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The Equivalence Of Mini-Max Theorem And
Existence Of Nash Equilibrium In Asymmetric
Three-Players Zero-Sum Game With Two Groups∗

Atsuhiro Satoh†, Yasuhito Tanaka‡

Abstract

We consider the relation between Sion’s minimax theorem for a continuous
function and a Nash equilibrium in an asymmetric three-players zero-sum game
with two groups. Two players are in Group A, and they have symmetric payoff
functions and strategy space. One player, Player C who is in Group C, does not.
We show that the existence of a Nash equilibrium, which is symmetric in Group
A, is equivalent to Sion’s minimax theorem for pairs of a player in Group A and
Player C with symmetry in Group A.

1 Introduction

We consider the relation between Sion’s minimax theorem for a continuous function
and existence of a Nash equilibrium in an asymmetric three-players zero-sum game with
two groups1 . Two players are in one group (Group A), and they have symmetric payoff
functions and the same strategy space, and so their equilibrium strategies, maximin
strategies and minimax strategies are the same. One player, Player C who is in the
other group (Group C), does not. We will show the following results.

1. The existence of a Nash equilibrium, which is symmetric in Group A, implies
Sion’s minimax theorem for pairs of a player in Group A and Player C with
symmetry in Group A.

2. Sion’s minimax theorem for pairs of a player in Group A and Player C with sym-
metry in Group A implies the existence of a Nash equilibrium which is symmetric
in Group A.

Thus, they are equivalent.
An example of such a game is a relative profit maximization game in a Cournot

oligopoly. Suppose that there are three firms, A, B and C in an oligopolistic industry.

∗Mathematics Subject Classifications: 91A10, 62C20, 90C47.
†Faculty of Economics, Hokkai-Gakuen University, Toyohira-ku, Sapporo, Hokkaido, 062-8605,

Japan
‡Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto, 602-8580, Japan
1 In [8] we have analyzed a similar problem in a symmetric zero-sum game in which all players are

identical.
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Let π̄A, π̄B and π̄C be the absolute profits of the firms. Then, their relative profits are

πA = π̄A −
1

2
(π̄B + π̄C), πB = π̄B −

1

2
(π̄A + π̄C), πC = π̄C −

1

2
(π̄B + π̄C).

We see
πA + πB + πC = π̄A + π̄B + π̄C − (π̄A + π̄B + π̄C) = 0.

Thus, the relative profit maximization game in a Cournot oligopoly is a zero-sum game2 .
If the oligopoly is fully asymmetric because the demand function is not symmetric (in a
case of differentiated goods) or firms have different cost functions (in both homogeneous
and differentiated goods cases), maximin strategies and minimax strategies of firms do
not correspond to Nash equilibrium strategies. However, if the oligopoly is symmetric
for two firms in one group (Group A) in the sense that the demand function is symmetric
and two firms have the same cost function, the maximin strategies for those firms with
the corresponding minimax strategy of the firm in the other group (Group C) constitute
a Nash equilibrium which is symmetric in Group A.

2 The Model and Sion’s Minimax Theorem

Consider a three-players zero-sum game with two groups. There are three players, A,
B and C. The strategic variables for Players A, B and C are, respectively, sA, sB , sC ,
and (sA, sB , sC) ∈ SA×SB×SC . SA, SB and SC are convex and compact sets in linear
topological spaces. The payoff function of each player is ui(sA, sB , sC), i = A,B,C.
They are real valued functions on SA × SB × SC . We assume

uA, uB and uC are continuous on SA × SB × SC , quasi-concave on Si for
each sj ∈ Sj , j 6= i, and quasi-convex on Sj for j 6= i for each si ∈ Si, i =
A,B,C.

Three players are partitioned into two groups. Group A and Group C. Group A
includes Player A and Player B, and Group C includes only Player C. In Group A
two players are symmetric, that is, they have symmetric payoff functions and the same
strategy spaces, however, Player C does not. Symmetry of the payoff functions means

uA(sA, sB , sC) = uB(sB , sA, sC).

Thus, the equilibrium strategies, maximin strategies and minimax strategies for Players
A and B are the same.
Since the game is a zero-sum game, we have

uA(sA, sB , sC) + uB(sA, sB , sC) + uC(sA, sB , sC) = 0,

for given (sA, sB , sC).
Sion’s minimax theorem ([9], [2], [1]) for a continuous function is stated as follows.

2About relative profit maximization under imperfect competition please see [3], [4], [5], [6], [10],
[11] and [12]
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LEMMA 1 (Sion’s minimax theorem). Let X and Y be non-void convex and com-
pact subsets of two linear topological spaces, and let f : X×Y → R be a function that
is continuous and quasi-concave in the first variable and continuous and quasi-convex
in the second variable. Then

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

We follow the description of this theorem in [1].
Let sB be given, then uA(sA, sB , sC) is a function of sA and sC . We can apply

Lemma 1 to such a situation, and get the following equation.

max
sA∈SA

min
sC∈SC

uA(sA, sB , sC) = min
sC∈SC

max
sA∈SA

uA(sA, sB , sC). (1)

We do not require

max
sC∈SC

min
sA∈SA

uC(sA, sB , sC) = min
sA∈SA

max
sC∈SC

uC(sA, sB , sC),

nor
max
sA∈SA

min
sB∈SB

uA(sA, sB , sC) = min
sB∈SB

max
sA∈SA

uA(sA, sB , sC) given sC .

We assume that
arg max

sA∈SA
min
sC∈SC

uA(sA, sB , sC)

and
arg min

sC∈SC
max
sA∈SA

uA(sA, sB , sC)

are unique, that is, single-valued. By the maximum theorem they are continuous in sB .
Throughout this paper we also assume that the maximin strategy and the minimax
strategy of players in any situation are unique, and the best responses of players in any
situation are unique. Similarly, we obtain

max
sB∈SB

min
sC∈SC

uB(sA, sB , sC) = min
sC∈SC

max
sB∈SB

uB(sA, sB , sC),

given sA3 .
Let sB = s. Consider the following function.

s→ arg max
sA∈SA

min
sC∈SC

uA(sA, s, sC).

Since uA is continuous, SA and SC are compact and SA = SB , this function is also
continuous. Thus, there exists a fixed point. Denote it by s̃. s̃ satisfies

arg max
sA∈SA

min
sC∈SC

uA(sA, s̃, sC) = s̃. (2)

3We do not require

max
sC∈SC

min
sB∈SB

uC(sA, sB , sC) = min
sB∈SB

max
sC∈SC

uC(sA, sB , sC),

max
sB∈SB

min
sA∈SA

uB(sA, sB , sC) = min
sA∈SA

max
sB∈SB

uB(sA, sB , sC).



624 Mini-Max Theorem and Nash Equilibrium

From (1), s̃ satisfies

max
sA∈SA

min
sC∈SC

uA(sA, s̃, sC) = min
sC∈SC

max
sA∈SA

uA(sA, s̃, sC). (3)

From symmetry for Players A and B, s̃ also satisfies

arg max
sB∈SB

min
sC∈SC

uB(s̃, sB , sC) = s̃, (4)

max
sB∈SB

min
sC∈SC

uB(s̃, sB , sC) = min
sC∈SC

max
sB∈SB

uB(s̃, sB , sC). (5)

We summarize the arguments in the following lemma.

LEMMA 2 (Sion’s minimax theorem for pairs of a player in Group A and Player C
with symmetry in Group A). There exists s̃ such that (2)—(5) are satisfied.

3 The Main Results

Consider a Nash equilibrium of a three-players zero-sum game. Let s∗A, s
∗
B , s

∗
C be the

values of sA, sB , sC which, respectively, maximize uA given sB and sC , maximize uB
given sA and sC , maximize uC given sA and sB in SA × SB × SC . Then,

uA(s∗A, s
∗
B , s

∗
C) ≥ uA(sA, s

∗
B , s

∗
C) for all sA ∈ SA,

uB(s∗A, s
∗
B , s

∗
C) ≥ uB(s∗A, sB , s

∗
C) for all sB ∈ SB ,

uC(s∗A, s
∗
B , s

∗
C) ≥ uC(s∗A, s

∗
B , sC) for all sC ∈ SC .

They mean
arg max

sA∈SA
uA(sA, s

∗
B , s

∗
C) = s∗A,

arg max
sB∈SB

uB(s∗A, sB , s
∗
C) = s∗B ,

arg max
sC∈SC

uC(s∗A, s
∗
B , sC) = s∗C .

We assume that the Nash equilibrium is symmetric in Group A, that is, it is sym-
metric for Player A and Player B. Then, s∗B = s∗A, and uA(s∗A, s

∗
B , s

∗
C) = uB(s∗A, s

∗
B , s

∗
C).

We also have
uA(s∗A, s

∗
B , sC) = uB(s∗A, s

∗
B , sC) for any sC .

Since the game is zero-sum,

uA(s∗A, s
∗
B , sC)+uB(s∗A, s

∗
B , sC) = 2uA(s∗A, s

∗
B , sC) = 2uB(s∗A, s

∗
B , sC) = −uC(s∗A, s

∗
B , sC).

Thus,
arg min

sC∈SC
uA(s∗A, s

∗
B , sC) = arg max

sC∈SC
uC(s∗A, s

∗
B , sC) = s∗C ,

arg min
sC∈SC

uB(s∗A, s
∗
B , sC) = arg max

sC∈SC
uC(s∗A, s

∗
B , sC) = s∗C .
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They imply

min
sC∈SC

uA(s∗A, s
∗
B , sC) = uA(s∗A, s

∗
B , s

∗
C) = max

sA∈SA
uA(sA, s

∗
B , s

∗
C),

min
sC∈SC

uB(s∗A, s
∗
B , sC) = uB(s∗A, s

∗
B , s

∗
C) = max

sB∈SB
uB(sA, s

∗
B , s

∗
C).

First we show the following theorem.

THEOREM 1. The existence of a Nash equilibrium, which is symmetric in Group
A, implies Sion’s minimax theorem for pairs of a player in Group A and Player C with
symmetry in Group A.

PROOF. Let (s∗A, s
∗
B , s

∗
C) be a Nash equilibrium of a three-players zero-sum game.

This means

min
sC∈SC

max
sA∈SA

uA(sA, s
∗
B , sC) ≤ max

sA∈SA
uA(sA, s

∗
B , s

∗
C) (6a)

= min
sC∈SC

uA(s∗A, s
∗
B , sC) ≤ max

sA∈SA
min
sC∈SC

uA(sA, s
∗
B , sC),

for Player A.

min
sC∈SC

max
sB∈SB

uB(s∗A, sB , sC) ≤ max
sB∈SB

uB(s∗A, sB , s
∗
C) (6b)

= min
sC∈SC

uB(s∗A, s
∗
B , sC) ≤ max

sB∈SB
min
sC∈SC

uB(s∗A, sB , sC),

for Player B.
On the other hand, since

min
sC∈SC

uA(sA, s
∗
B , sC) ≤ uA(sA, s

∗
B , sC),

we have
max
sA∈SA

min
sC∈SC

uA(sA, s
∗
B , sC) ≤ max

sA∈SA
uA(sA, s

∗
B , sC).

This inequality holds for any sC . Thus,

max
sA∈SA

min
sC∈SC

uA(sA, s
∗
B , sC) ≤ min

sC∈SC
max
sA∈SA

uA(sA, s
∗
B , sC).

With (6a), we obtain

max
sA∈SA

min
sC∈SC

uA(sA, s
∗
B , sC) = min

sC∈SC
max
sA∈SA

uA(sA, s
∗
B , sC). (7a)

Similarly, for Player B we can show

max
sB∈SB

min
sC∈SC

uB(s∗A, sB , sC) = min
sC∈SC

max
sB∈SB

uA(s∗A, sB , sC). (7b)

Then (6a), (6b), (7a) and (7b) imply

max
sA∈SA

min
sC∈SC

uA(sA, s
∗
B , sC) = max

sA∈SA
uA(sA, s

∗
B , s

∗
C),
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min
sC∈SC

max
sA∈SA

uA(sA, s
∗
B , sC) = min

sC∈SC
uA(s∗A, s

∗
B , sC),

max
sB∈SB

min
sC∈SC

uB(s∗A, sB , sC) = max
sB∈SB

uB(s∗A, sB , s
∗
C),

min
sc∈SC

max
sB∈SB

uB(s∗A, sB , sC) = min
sC∈SC

uB(s∗A, s
∗
B , sC).

From
min
sc∈SC

uA(sA, s
∗
B , sC) ≤ uA(sA, s

∗
B , s

∗
C),

and
max
sA∈SA

min
sC∈SC

uA(sA, s
∗
B , sC) = max

sA∈SA
uA(sA, s

∗
B , s

∗
C),

we have

arg max
sA∈SA

min
sC∈SC

uA(sA, s
∗
B , sC) = arg max

sA∈SA
uA(sA, s

∗
B , s

∗
C) = s∗A.

From
max
sA∈SA

uA(sA, s
∗
B , sC) ≥ uA(s∗A, s

∗
B , sC),

and
min
sC∈SC

max
sA∈SA

uA(sA, s
∗
B , sC) = min

sC∈SC
uA(s∗A, s

∗
B , sC),

we get

arg min
sC∈SC

max
sA∈SA

uA(sA, s
∗
B , sC) = arg min

sC∈SC
uA(s∗A, s

∗
B , sC) = s∗C .

Similarly, we can show

arg max
sB∈SB

min
sC∈SC

uB(s∗A, sB , sC) = arg max
sB∈SB

uB(s∗A, sB , s
∗
C) = s∗B = s∗A,

and
arg min

sC∈SC
max
sB∈SB

uB(s∗A, sB , sC) = arg min
sC∈SC

uB(s∗A, s
∗
B , sC) = s∗C .

Therefore,

arg max
sA∈SA

min
sC∈SC

uA(sA, s
∗
B , sC) = arg max

sB∈SB
min
sC∈SC

uB(s∗A, sB , sC),

and
arg min

sC∈SC
max
sA∈SA

uA(sA, s
∗
B , sC) = arg min

sC∈SC
max
sB∈SB

uB(s∗A, sB , sC).

Q.E.D.

Next we show the following theorem.

THEOREM 2. Sion’s minimax theorem with symmetry in Group A implies the
existence of a Nash equilibrium which is symmetric in Group A.
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PROOF. Let s̃ be a value of sA such that

s̃ = arg max
sA∈SA

min
sC∈SC

uA(sA, s̃, sC).

Then, we have

max
sA∈SA

min
sC∈SC

uA(sA, s̃, sC) = min
sC∈SC

uA(s̃, s̃, sC) = min
sC∈SC

max
sA∈SA

uA(sA, s̃, sC). (8)

Since
uA(s̃, s̃, sC) ≤ max

sA∈SA
uA(sA, s̃, sC),

and
min
sC∈SC

uA(s̃, s̃, sC) = min
sC∈SC

max
sA∈SA

uA(sA, s̃, sC),

we get
arg min

sC∈SC
uA(s̃, s̃, sC) = arg min

sC∈SC
max
sA∈SA

uA(sA, s̃, sC). (9)

Since the game is zero-sum,

uA(s̃, s̃, sC) + uB(s̃, s̃, sC) = 2uA(s̃, s̃, sC) = −uC(s̃, s̃, sC).

Therefore,
arg min

sC∈SC
uA(s̃, s̃, sC) = arg max

sC∈SC
uC(s̃, s̃, sC).

Let
ŝC = arg min

sC∈SC
uA(s̃, s̃, sC) = arg max

sC∈SC
uC(s̃, s̃, sC). (10)

Then, from (8) and (9)

min
sC∈SC

max
sA∈SA

uA(sA, s̃, sC) = min
sC∈SC

uA(s̃, s̃, sC) = max
sA∈SA

uA(sA, s̃, ŝC) = uA(s̃, s̃, ŝC).

(11)
Similarly, we can show

max
sB∈SB

uB(s̃, sB , ŝC) = uB(s̃, s̃, ŝC). (12)

(10), (11) and (12) mean that (sA, sB , sC) = (s̃, s̃, ŝC) is a Nash equilibrium which is
symmetric in Group A. Q.E.D.

4 Concluding Remarks

In this paper we have examined the relation between Sion’s minimax theorem for a
continuous function and a Nash equilibrium in an asymmetric three-players zero-sum
game with two groups. We want to extend this result to more general multi-players
zero-sum game.
In [7], we have studied the choice of strategic variables under relative profit maxi-

mization in a three-firms asymmetric oligopoly. Here we generalize the model of [7] as
an asymmetric three-players zero-sum game and consider the relation between mini-
max theorem and existence of Nash equilibrium.
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