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Abstract

In this paper, the authors obtain some new oscillation criteria for the second
order neutral differential equation

(a(t)(z′(t))β)′ + q(t)xγ(σ(t)) = 0, t ≥ t0 > 0

where z(t) = x(t) + p(t)xα(τ(t)). Their results extend, unify, and improve some
of the results previously reported in the literature. Examples are provided to
illustrate the importance of the main results.

1 Introduction

In this paper, we are concerned with the second order neutral differential equation

(a(t)(z′(t))β)′ + q(t)xγ(σ(t)) = 0, t ≥ t0 > 0, (1)

where z(t) = x(t) + p(t)xα(τ(t)), subject to the following conditions:

(H1) 0 < α ≤ 1, β, and γ ≥ 1 are ratios of odd positive integers;

(H2) a ∈ C1([t0,∞), (0,∞)), p, q ∈ C([t0,∞),R), p ≥ 0, p(t) tends to zero as t→∞,
and q ≥ 0 and is not eventually zero on any half line [t∗,∞) for t∗ ≥ t0;

(H3) τ ∈ C([t0,∞),R), σ ∈ C1([t0,∞),R), τ(t) ≤ t, σ(t) ≤ t, σ′(t) ≥ 0, and
limt→∞ τ(t) = limt→∞ σ(t) =∞.
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By a solution of equation (1), we mean a function x ∈ C([tx,∞),R), tx ≥ t0, with
a(t)(z′(t))β ∈ C1([tx,∞),R), and which satisfies equation (1) on [tx,∞). We consider
only those solutions x of equation (1) that are continuable to the right and nontrivial,
that is, they satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We also assume that
equation (1) possesses such solutions. As is customary, a solution x(t) of equation (1)
is called oscillatory if it has infinitely many zeros on [tx,∞); otherwise, it is said to be
nonoscillatory. The equation itself is termed oscillatory if all its solutions oscillate.
Following Trench [29], we say that equation (1) is in canonical form if

R(t) =

∫ t

t0

a−
1
β (s)ds→∞ as t→∞, (2)

and it is in non-canonical form if∫ ∞
t0

a−
1
β (s)ds <∞.

In the last few decades there has been a great interest in investigating the oscillatory
and asymptotic behavior of solutions of neutral type differential equations because such
equations arise in many applications in the natural sciences and technology; see, for
example, [14, 23] and the references cited therein.
From a review of the literature, it is observed that there are many results available

dealing with the oscillatory and asymptotic behavior of solutions of (1) with α = 1
(see [1, 4, 6, 7, 10, 11, 15, 21, 22, 23, 24, 27, 30, 31, 32, 33, 34, 35] and the references
therein). Far fewer results are known on the oscillation of equation (1) with α 6= 1 and
β = 1 (see [3, 9, 12, 13, 28]), and to the best of our knowledge, there do not appear to
be any such results for equation (1) with both β and α different from 1.
It is a well established method that to find oscillation criteria for second order neu-

tral differential equations with a positive linear neutral term, the following important
relation between x and z

x(t) ≥ (1− p(t))z(t)

has been used in the case where x(t) is positive and z(t) is positive and increasing.
However, for equations with a positive sub-linear neutral term, finding such a relation
between x and z is more diffi cult. In [28], the authors used the relation

x(t) ≥ (M1−α − p(t))z(t)

where z(t) ≥M > 0 and 0 < α ≤ 1. In [3], the authors used the relation

x(t) ≥
(
1−

(
α21−α +

21−α − 1
M

)
p(t)

)
z(t)

where again x(t) is positive, z(t) is positive and increasing, z(t) ≥ M > 0, and 0 <
α ≤ 1. In [12, 13] the authors used a relationship of the form

x(t) ≥
(
1− p(t)− 1

M
(1− α)α α

1−α p(t)

)
z(t)
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where 0 < α < 1. But in this paper, we make use of a different type of relation
between x and z to obtain our results. Thus, our results in this paper for equation (1)
are different from those in [3, 12, 13, 28] even if β = 1. Hence, we are able to improve
and extend some known results in the literature [2, 3, 6, 7, 9, 11, 12, 13, 15, 21, 22,
23, 24, 27, 28, 30, 31, 32, 33, 34, 35, 36]. The results here also complement those in
[5, 18, 19, 20].

2 Some Preliminary Lemmas

In this section, we present some lemmas that will be used to prove our main results.
Due to the assumptions and the form of our equation, we only need to give proofs
for the case of eventually positive solutions since the proofs for eventually negative
solutions would be similar.
We begin with the following lemma, which can be found in [16, Theorem 40].

LEMMA 1. If a and b are nonnegative and 0 < α ≤ 1, then

aαb1−α ≤ αa+ (1− α)b.

To simplify our notations, for any positive continuous function ρ : [t0,∞) → R+,
we set:

P (t) =

(
1− αp(t)− 1

ρ(t)
(1− α)p(t)

)
,

Q(t) = q(t)P γ(σ(t)),

R(t) = Rγ(t) +
γ

β

∫ t

t1

Rγ(s)Rβ(σ(s))ργ−β(s)Q(s)ds,

and

R1(t) = exp

(
−β
∫ t

σ(t)

ds

(R(s)a
γ
β (s))

1
γ

)
for t ≥ t1, where t1 ≥ t0 is large enough.

The following two lemmas will be used to prove our main results. The first one can
be found in [6, Lemma 3].

LEMMA 2. Let condition (2) hold and assume that x(t) is a positive solution of
equation (1) on [t0,∞). Then there exists t1 ≥ t0 such that for t ≥ t1,

z(t) > 0, z′(t) > 0, and (a(t)(z′(t))β)′ ≤ 0. (3)

LEMMA 3. Let x(t) be a positive solution of equation (1) on [t0,∞) and assume
that (3) holds. Then there exists t1 ≥ t0 such that

z(t) ≥ R(t)a
1
β (t)z′(t) (4)
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and
z(t)

R(t)
is decreasing for t ≥ t1. (5)

PROOF. Assume that x(t) is a positive solution of equation (1) and let x(t) > 0
and (3) holds for all t ≥ t1 ≥ t0. Since a(t)(z′(t))β is decreasing,

z(t) ≥
∫ t

t1

a
1
β (s)z′(s)

a
1
β (s)

ds ≥ a
1
β (t)z′(t)R(t).

Moreover, using the last inequality, we have(
z(t)

R(t)

)′
=
a
1
β (t)z′(t)R(t)− z(t)

a
1
β (t)R2(t)

≤ 0.

So z(t)
R(t) is decreasing, and this proves the lemma.

3 Oscillation Results

In this section, we present some new oscillation results for equation (1).

THEOREM 1. Let γ ≥ β, condition (2) holds, and assume there is a positive,
continuous, decreasing function ρ : [t0,∞) → R+ tending to zero as t → ∞ such that
P (t) > 0 for all large t. If the first order delay differential equation

w′(t) +Q(t)R(t)w
γ
β (σ(t)) = 0 (6)

is oscillatory, then every solution of equation (1) is oscillatory.

PROOF. Let x(t) be a positive solution of equation (1). Then there exists t1 ≥ t0
such that x(t) > 0, x(τ(t)) > 0, x(σ(t)) > 0, P (t) > 0, and (3) holds for t ≥ t1. Since
z(t) is increasing, applying Lemma 1 with a = z(t) and b = 1, we obtain

x(t) ≥ z(t)− p(t)zα(t) ≥ (1− αp(t))z(t)− (1− α)p(t), t ≥ t1. (7)

Now z(t) is increasing and ρ(t) is positive, decreasing, and tending to zero, so we have
z(t) ≥ ρ(t) for t ≥ t2 for some t2 ≥ t1. Using this in (7), we obtain

x(t) ≥ P (t)z(t)

for t ≥ t3 for some t3 ≥ t2. This, together with equation (1), implies that

(a(t)(z′(t))β)′ ≤ −Q(t)zγ(σ(t)) (8)

for t ≥ t3. Now a simple computation, together with (4) and the fact that γ ≥ 1, shows
that (

zγ(t)−Rγ(t)a
γ
β (t)(z′(t))γ

)′
≥ −Rγ(t)

(
a
γ
β (t)(z′(t))γ

)′
. (9)
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Also, it is easy to see that(
a
γ
β (t)(z′(t))γ

)′
=
γ

β

(
a(t)(z′(t))β

) γ
β−1 (a(t)(z′(t))β)′. (10)

Combining (8), (9), and (10), we obtain(
zγ(t)−Rγ(t)a

γ
β (t)(z′(t))γ

)′
≥ γ

β
Rγ(t)Q(t)

(
a(t)(z′(t))β

) γ
β−1 zγ(σ(t)) ≥ 0

for t ≥ t3. Integrating the last inequality from t3 to t, we have

zγ(t) ≥ Rγ(t)a
γ
β (t)(z′(t))γ +

γ

β

∫ t

t1

Rγ(s)Q(s)
(
a(s)((z′(t))β

) γ
β−1 zγ(σ(s))ds. (11)

Since γ ≥ β, we have zγ−β(σ(t)) ≥ ργ−β(t) and zβ(σ(t)) ≥ Rβ(σ(t)) a(t)(z′(t))β for
t ≥ t3. Using these inequalities in (11), we obtain

zγ(t) ≥ a
γ
β (t)(z′(t))γ

[
Rγ(t) +

γ

β

∫ t

t1

Rγ(s)Rβ(σ(s))ργ−β(s)Q(s)ds

]
, t ≥ t3,

where we have used that a
1
β (t)z′(t) is nonincreasing. Hence,

zγ(σ(t)) ≥
(
a
1
β (σ(t))z′(σ(t))

)γ
R(σ(t)). (12)

Using (12) in (8), and in view of (3), one can see that w(t) = a(t)(z′(t))β is a positive
solution of the first order delay differential inequality

w′(t) +Q(t)R(σ(t))w
γ
β (σ(t)) ≤ 0. (13)

But by Theorem 1 of Philos [25], the associated delay differential equation

w′(t) +Q(t)R(σ(t))w
γ
β (σ(t)) = 0

must also have a positive solution, which is a contradiction. This completes the proof
of the theorem.

Using the results in [10] and [26], one can easily obtain the following corollaries to
Theorem 1.

COROLLARY 1. Let the conditions of Theorem 1 hold with γ = β. If

lim inf
t→∞

∫ t

σ(t)

Q(s)R(σ(s))ds >
1

e
(14)

then every solution of equation (1) is oscillatory.

COROLLARY 2. Let the conditions of Theorem 1 hold with γ > β. If σ(t) = t− δ,
δ > 0, and

lim inf
t→∞

(
γ

β

)−δ
log(Q(t)R(t− δ)) > 0, (15)
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then every solution of equation (1) is oscillatory.

Our next result is for the case γ < β.

THEOREM 2. Assume that γ < β, condition (2) holds, and there exists a positive,
continuous, decreasing function ρ : [t0,∞) → R+ tending to zero such that P (t) > 0
for all large t. If∫ ∞

t0

Q(t)

(
Rγ(σ(t)) +

γ

βMβ−γ

∫ σ(s)

t0

Rγ(s)Rγ(σ(s))Q(s)ds

)
dt =∞ (16)

for any constant M > 0, then every solution of equation (1) is oscillatory.

PROOF. Assume that equation (1) has a positive solution, say x(t) > 0, x(τ(t)) > 0,
x(σ(t)) > 0, P (t) > 0, and (3) holds for t ≥ t1 ≥ t0. Proceeding as in the proof of
Theorem 1, from (11) we have

zγ(t) ≥
(
a(t)(z′(t))β

) γ
β

(
Rγ(t) +

γ

β

∫ t

t1

Rγ(s)Q(s)(a(s)((z′(t))β)−1zγ(σ(s))ds

)
(17)

for t ≥ t3. Since z(t)
R(t) is decreasing, there exists a constant M > 0 such that z(t)

R(t) ≤M
for all t ≥ t3, and from (3) and (4), we have

zβ(σ(t)) ≥ Rβ(σ(t))a(σ(t))(z′(σ(t)))β ≥ Rβ(σ(t))a(t)(z′(t))β

for t ≥ t3. Since γ < β, using these inequalities in (17) yields

zγ(t) ≥ (a(t)((z′(t))β)
γ
β

(
Rγ(t) +

γ

βMβ−γ

∫ σ(t)

t1

Rγ(s)Rγ(σ(s))Q(s)ds

)
,

for t ≥ t3. Using the last inequality in (8) and setting w(t) = a(t)(z′(t))β > 0, we have
that w is a positive solution of the delay differential inequality

w′(t) +Q(t)

(
Rγ(σ(t)) +

γ

βMβ−γ

∫ σ(t)

t1

Rγ(s)Rγ(σ(s))Q(s)ds

)
w
γ
β (σ(t)) ≤ 0.

But by Theorem 1 in [25], the associated delay differential equation

w′(t) +Q(t)

(
Rγ(σ(t)) +

γ

βMβ−γ

∫ σ(t)

t1

Rγ(s)Rγ(σ(s))Q(s)ds

)
w
γ
β (σ(t)) = 0 (18)

must also have a positive solution. On the other hand, by Theorem 2 in [17], condition
(16) implies that equation (18) is oscillatory. This contradiction completes the proof.

In our next theorem, we employ a Riccati substitution technique to obtain new
oscillation criteria for equation (1). We will need the following lemma in the proof.
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LEMMA 4. ([36, Lemma 2.3] Let g(u) = Bu−Auω+1ω where A and B are constants
and ω is a ratio of odd positive integers. Then g attains it maximum value at u∗ =(

Bω
A(ω+1)

)ω
and g(u∗) = ωω

(ω+1)ω+1
Bω+1

Aω .

THEOREM 3. Let γ ≥ β, condition (2) holds, and assume there exists a positive,
continuous, decreasing function ρ : [t0,∞)→ R+ tending to zero such that P (t) > 0 for
all large t. If there exists a positive, nondecreasing, differentiable function µ : [t0,∞)→
R+ such that for all suffi ciently large T ≥ t0,

lim sup
t→∞

∫ t

T

(
µ(s)Q(s)R1(s)ρ

γ−β(s)− a(s)(µ′(s))1+β

(β + 1)β+1µβ(s)

)
ds =∞, (19)

then every solution of equation (1) is oscillatory.

PROOF. Let x(t) be a positive solution of equation (1). Then there exists t1 ≥ t0
such that x(t) > 0, x(τ(t)) > 0, x(σ(t)) > 0, P (t) > 0, and (3) holds for t ≥ t1. Define
a Riccati type transformation by

w(t) = µ(t)a(t)

(
z′(t)

z(t)

)β
, t ≥ t1. (20)

Then, w(t) > 0 for all t ≥ t1, and

w′(t) =
µ′(t)

µ(t)
w(t) + µ(t)

(a(t)((z′(t))β)′

zβ(t)
− βµ(t)a(t)

(
z′(t)

z(t)

)β+1
. (21)

As in the proof of Theorem 1, we have

zγ(t) ≥ R(t)
(
a
1
β (t)z′(t)

)γ
or

z′(t)

z(t)
≤ 1

R
1
γ (t)a

1
β (t)

.

Integrating the last inequality from σ(t) to t, yields

z(σ(t))

z(t)
≥ exp

(
−
∫ t

σ(t)

ds

R
1
γ (s)a

1
β (s)

)
. (22)

Combining (8) and (22), we have

(a(t)((z′(t))β)′

zβ(t)
≤ −Q(t)

(
z(σ(t))

z(t)

)β
zγ−β(σ(t))

≤ −Q(t) exp
(
−β
∫ t

σ(t)

ds

R
1
γ (s)a

1
β (s)

)
ργ−β(t), (23)

where we have used the facts that γ ≥ β and z(t) ≥ ρ(t) for all t ≥ t1.
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From (21) and (23), it follows that

w′(t) ≤ µ′(t)

µ(t)
w(t)− µ(t)Q(t)R1(t)ργ−β(t)−

β

(µ(t)a(t))
1
β

w1+
1
β (t). (24)

Letting B = µ′(t)
µ(t) and A =

β

(µ(t)a(t))
1
β
in Lemma 4, it follows from (24) that

w′(t) ≤ −µ(t)Q(t)R1(t)ργ−β(t) +
a(t)(µ′(t))1+β

(β + 1)β+1µβ(t)
. (25)

Let T ≥ t1 be suffi ciently large and integrate (25) from T to t to obtain∫ t

T

[
µ(s)Q(s)R1(s)ρ

γ−β(s)− a(s)(µ′(t))1+β

(β + 1)β+1µβ(s)

]
ds ≤ w(T ),

which contradicts (19). This completes the proof of the theorem.

Our final result is for the case γ < β.

THEOREM 4. Let γ < β, condition (2) holds, and assume that there exists a
positive, continuous, decreasing function ρ : [t0,∞) → R+ tending to zero such that
P (t) > 0 for all large t. If there exists a positive, nondecreasing, differentiable function
µ : [t0,∞)→ R+ such that, for all suffi ciently large T ≥ t0,

lim sup
t→∞

∫ t

T

(
µ(s)Q(s)R1(s)R

γ−β(σ(s))− Mβ−γa(s)(µ′(t))1+β

(β + 1)β+1µβ(s)

)
ds =∞ (26)

for every constant M > 0, then every solution of equation (1) is oscillatory.

PROOF. The proof is similar to that of Theorem 3 except that inequality (23) is
replaced by

(a(t)((z′(t))β)′

zβ(t)
≤ −Mγ−βQ(t)R1(t)R

γ−β(σ(t)),

where we have used z(t)
R(t) ≤M for all t ≥ t1 and γ < β. We omit the details.

4 Examples

In this section, we present two examples to illustrate our main results.

EXAMPLE 1. Consider the second order neutral differential equation

((z′(t))β)′ +
q0
t1+β

xβ(λt) = 0, t ≥ 1 (27)

where z(t) = x(t) + p0
t1−αx

α(τ(t)), α and β are ratio of odd positive integers with
0 < α ≤ 1 and β ≥ 1, p0 ∈ (0, 1), τ(t) ≤ t, q0 > 0, and λ ∈ (0, 1). By taking



Prabaharan et al. 571

ρ(t) = p0
t1−α , we see that P (t) = α(1− p0

t1−α ) > 0 for t ≥ 1, Q(t) =
q0α

β

t1+β
(1− p0

(λt)1−α )
β ,

and R(t) = t− 1. It is easy to see that by Corollary 1, equation (27) is oscillatory if

q0α
βλβ

(
1− p0

λ1−α

)β (
1 +

q0α
βλβ(1− p0

λ1−α
)β

β

)
ln
1

λ
>
1

e
.

If we assume α = 1 in equation (27), then we have

((z′(t))β)′ +
q0
t1+β

xβ(λt) = 0, t ≥ 1 (28)

where z(t) = x(t) + p0x(τ(t)), which is same as the equation considered in Example 1
in [11]. Now, by our results the equation (28) is oscillatory if

q0λ
β (1− p0)β

(
1 +

q0λ
β(1− p0)β
β

)
ln
1

λ
>
1

e

which is different from the condition obtained in [11] for the case β > 1.
As a special case of equation (27) or (28), we have

((x′(t))3)′ +
q0
t4
x3(t/2) = 0, t ≥ 1, (29)

and the equation (29) is oscillatory provided

q0 > 3.6843.

But by the known related criterion for (4.3) based on comparison with a first order
delay differential equation (see, e.g., [6, Theorem 5]) gives q0 > 16.9847 which is a
significantly weaker result.

EXAMPLE 2. Consider the second order neutral differential equation

((z′(t))3)′ +
q0
t4
x3(λt) = 0, t ≥ 1, (30)

where z(t) = x(t)+ p0
t x

α(τ(t)), 0 < α ≤ 1 is a ratio of odd positive integers, p0 ∈ (0, 1),
q0 > 0, λ ∈ (0, 1), and τ(t) ≤ t. By taking ρ(t) = p0

t , we see that P (t) = α(1− p0
t ) > 0

for t ≥ 1, and Q(t) = q0
t4 α

3(1 − p0
λt )

3. A simple calculation gives R1(t) = λ3λ1 where

λ1 =
(

3
3+q0α3λ3(1− p0λ )3

)1/3
. Now by taking µ(t) = t3, we see that condition (19) is

satisfied if

q0α
3
(
1− p0

λ

)3
λ3λ1 >

81

256
. (31)

Hence, by Theorem 3, every solution of (30) is oscillatory provided condition (31) is
satisfied.

We conclude this paper with the following remark.

REMARK 1.
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1. It is important to note that none of the results in the literature can be applied
to equations (27) and (30) to yield this conclusion.

2. Note that the results obtained in this paper generalize and are different from those
of in [6, 11] where α = 1 and β 6= 1. Also, the results established here extend those
in [3, 12, 13, 28] where β = 1 and 0 < α ≤ 1. They also extend and complement
results in [2, 3, 6, 7, 9, 11, 15, 21, 22, 23, 24, 27, 30, 31, 32, 33, 34, 35, 36] that
were obtained for α = β = 1. Thus, the results presented in this paper extend,
improve, and complement to many known results in the literature.
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