + d(z, w) (quadrilateral inequality).

Then (X, d) is called a B.D.S.

EXAMPLE 1 ([44]). Suppose that X = { 56 ,
2
3 ,

7
12 ,

8
15}. Define d on X×X as follows

d(
5

6
,

2

3
) = d(

7

12
,

8

15
) =

4

9
, d(

5

6
,

8

12
) = d(

2

3
,

7

12
) =

1

3
,

d(
5

6
,

7

12
) = d(

2

3
,

8

12
) =

8

9
, d(x, x) = 0, d(x, y) = d(y, x).

Then (X, d) is a B.D.S. Note that (X, d) is not a metric space.

REMARK 1. Condition (iii) in Definition 1 does not ensure that d is continuous
on its domain, see [18].

DEFINITION 2 ([18, 40]). Let (X, d) be a B.D.S. Let {xn} be a sequence in X.
Then

(i) {xn} converges to x ∈ X iff limn→∞ d(xn, x) = 0;

(ii) {xn} is a Cauchy iff ∀ε > 0,∃K(ε) > 0 such that d(xr, xs) < ε for all r > s ≥ K(ε);

(iii) (X, d) is called a complete B.D.S if every Cauchy sequence in X converges to a
point in X.

In 2009, Sarma et al. [42] introduced the following example illustrating Remark 1.
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EXAMPLE 2 ([42]). Suppose that X = D∪E, where D = {0, 2} and E = { 1n : n ∈
N (the set of all natural numbers)}. Define d : X ×X → [0,∞) as

d(u, v) =

{
0, u = v
1, u 6= v & {u, v} ⊂ D or {u, v} ⊂ E,

and d(u, v) = d(v, u) = u if u ∈ D and v ∈ E.
Then (X, d) is a complete B.D.S. Moreover, one can see that

(i) d( 1n , 0) = 0 and d( 1n , 2) = 2 ⇒ { 1n} is not a Cauchy sequence.

(ii) d( 1n ,
1
2 ) 6= d( 12 , 0)⇒ d is not continuous.

DEFINITION 3 ([40]). Let A,B : X → X and β : X×X → [0,∞). The mapping A
isB−β−admissible if, for all x, y ∈ X such that β(Bx,By) > 1, we have β(Ax,Ay) > 1.
If B is the identity mapping, then A is called β−admissible.

DEFINITION 4 ([40]). Let (X, d) be a B.D.S and β : X × X → [0,∞). X is
β−regular if for each sequence {xn} in X such that β(xn, xn+1) > 1 for all n ∈ N and
xn → x, there exists a subsequence {xnk} of {xn} such that β(xnk , x) > 1 ∀k ∈ N .

LEMMA 1 ([30]). Let (X, d) be a B.D.S and let {xn} be a sequence in X with
distinct elements (xn 6= xm for all n 6= m). Suppose that d(xn, xn+1) and d(xn, xn+2)
tend to 0 as n → ∞ and that {xn} is not a Cauchy sequence. Then there exist ε > 0
and two sequences {mk} and {nk} of positive integers such that nk > mk > k and the
following four sequences

d(xmk
, xnk), d(xmk

, xnk+1), d(xmk−1 , xnk), d(xmk−1 , xnk+1) (3)

tend to ε as k →∞.

In 2014, the concept of C-class functions was introduced by Ansari in [6].

DEFINITION 5 ([6]). A mapping F : [0,∞)2 → R is called a C-class function if it
is continuous and satisfies the following axioms:

(1) F (s, t) ≤ s for all s, t ∈ [0,∞);

(2) F (s, t) = s implies that either s = 0 or t = 0.

We denote C as the set of C-class functions.

EXAMPLE 3 ([6]). The following functions F : [0,∞)2 → R are elements of C, for
all s, t ∈ [0,∞):

(1) F (s, t) = s− t;

(2) F (s, t) = ms where 0<m<1;
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(3) F (s, t) = sβ(s) where β : [0,∞)→ [0, 1) is continuous;

(4) F (s, t) = s − ϕ(s) where ϕ : [0,∞) → [0,∞) is a continuous function such that
ϕ(t) = 0⇔ t = 0;

(5) F (s, t) = φ(s) where φ : [0,∞) → [0,∞) is a continuous function such that
φ(0) = 0 and φ(t) < t for t > 0.

DEFINITION 6 ([34]). A function ψ : [0,∞)→ [0,∞) is called an altering distance
function if the following properties are satisfied:

(i) ψ is non-decreasing and continuous;

(ii) ψ (t) = 0 if and only if t = 0.

We denote Ψ the set of altering distance functions.

DEFINITION 7. For ψ,ϕ ∈ Ψ and F ∈ C, the tripled (ψ,ϕ, F ) is said to be
monotone if for any x, y ∈ [0,∞)

x 6 y =⇒ F (ψ(x), ϕ(x)) 6 F (ψ(y), ϕ(y)).

EXAMPLE 4. Let F (s, t) = s− t, φ(x) =
√
x and

ψ(x) =

{ √
x if 0 ≤ x ≤ 1,

x2 if x > 1,

then (ψ, φ, F ) is monotone.

In this paper, we state some coincidence point and common fixed point results
involving rational type contractive self-mappings using C-class functions in a complete
B.D.S. Mention that the proof of Theorem 10 in [40] is false (same remark for the proof
of Theorem 5 in [9]). To be more clear, the case zn = zm (for n 6= m) is not treated
and the end of equation (17) is not correct in [40]. Also, in [9] there is a gap in the
proof of lim

n→∞
d(yn, yn+2) = 0 (the same remark for the proof of Theorem 10 in [44]).

Indeed, the authors in [9] take the limit n → ∞ in inequalities (19) and (20), which
only hold for some integer n. Here, we provide a correct proof which goes as well for
these mentioned papers. Our corrections are given within step 2 and step 3 in the proof
of Theorem 2 (next section).

2 Main Results

We present some coincidence point theorems for (α,ψ, φ)-contraction self-mappings of
a rational type using C-class functions in the setting of B.D.S.
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THEOREM 2. Let (X, d) be a B.D.S and let A,B : X → X be two self-mappings
satisfy the following:

ψ(β(Bx,By)d(Ax,Ay)) ≤ F (ψ(M(x, y)), φ(M(x, y))) ∀x, y ∈ X, (4)

where ψ, φ ∈ Ψ, F ∈ C, AX ⊂ BX, (BX, d) is a complete B.D.S. and

M(x, y) = max

{
d(Bx,By),

d(Bx,Ax)(d(By,Ay) + 1)

1 + d(Bx,By)
,
d(By,Ay)(d(Bx,Ax) + 1)

1 + d(Bx,By)

}
.

Assume also that

(i) there exists x0 ∈ X such that β(Ax0, Bx0) ≥ 1;

(ii) A is B − β−admissible;

(iii) X is β−regular and β(xm, xn) ≥ 1 for each xn ∈ X and ∀m,n ∈ N,m 6= n;

(iv) either β(Bx,By) ≥ 1 or β(By,Bx) ≥ 1, whenever Bx = Ax and By = Ay;

(v) (ψ, φ, F ) is monotone;

(vi) B is one to one.

Then A and B have a unique point of coincidence in X. Moreover, if A and B are
weakly compatible, then A and B have a unique common fixed point.

PROOF. Let x0 ∈ X be arbitrary. Consider the sequences {xn} and {zn} in X
defined by

zn = Bxn+1 = Axn.

Suppose also that β(Bx0, Ax0) ≥ 1. If for some n, zn = zn+1, then zn is a point of
coincidence of A and B. This completes the proof.

From now on, we assume that zn 6= zn+1 for all n ∈ N.
Step 1: We shall prove that

lim
n→∞

d(zn, zn+1) = 0. (5)

From (i), β(Bx0, Ax0) = β(Bx0, Bx1) ≥ 1. Applying (ii), we have that β(Ax0, Ax1) =
β(Bx1, Bx2) ≥ 1 and β(Ax1, Ax2) = β(Bx2, Bx3) ≥ 1. Continuing in this process, we
get that β(Bxn, Bxn+1) ≥ 1.

We shall prove that

d(zn, zn+1) ≤ d(zn−1, zn) for all n ≥ 1. (6)

Suppose that d(zn, zn+1) > d(zn−1, zn) for some n ≥ 1. By using (4), we have

ψ(d(zn, zn+1)) = ψ(d(Axn, Axn+1)) ≤ ψ(β(Bxn, Bxn+1)d(Axn, Axn+1)) (7)

≤ F (ψ(M(xn, xn+1)), φ(M(xn, xn+1)))
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where

M(xn, xn+1) = max

{
d(Bxn, Bxn+1),

d(Bxn, Axn)(d(Bxn+1, Axn+1) + 1)

1 + d(Bxn, Bxn+1)
,

d(Bxn+1, Axn+1)(d(Bxn, Axn) + 1)

1 + d(Bxn, Bxn+1)

}
= max{d(zn−1, zn),

d(zn−1, zn)(1 + d(zn, zn+1))

1 + d(zn−1, zn)
, d(zn, zn+1)}

= d(zn, zn+1).

Then

ψ(d(zn, zn+1)) ≤ F (ψ(d(zn, zn+1)), φ(d(zn, zn+1))),

which implies that ψ (d(zn, zn+1)) = 0 or φ(d(zn, zn+1)) = 0. That is d(zn, zn+1) = 0.
This is a contradiction. So (6) holds. Finally, (7) becomes

ψ(d(zn, zn+1)) ≤ F (ψ(d(zn−1, zn)), φ(d(zn−1, zn)) ∀n ≥ 1. (8)

From (6), the positive real sequence {d(zn, zn+1)} is decreasing, so it converges to a
nonnegative number s ≥ 0. Letting n→ +∞ in (8), we obtain

ψ(s) ≤ F (ψ(s), φ(s)).

Thus, ψ (s) = 0 or φ(s) = 0. Hence s = 0 and hence (5) holds.
Step 2: We shall prove that

zn 6= zm for all n 6= m. (9)

We argue by contradiction. Suppose that zn = zm for some m,n ∈ N with m 6= n.
Since d(zp, zp+1) > 0 for each p ∈ N, without loss of generality, we may assume that
m ≥ n+ 1.
Since B is one to one and as zn = zm, we get zn+1 = zm+1. Then by (4) and (6),

we have

ψ(d(zn, zn+1)) = ψ(d(zm, zm+1)) ≤ ψ(β(d(Bxm, Bxm+1)d(Axm, Axm+1))

≤ F (ψ(M(xm, xm+1)), φ(M(xm, xm+1)))

≤ ψ(M(xm, xm+1)),

where

M(xm, xm+1) = max

{
d(Bxm, Bxm+1),

d(Bxm, Axm)(d(Bxm+1, Axm+1) + 1)

1 + d(Bxm, Bxm+1)
,

d(Bxm+1, Axm+1)(d(Bxm, Axm) + 1)

1 + d(Bxm, Bxm+1)

}
= max

{
d(zm−1, zm),

d(zm−1, zm)(1 + d(zm, zm+1))

1 + d(zm−1, zm)
, d(zm, zm+1)

}
= d(zm−1, zm).
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As (ψ, φ, F ) is monotone, we obtain

ψ(d(zn, zn+1)) ≤ F (ψ(d(zm−1, zm)), φ(d(zm−1, zm))

≤ F (ψ(d(zm−2, zm−1)), φ(d(zm−2, zm−1))

· · ·
≤ F (ψ(d(zn, zn+1)), φ(d(zn, zn+1)),

which implies that ψ(d(zn, zn+1)) = 0 or φ(d(zn, zn+1)) = 0, i.e., d(zn, zn+1) = 0. This
is a contradiction. So (9) holds.
Step 3: We shall show that

lim
n→∞

d(zn, zn+2) = 0. (10)

By using (4), we have

ψ(d(zn, zn+2)) ≤ ψ(β(Bxn, Bxn+2)d(Axn, Axn+2)) (11)

≤ F (ψ(M(xn, xn+2)), φ(M(xn, xn+2)))

where

M(xn, xn+2) = max

{
d(Bxn, Bxn+2),

d(Bxn, Axn)(d(Bxn+2, Axn+2) + 1)

1 + d(Bxn, Bxn+2)
,

d(Bxn+2, Axn+2)(d(Bxn, Axn) + 1)

1 + d(Bxn, Bxn+2)

}
= max

{
d(zn−1, zn+1),

d(zn−1, zn)(1 + d(zn+1, zn+2))

1 + d(zn−1, zn+1)
,

d(zn+1, zn+2)(1 + d(zn−1, zn))

1 + d(zn−1, zn+1)

}
.

Let
I = {n ∈ N : M(xn, xn+2) = d(zn−1, zn+1)}.

We distinguish the two following cases:
Case 1: Assume that |I| <∞. In this case

M(xn, xn+2) = max

{
d(zn−1, zn)(1 + d(zn+1, zn+2))

1 + d(zn−1, zn)
,
d(zn+1, zn+2)(1 + d(zn−1, zn))

1 + d(zn−1, zn+1)

}
,

for n large enough. From (5),

lim
n→∞

M(xn, xn+2) = 0.

Using the properties of F and ψ, we get

lim
n→∞

d(zn, zn+2) = 0.

Case 2: Assume that |I| =∞. In this case

M(xn, xn+2) = d(zn−1, zn+1),
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for n large enough. It follows that the real positive sequence {d(zn, zn+2)} is non-
increasing. Similarly, we have

lim
n→∞

d(zn, zn+2) = 0.

Step 4: We shall prove that {zn} is Cauchy.
Suppose that {zn} is not a Cauchy sequence. By Lemma 1, there exist ε > 0

and two subsequences
{
zm(k)

}
and

{
zn(k)

}
of {zn} with m(k) > n(k) > k such that

d(zm(k), zn(k)) ≥ ε, d(zm(k), z2n(k)−2) < ε and

lim
k→∞

d
(
zn(k), zm(k)

)
= lim

k→∞
d
(
zn(k)+1, zm(k)

)
= lim

k→∞
d
(
zn(k), zm(k)−1

)
= lim

k→∞
d
(
zn(k)+1, zm(k)+1

)
= ε.

Applying (4) with x = xnk and y = xmk
, we obtain

ψ(d(Axmk
, Axnk)) ≤ ψ(β(d(Bxmk

, Bxnk))d(Axmk
, Axnk))

≤ F (ψ(M(xmk
, xnk)), φ(M(xmk

, xnk)))

where

M(xmk
, xnk) = max

{
d(Bxmk

, Bxnk),
d(Bxmk

, Axmk
)(d(Bxnk , Axnk) + 1

1 + d(Bxmk
, Bxnk)

,

d(Bxnk , Axnk)(d(Bxmk
, Axmk

) + 1)

1 + d(Bxmk
, Bxnk)

}
= max

{
d(zmk−1, znk−1),

d(zmk−1, zmk
)(d(znk−1, znk) + 1)

1 + d(zmk−1, znk−1)
,

d(znk−1, znk)(d(zmk−1, zmk
) + 1)

1 + d(zmk−1, znk−1)

}
.

Using the continuity of φ, F, ψ and letting k → +∞,
ψ(ε) ≤ F (ψ(ε), φ(ε)).

So ψ (ε) = 0 or φ(ε) = 0. Hence ε = 0, which is a contradiction. Thus {zn} is a Cauchy
sequence. Since (BX, d) is complete, there exists z ∈ BX such that limn→∞ zn = z.
Let w ∈ X be such that Bu = z. Applying (4) by taking x = xnk ,

ψ(d(Au,Axnk)) ≤ F (ψ(M(u, xnk)), φ(M(u, xnk))), (12)

where

M(u, xnk) = max

{
d(Bu,Bxnk),

d(Bu,Au)(d(Bxnk , Axnk) + 1)

1 + d(Bu,Bxnk)
,

d(Bxnk , Axnk)(d(Bu,Au) + 1)

1 + d(Bu,Bxnk)

}
= max

{
d(z, znk−1),

d(Bu,Au)(d(znk−1, znk) + 1)

1 + d(Bu, znk−1)
,

d(znk−1, znk)(d(Bu,Au) + 1)

1 + d(Bu, znk−1)

}
→ d(Bu,Au) as k →∞.
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By using (12), we have that

ψ(d(Bu,Au)) ≤ lim sup
k→∞

[d(Bu, znk−1) + d(znk−1, znk) + d(Au,Axnk)] (13)

≤ lim sup
k→∞

ψ(d(Au,Axnk))

= F (ψ(d(Bu,Au)), φ(d(Bu,Au))).

Again ψ (d(Bu,Au)) = 0 or φ(d(Bu,Au)) = 0, that is d(Bu,Au) = 0, i.e., z = Bu =
Au and so z is a coincidence point for A and B.

Finally, we prove that z is the unique coincidence point of A and B. Let x and y be
two arbitrary coincidence points of A and B such that x = Au = Bu and y = Av = Bv.
Using (4), it follows that

ψ(d(x, y))

= ψ(d(Au,Av))

≤ F

(
ψ(max

{
d(Bu,Bv),

d(Bu,Au)(d(Bv,Av) + 1)

1 + d(Bu,Bv)
,
d(Bv,Av)(d(Bu,Au) + 1)

1 + d(Bu,Bv)

}
)

, φ(max

{
d(Bu,Bv),

d(Bu,Au)(d(Bv,Av) + 1)

1 + d(Bu,Bv)
,
d(Bv,Av)(d(Bu,Au) + 1)

1 + d(Bu,Bv)

})
= F (ψ(d(Bu,Bv)), φ(d(Bu,Bv)))

= F (ψ(d(x, y)), φ(d(x, y))).

Similarly, d(x, y) = 0. Thus A and B have a unique coincidence point.
Suppose that A and B are weakly compatible. We have

Az = ABu = BAu = Bz.

By (4),

ψ(d(Az, z))

= ψ(d(Az,Au))

≤ F

(
ψ(max

{
d(Bz,Bu),

d(Bz,Az)(d(Bu,Au) + 1)

1 + d(Bz,Bu)
,
d(Bu,Au)(d(Bz,Az) + 1)

1 + d(Bz,Bu)

}
)

, φ(max

{
d(Bz,Bu),

d(Bz,Az)(d(Bu,Au) + 1)

1 + d(Bz,Bu)
,
d(Bu,Au)(d(Bz,Az) + 1)

1 + d(Bz,Bu)

})
= F (ψ(d(z,Bz)), φ(d(z,Bz)))

= F (ψ(d(z,Az)), φ(d(z,Az))),

which implies that ψ(d(z,Az)) = 0 or φ(d(z,Az)) = 0, i.e., d(z,Az) = 0 and so z = Az.
Finally, we obtain z = Az = Bz. So z is a common fixed point of A and B.

COROLLARY 1. Taking B = I in Theorem 2, one gets a unique fixed point of A.

REMARK 2. Theorem 7 in [5] and Theorem 3.1 in [44] are special cases of Theorem
2.
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3 An Application in Dynamical Programming

In this section, we will use Theorem 2 in order to show the existence and uniqueness
of solutions to the following functional equations:{

w(a) = supb∈E{h(a, b) +H(a, b, z(G(a, b)))},
z(a) = supb∈E{h(a, b) +H(a, b, w(G(a, b)))},

(14)

where E is a state space, S is a decision space, a ∈ S, b ∈ E, w, z : S → R, h :
S ×E → R, G : S ×E → S and H : S ×E ×R→ R are considered operators (see also
[20, 21, 36, 44]).
We denote by B(S) the set of all bounded functionals on S. Define also ‖.‖∞ as

‖v‖∞ = sup
x∈S
|v(x)|,∀v ∈ B(S).

REMARK 3 ([44]). (B(S), ‖.‖∞) is a Banach space, where the distance function
on B(S) is defined as

d∞(T1, T2) = sup
x∈S
|T1(x)− T2(x)|, ∀T1, T2 ∈ B(S).

LEMMA 2 ([5]). For all T1, T2 ∈ B(S), we have

| sup
x∈S

T1(x)− sup
x∈S

T2(x)| ≤ sup
x∈S
|T1(x)− T2(x)|. (15)

PROPOSITION 1 ([44]). Suppose that h, H(., ., 0), H(., ., 1) : S×E → R are three
bounded functionals. Suppose also there exists C ≥ 0 such that

|H(a, b, t1)−H(a, b, t2)| ≤ C|t1 − t2|, ∀a ∈ S, b ∈ E and t1, t2 ∈ R. (16)

Consider the operator O : B(S)→ B(S) defined as

(Ow)(a) = sup
b∈E
{h(a, b) +H(a, b, z(G(a, b))},∀a ∈ S, (17)

where
z(a) = sup

b∈E
{h(a, b) +H(a, b, w(G(a, b)))}, ∀a ∈ S,

for w ∈ B(S) and b ∈ E. Then O is well defined.

THEOREM 3. Consider the assumptions of Proposition 1. Assume in addition
that

ψ (d∞(H(a, b, z(w1(G(a, b))), H(a, b, z(w2(G(a, b))))) (18)

≤ F (ψ(M(w1,w2)) , φ(M(w1,w2)))
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where ψ, φ ∈ Ψ, F ∈ C and

M(w1, w2) = max

{
d∞(zw1, zw2),

d∞(zw1, Ow1)(d∞(zw2, Ow2) + 1)

1 + d∞(zw1, zw2)
,

d∞(zw2, Ow2)(d∞(zw1, Ow1) + 1)

1 + d∞(zw1, zw2)

}
,

for all w1, w2 ∈ B(S), a ∈ S and b ∈ E. Then the functional equations (14) have a
unique common solution w0 ∈ B(S).

PROOF. First, we show that the mappings in (17) satisfy the condition (4). Indeed,
by using Lemma ??, for all w1, w2 ∈ B(S), we have

ψ (d∞(Ow1, Ow2)) ≤ ψ(sup
b∈E
|H(a, b, z(w1)−H(a, b, z(w2)|)

≤ F (ψ(M(w1,w2)) , φ(M(w1,w2))).

So all conditions of Theorem 2 are satisfied, hence the system (14) has a unique solution.

COROLLARY 2 ([44]). Consider the assumptions of Proposition 1. Assume in
addition that

ψ (d(F (a, b, z(w1(G(a, b))), F (a, b, z(w2(G(a, b))))) (19)

≤ ϕ(M(w1, w2))

where ϕ : [0,∞)→ [0,∞) is a continuous function such that ϕ(0) = 0 and ϕ(t) < t for
t > 0, and

M(w1, w2) = max

{
d∞(zw1, zw2),

d∞(zw1, Ow1)(d∞(zw2, Ow2) + 1)

1 + d∞(zw1, zw2)
,

d∞(zw2, Ow2)(d∞(zw1, Ow1) + 1)

1 + d∞(zw1, zw2)

}
,

for all w1, w2 ∈ B(S), a ∈ S and b ∈ E. Then the functional equations (14) have a
unique common solution w0 ∈ B(S).

PROOF. It suffi ces to choose F (s, t) = ϕ(s) in Theorem 3.

Acknowledgment. The authors would like to thank the referee for his/her valu-
able comments.
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