Common Fixed Point For Multivalued (ψ, θ, G)-Contraction Type Maps In Metric Spaces With A Graph Structure*

Saadia Benchabane ${ }^{\dagger}$, Smail Djebali ${ }^{\ddagger}$
Received 08 October 2018

Abstract

In this work, we introduce the notion of a common (ψ, θ, G)-contraction multivalued mapping in order to establish some new common fixed point theorems for these classes of mappings in complete metric spaces endowed with a graph. An example of application illustrates the main existence theorem. Our results generalize some recent known results.

1 Introduction and Preliminaries

Since the proof of Banach's fixed contraction principle [2] in 1922, many research works have considered different kinds of generalizations. Among them, the classical multivalued version was established by Covitz and Nadler [12] in 1969 using the HausdorffPompeiu metric in a complete metric space.

In 2008, Jachymski [8] provided a new approach in metric fixed point theory by replacing the order structure with a graph structure on a metric space. He introduced the concept of G-contraction, where the contraction condition is only verified on the edge of the graph. Subsequently, many authors have extended the Banach G-contraction in different ways (we refer to [1], [3], [13], [15], [16], and references therein).

Recently, Jleli and Samet [10] introduced another definition called θ-contraction and proved a fixed point result as a generalization of the Banach contraction principle. Their result has then been extended by many authors (see, e.g., [6], [7], [9], [11], [17]). Given a metric space (X, d), a mapping $T: X \longrightarrow X$ is a θ-contraction if there exist $\theta \in \Theta$ and $k \in(0,1)$ such that:

$$
\theta(d(T x, T y)) \leq[\theta(d(x, y))]^{k}
$$

for all $x, y \in X$ with $d(T x, T y)>0$. Here Θ refers to the set of all functions θ : $(0, \infty) \rightarrow(1, \infty)$ satisfying the following conditions:

[^0]$\left(\Theta_{1}\right) \theta$ is non-decreasing,
$\left(\Theta_{2}\right)$ for each sequence $\left(t_{n}\right)_{n} \subset(0, \infty), \lim _{n \rightarrow \infty} \theta\left(t_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} t_{n}=0^{+}$
$\left(\Theta_{3}\right)$ there exist $r \in(0,1)$ and $l \in(0, \infty]$ such that $\lim _{t \rightarrow 0^{+}} \frac{\theta(t)-1}{t^{r}}=l$.
The aim of this paper is to prove some common fixed point results for a new class of multi-valued mappings called (ψ, θ, G)-contractions in a metric space endowed with a graph G.

Let us collect some basic notions and primary results we need to develop our existence results. Let (X, d) be a metric space. We denote by $C B(X)$ the family of nonempty closed bounded subsets of X and by $C(X)$ the family of nonempty closed subsets of X. For $A, B \in C(X)$, let

$$
H(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}
$$

where $d(x, B)=\inf \{d(x, y): y \in B\} . H$ is called the Hausdorff-Pompeiu distance on $C(X)$. This is a metric on $C B(X)$.

A graph G is an ordered pair (V, E), where V is a set and $E \subset V \times V$ is a binary relation on V. Elements of E are called edges and are denoted by $E(G)$ while elements of V, denoted $V(G)$, are called vertices. If a direction is imposed in E, that is the edges are directed, then we get a digraph (directed graph). Hereafter, we assume that G has no parallel edges, i.e., two vertices cannot be connected by more than one edge. Thus, G can be identified with the pair $(V(G), E(G))$. If x and y are vertices of G, then a path in G from x to y of length $k \in \mathbb{N}$ is a finite sequence $\left(x_{n}\right)_{n}, n \in\{0,1,2, \ldots, k\}$ of vertices such that $x=x_{0}, \ldots, x_{k}=y$ and $\left(x_{n-1}, x_{n}\right) \in E(G)$ for $n \in\{1,2, \ldots, k\}$. A graph G is connected if there is a path between any two vertices and it is weakly connected if \widetilde{G} is connected, where \widetilde{G} denotes the undirected graph obtained from G by ignoring the direction of edges. Let G^{-1} be the graph obtained from G by reversing the direction of edges (the conversion of the graph G). We have

$$
E\left(G^{-1}\right)=\{(x, y) \in X \times X:(y, x) \in E(G)\}
$$

It is more convenient to treat \widetilde{G} as a directed graph for which the set of edges is symmetric. Then

$$
E(\widetilde{G})=E(G) \cup E\left(G^{-1}\right)
$$

Let G_{x} be the component of G consisting of all edges and vertices which are contained in some path in G beginning at x. If G is such that $E(G)$ is symmetric, then for $x \in V(G)$, we may define the equivalence class $[x]_{G}$ on $V(G)$ by the relation $x R y$ if there is a path in G from x to y. Then $V\left(G_{x}\right)=[x]_{G}$.

Throughout this paper, (X, d) denotes a metric space, $G=(V(G), E(G))$ is a directed graph without parallel edges with $V(G)=X$ and $(x, x) \notin E(G)$ (the graph does not contain loops). The following condition first appeared in [8]:

PROPERTY (A). For any sequence $\left(x_{n}\right)_{n}$ in X, if $x_{n} \rightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$, for all $n \in \mathbb{N}$, then $\left(x_{n}, x\right) \in E(G)$ for $n \in \mathbb{N}$.

With this condition, Jachymski showed that in a complete metric space, a G contraction mapping f has a fixed point if and only if

$$
\begin{equation*}
X_{f}=\{x \in X:(x, f(x)) \in E(G)\} \neq \emptyset \tag{1}
\end{equation*}
$$

that is the graph of f intersects the edge of the space graph.
Further to the set Φ, we consider the following classes of functions:
DEFINITION 1. We denote by Ψ the set of functions $\psi:(1, \infty) \rightarrow(1, \infty)$ satisfying the following conditions:
(i) ψ is non-decreasing;
(ii) For each sequence $\left(t_{n}\right)_{n} \subset(1, \infty), \lim _{n \rightarrow \infty} \psi\left(t_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} t_{n}=1$.

Now we give the following definition, extending the definitions of G-contraction [8], θ-contraction [10], and $(G-\psi)$-contraction [4].

DEFINITION 2. Let (X, d) be a metric space endowed with a graph G. Two mappings $T_{1}, T_{2}: X \rightarrow C(X)$ are said to be a common (ψ, θ, G)-contraction if for all $x, y \in X$ such that $(x, y) \in E(G)$ and $a \in T_{i}(x)$, there exists $b \in T_{j}(y)$ for $i, j \in\{1,2\}$ with $i \neq j$ such that $(a, b) \in E(G)$ and

$$
\psi\left(\theta\left(d^{p}(a, b)\right)\right) \leq \psi\left(\left[\theta\left(\left(M_{p}\left(T_{i} x, T_{j} y\right)\right)\right]^{k(d(x, y))}\right)+L N_{p}\left(T_{i} x, T_{j} y\right)\right.
$$

where

$$
\begin{aligned}
& N_{p}\left(T_{i} x, T_{j} y\right)=\min \left\{d^{p}\left(x, T_{i}(x)\right), d^{p}\left(y, T_{j}(y)\right), d^{p}\left(y, T_{i}(x)\right), d^{p}\left(x, T_{j}(y)\right)\right\} \\
& M_{p}\left(T_{i} x, T_{j} y\right)= \max \left\{d^{p}(x, y), d^{p}\left(x, T_{i}(x)\right), d^{p}\left(y, T_{j}(y)\right)\right. \\
& \frac{d^{p}\left(y, T_{i}(x)\right)+d^{p}\left(x, T_{j}(y)\right)}{2^{p}} \\
&\left.\frac{d^{p}\left(x, T_{i}(x)\right) d^{p}\left(y, T_{j}(y)\right)}{1+d^{p}(x, y)}, \frac{d^{p}\left(y, T_{i}(x)\right) d^{p}\left(x, T_{j}(y)\right)}{1+d^{p}(x, y)}\right\}
\end{aligned}
$$

$k:(0,+\infty) \rightarrow[0,1)$ satisfies $\lim \sup _{s \rightarrow t^{+}} k(s)<1$, for all $t \in[0,+\infty), L \geq 0, \theta \in \Theta, \psi \in \Psi$, $\psi \circ \theta$ is lower semi continuity, and $1 \leq p<\frac{1}{r}$.

2 Main Result

Our existence results for common fixed points are collected in the following:
THEOREM 1. Let (X, d) be a complete metric space endowed with a directed graph G and suppose that the triple (X, d, G) has the property (A). Let $T_{1}, T_{2}: X \rightarrow C(X)$ be a common (ψ, θ, G)-contraction. Then the following statements hold:
(i) For every $x \in X_{T_{i}}, i=1$ or $i=2$, the mappings $T_{1},\left.T_{2}\right|_{[x]_{\tilde{G}}}$ have a common fixed point, where $X_{T_{i}}$ is as defined in (1).
(ii) If $X_{T_{i}} \neq \emptyset, i=1$ or $i=2$, and G is weakly connected, then T_{1} and T_{2} have a common fixed point in X.
(iii) If $X^{\prime}=\cup\left\{[x]_{\widetilde{G}}: x \in X_{T_{i}}\right\}, i=1$ or $i=2$, then $T_{1},\left.T_{2}\right|_{X^{\prime}}$ have a common fixed point.
(iv) If $\operatorname{Graph}\left(T_{i}\right) \subseteq E(G), i=1$ or $i=2$, then T_{1} and T_{2} have a common fixed point.

PROOF.

Claim 1. (a) Construction of a Cauchy sequence $\left(x_{n}\right)_{n}$. Given $x_{0} \in X_{T_{i}}$ ($i=1$ or 2), there is an $x_{1} \in T_{i}\left(x_{0}\right)$ such that $\left(x_{0}, x_{1}\right) \in E(G)$. Since T_{1} and T_{2} are a common (ψ, θ, G)-contraction, then there exists $x_{2} \in T_{j}\left(x_{1}\right)(j=2$ or 1$)$ such that $\left(x_{1}, x_{2}\right) \in E(G)$ and

$$
\begin{aligned}
\psi\left(\theta\left(d^{p}\left(x_{1}, x_{2}\right)\right)\right) & \left.\leq \psi\left(\left[\theta\left(M_{p}\left(T_{i} x_{0}, T_{j} x_{1}\right)\right)\right]^{k\left(d\left(x_{0}, x_{1}\right)\right)}\right)+L N_{p}\left(T_{i} x_{0}, T_{j} x_{1}\right)\right) \\
& \left.\leq \psi\left(\left[\theta\left(M_{p}\left(T_{i} x_{0}, T_{j} x_{1}\right)\right)\right]^{k\left(d\left(x_{0}, x_{1}\right)\right)}\right)+L d^{p}\left(x_{1}, T_{i}\left(x_{0}\right)\right)\right) \\
& =\psi\left(\left[\theta\left(M_{p}\left(T_{i} x_{0}, T_{j} x_{1}\right)\right)\right]^{k\left(d\left(x_{0}, x_{1}\right)\right)}\right)
\end{aligned}
$$

Since $\left(x_{1}, x_{2}\right) \in E(G)$ and T_{1}, T_{2} are common (ψ, θ, G)-contraction, there exists $x_{3} \in$ $T_{i}\left(x_{2}\right)$ such that $\left(x_{2}, x_{3}\right) \in E(G)$ and

$$
\begin{aligned}
\psi\left(\theta\left(d^{p}\left(x_{2}, x_{3}\right)\right)\right) & \leq \psi\left(\left[\theta\left(M_{p}\left(T_{j} x_{1}, T_{i} x_{2}\right)\right)\right]^{k\left(d\left(x_{1}, x_{2}\right)\right)}\right)+L N_{p}\left(T_{j} x_{1}, T_{i} x_{2}\right) \\
& \left.\leq \psi\left(\left[\theta\left(M_{p}\left(T_{j} x_{1}, T_{i} x_{2}\right)\right)\right]^{k\left(d\left(x_{1}, x_{2}\right)\right)}\right)+L d^{p}\left(x_{2}, T_{j}\left(x_{1}\right)\right)\right) \\
& =\psi\left(\left[\theta\left(M_{p}\left(T_{j} x_{1}, T_{i} x_{2}\right)\right)\right]^{k\left(d\left(x_{1}, x_{2}\right)\right)}\right)
\end{aligned}
$$

By induction, we construct a sequence $\left(x_{n}\right)_{n}$ such that $x_{2 n+1} \in T_{i}\left(x_{2 n}\right), x_{2 n+2} \in$ $T_{j}\left(x_{2 n+1}\right),\left(x_{n}, x_{n+1}\right) \in E(G)$, and

$$
\psi\left(\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)\right) \leq \begin{cases}\psi\left(\left[\theta\left(M_{p}\left(T_{i} x_{n-1}, T_{j} x_{n}\right)\right)\right]^{k\left(d\left(x_{n-1}, x_{n}\right)\right)}\right) & \text { for odd } n \\ \psi\left(\left[\theta\left(M_{p}\left(T_{j} x_{n-1}, T_{i} x_{n}\right)\right)\right]^{k\left(d\left(x_{n-1}, x_{n}\right)\right)}\right) & \text { for even } n\end{cases}
$$

Let us distinguish between two cases:

- Case 1: n is odd.

$$
\begin{aligned}
& M_{p}\left(T_{i} x_{2 k}, T_{j} x_{2 k+1}\right) \\
= & \max \left\{d^{p}\left(x_{2 k}, x_{2 k+1}\right), d^{p}\left(x_{2 k}, T_{i}\left(x_{2 k}\right)\right), d^{p}\left(x_{2 k+1}, T_{j}\left(x_{2 k+1}\right)\right),\right. \\
& \frac{d^{p}\left(x_{2 k+1}, T_{i}\left(x_{2 k}\right)\right)+d^{p}\left(x_{2 k}, T_{j}\left(x_{2 k+1}\right)\right)}{2^{p}}, \frac{d^{p}\left(x_{2 k}, T_{i}\left(x_{2 k}\right)\right) d^{p}\left(x_{2 k+1}, T_{j}\left(x_{2 k+1}\right)\right)}{1+d^{p}\left(x_{2 k}, x_{2 k+1}\right)}, \\
& \left.\frac{d^{p}\left(x_{2 k+1}, T_{i}\left(x_{2 k}\right)\right) d^{p}\left(x_{2 k}, T_{j}\left(x_{2 k+1}\right)\right)}{1+d^{p}\left(x_{2 k}, x_{2 k+1}\right)}\right\} \\
\leq & \max \left\{d^{p}\left(x_{2 k}, x_{2 k+1}\right), d^{p}\left(x_{2 k}, x_{2 k+1}\right), d^{p}\left(x_{2 k+1}, x_{2 k+2}\right),\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{p}\left(x_{2 k+1}, x_{2 k+1}\right)+d^{p}\left(x_{2 k}, x_{2 k+2}\right)}{2^{p}}, \frac{d^{p}\left(x_{2 k}, x_{2 k+1}\right) d^{p}\left(x_{2 k+1}, x_{2 k+2}\right)}{1+d^{p}\left(x_{2 k}, x_{2 k+1}\right)} \\
& \left.\frac{d^{p}\left(x_{2 k+1}, x_{2 k+1}\right) d^{p}\left(x_{2 k}, x_{2 k+2}\right)}{1+d^{p}\left(x_{2 k}, x_{2 k+1}\right)}\right\} \\
= & \max \left\{d^{p}\left(x_{2 k}, x_{2 k+1}\right), d^{p}\left(x_{2 k+1}, x_{2 k+2}\right), \frac{d^{p}\left(x_{2 k}, x_{2 k+2}\right)}{2^{p}}\right\} .
\end{aligned}
$$

Since for all $a, b \geq 0$ and $p \geq 1$, we have

$$
(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)
$$

Then

$$
\begin{aligned}
\frac{d^{p}\left(x_{2 k}, x_{2 k+2}\right)}{2^{p}} & \leq \frac{\left(d\left(x_{2 k}, x_{2 k+1}\right)+d\left(x_{2 k+1}, x_{2 k+2}\right)\right)^{p}}{2^{p}} \\
& \leq \frac{d^{p}\left(x_{2 k}, x_{2 k+1}\right)+d^{p}\left(x_{2 k+1}, x_{2 k+2}\right)}{2}
\end{aligned}
$$

We deduce that

$$
M_{p}\left(T_{i} x_{2 k}, T_{j} x_{2 k+1}\right)=\max \left\{d^{p}\left(x_{2 k}, x_{2 k+1}\right), d^{p}\left(x_{2 k+1}, x_{2 k+2}\right)\right\}
$$

If $M_{p}\left(T_{i} x_{2 k}, T_{j} x_{2 k+1}\right)=d^{p}\left(x_{2 k+1}, x_{2 k+2}\right)$, then

$$
\begin{aligned}
\psi\left(\theta\left(d^{p}\left(x_{2 k+1}, x_{2 k+2}\right)\right)\right) & \leq \psi\left(\left[\theta\left(d^{p}\left(x_{2 k+1}, x_{2 k+2}\right)\right)\right]^{k\left(d\left(x_{2 k}, x_{2 k+1}\right)\right)}\right) \\
& <\psi\left(\theta\left(d^{p}\left(x_{2 k+1}, x_{2 k+2}\right)\right)\right)
\end{aligned}
$$

which is a contradiction. Therefore $M_{p}\left(T_{i} x_{2 k}, T_{j} x_{2 k+1}\right)=d^{p}\left(x_{2 k}, x_{2 k+1}\right)$.

- Case 2: n is even. In an analogous manner, we can show that

$$
M_{p}\left(T_{j} x_{2 k+2}, T_{i} x_{2 k+1}\right)=d^{p}\left(x_{2 k+1}, x_{2 k+2}\right)
$$

Hence for all $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\psi\left(\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)\right) \leq \psi\left(\left[\theta\left(d^{p}\left(x_{n-1}, x_{n}\right)\right)\right]^{k\left(d\left(x_{n-1}, x_{n}\right)\right)}\right) \tag{2}
\end{equation*}
$$

Since $0<k\left(d\left(x_{n-1}, x_{n}\right)\right)<1$ for all $n \in \mathbb{N}$, then

$$
\psi\left(\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)\right)<\psi\left(\theta\left(d^{p}\left(x_{n-1}, x_{n}\right)\right)\right)
$$

that is $\left(d\left(x_{n}, x_{n+1}\right)\right)_{n}$ is a decreasing sequence of positive numbers. Hence the sequence $\left(d\left(x_{n}, x_{n+1}\right)\right)_{n}$ is convergent.
(b) $\left(x_{n}\right)_{n}$ is a Cauchy sequence in (X, d). Since $\limsup _{s \rightarrow t^{+}} k(s)<1$ and the sequence $\left(d\left(x_{n}, x_{n+1}\right)\right)$ is convergent, then there exists $a \in(0,1)$ and $n_{0} \in \mathbb{N}$ such that $k\left(d\left(x_{n}, x_{n+1}\right)\right)<a$, for all $n \geq n_{0}$. From the inequality in (2), we obtain that for $n \geq n_{0}$

$$
\begin{equation*}
1<\psi\left(\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)\right) \leq \psi\left(\left[\theta\left(d^{p}\left(x_{n-1}, x_{n}\right)\right)\right]^{a}\right) \leq \ldots \leq \psi\left(\left[\theta\left(d^{p}\left(x_{n_{0}}, x_{n_{0}+1}\right)\right)\right]^{a^{n-n_{0}}}\right) \tag{3}
\end{equation*}
$$

Taking the limit as $n \rightarrow \infty$, we get $\psi\left(\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)\right) \rightarrow 1$. By definition of θ and ψ, $d^{p}\left(x_{n}, x_{n+1}\right) \rightarrow 0$, as $n \rightarrow \infty$. By $\left(\Theta_{3}\right)$, there exist $r \in(0,1)$ and $l \in(0,+\infty]$ such that

$$
\lim _{n \rightarrow \infty} \frac{\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)-1}{\left[d^{p}\left(x_{n}, x_{n+1}\right)\right]^{r}}=l .
$$

- If $l<\infty$, let $B=\frac{l}{2}$. By the definition of the limit, there exists $n_{0} \in \mathbb{N}$ such that

$$
\left|\frac{\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)-1}{\left[d^{p}\left(x_{n}, x_{n+1}\right)\right]^{r}}-l\right| \leq B .
$$

This implies that, for all $n \geq n_{0}$

$$
\frac{\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)-1}{\left[d^{p}\left(x_{n}, x_{n+1}\right)\right]^{r}} \geq B .
$$

Then, for all $n \geq n_{0}$

$$
n\left[d^{p}\left(x_{n}, x_{n+1}\right)\right]^{r} \leq A n\left[\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)-1\right],
$$

where $A=\frac{1}{B}$.

- If $l=\infty$. Let $B>0$ be an arbitrary positive number. From the definition of the limit, there exists $n_{0} \in \mathbb{N}$ such that, for all $n \geq n_{0}$

$$
\frac{\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)-1}{\left[d^{p}\left(x_{n}, x_{n+1}\right)\right]^{r}} \geq B .
$$

Then, for all $n \geq n_{0}$

$$
n\left[d^{p}\left(x_{n}, x_{n+1}\right)\right]^{r} \leq \operatorname{An}\left[\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)-1\right],
$$

where $A=\frac{1}{B}$.
Therefore, in all cases, there exist $A>0$ and $n_{0} \in \mathbb{N}$ such that

$$
n\left[d^{p}\left(x_{n}, x_{n+1}\right)\right]^{r} \leq \operatorname{An}\left[\theta\left(d^{p}\left(x_{n}, x_{n+1}\right)\right)-1\right] .
$$

By (3) and since ψ is non-decreasing, we obtain

$$
n\left[d^{p}\left(x_{n}, x_{n+1}\right)\right]^{r} \leq A n\left[\left[\theta\left(d^{p}\left(x_{n_{0}}, x_{n_{0}+1}\right)\right)\right]^{n-n_{0}}-1\right],
$$

for all $n \geq n_{0}$. Taking the limit as $n \rightarrow \infty$, we get

$$
\lim _{n \rightarrow+\infty} n\left[d^{p}\left(x_{n}, x_{n+1}\right)\right]^{r}=0 .
$$

From the definition of the limit, there exists $n_{1} \in \mathbb{N}$ such that, for all $n \geq n_{1}$

$$
n\left[d^{p}\left(x_{n}, x_{n+1}\right)\right]^{r} \leq 1 .
$$

Therefore, for all $n \geq n_{1}$

$$
d\left(x_{n}, x_{n+1}\right) \leq \frac{1}{n^{\frac{1}{p r}}} .
$$

Hence for each $m, n \in \mathbb{N}$ with $m>n \geq n_{1}$, we have

$$
d\left(x_{n}, x_{m}\right) \leq \sum_{i=n}^{m-1} d\left(x_{i}, x_{i+1}\right) \leq \sum_{i=n}^{m-1} \frac{1}{i^{\frac{1}{p r}}}
$$

As $n, m \rightarrow \infty$, we get $d\left(x_{n}, x_{m}\right) \rightarrow 0$ (since $\frac{1}{p r}>1$), showing that $\left(x_{n}\right)_{n}$ is a Cauchy sequence in (X, d). Since (X, d) is complete, there exists $x \in X$ such that $\lim _{n \rightarrow+\infty} x_{n}=x$.
(c) x is a common fixed point of T_{1} and T_{2}. By the property (A), $\left(x_{n}, x\right) \in$ $E(G)$, for each $n \in \mathbb{N}$. Again two cases are discussed separately.

- Case 1: $n=2 k$ is even. Suppose that $d\left(x, T_{j}(x)\right)>0$. Since T_{i} and T_{j} are common (ψ, θ, G)-contraction, then there exists $y_{k} \in T_{j}(x)$ such that for all $k \in \mathbb{N}$

$$
\begin{aligned}
\psi\left(\theta\left(d^{p}\left(x_{2 k+1}, y_{k}\right)\right)\right) & \leq \psi\left(\left[\theta\left(M_{p}\left(T_{i} x_{2 k}, T_{j} x\right)\right)\right]^{k\left(d\left(x_{2 k}, x\right)\right)}\right)+L N_{p}\left(T_{i} x_{2 k}, T_{j} x\right) \\
& \leq \psi\left(\left[\theta\left(M_{p}\left(T_{i} x_{2 k}, T_{j} x\right)\right)\right]^{k\left(d\left(x_{2 k}, x\right)\right)}\right)+L d^{p}\left(x, T_{i}\left(x_{2 k}\right)\right. \\
& \leq \psi\left(\left[\theta\left(M_{p}\left(T_{i} x_{2 k}, T_{j} x\right)\right)\right]^{k\left(d\left(x_{2 k}, x\right)\right)}\right)+L d^{p}\left(x, x_{2 k+1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
M_{p}\left(T_{i} x_{2 k}, T_{j} x\right)= & \max \left\{d^{p}\left(x_{2 k}, x\right), d^{p}\left(x_{2 k}, T_{i}\left(x_{2 k}\right)\right), d^{p}\left(x, T_{j}(x)\right)\right. \\
& \frac{d^{p}\left(x, T_{i}\left(x_{2 k}\right)\right)+d^{p}\left(x_{2 k}, T_{j}(x)\right)}{2^{p}}, \frac{d^{p}\left(x_{2 k}, T_{i}\left(x_{2 k}\right)\right) d^{p}\left(x, T_{j}(x)\right)}{1+d^{p}\left(x_{2 k}, x\right)}, \\
& \left.\frac{d^{p}\left(x, T_{i}\left(x_{2 k}\right)\right) d^{p}\left(x_{2 k}, T_{j}(x)\right)}{1+d^{p}\left(x_{2 k}, x\right)}\right\} \\
\leq & \max \left\{d^{p}\left(x_{2 k}, x\right), d^{p}\left(x_{2 k}, x_{2 k+1}\right), d^{p}\left(x, T_{j}(x)\right)\right. \\
& \frac{d^{p}\left(x, x_{2 k+1}\right)+d^{p}\left(x_{2 k}, T_{j}(x)\right)}{2^{p}}, \frac{d^{p}\left(x_{2 k}, x_{2 k+1}\right) d^{p}\left(x, T_{j}(x)\right)}{1+d^{p}\left(x_{2 k}, x\right)} \\
& \left.\frac{d^{p}\left(x, x_{2 k+1}\right) d^{p}\left(x_{2 k}, T_{j}(x)\right)}{1+d^{p}\left(x_{2 k}, x\right)}\right\} .
\end{aligned}
$$

Then we can choose $k_{0} \in \mathbb{N}$ such that $M_{p}\left(T_{i} x_{2 k}, T_{j} x\right)=d^{p}\left(x, T_{j}(x)\right)$ for each $k \geq k_{0}$. Since $y_{k} \in T_{j}(x)$, we have for each $k \geq k_{0}$

$$
\psi\left(\theta\left(d^{p}\left(x_{2 k+1}, y_{k}\right)\right)\right) \leq \psi\left(\left[\theta\left(d^{p}\left(x, T_{j}(x)\right)\right)\right]^{k\left(d\left(x_{2 k}, x\right)\right)}\right)+L d^{p}\left(x, x_{2 k+1}\right)
$$

Taking into account the property of the function k, there exist $a \in(0,1)$ and $k_{1} \in \mathbb{N}$ such that for all $k \geq \max \left\{k_{0}, k_{0}\right\}$

$$
\psi\left(\theta\left(d^{p}\left(x_{2 k+1}, T_{j}(x)\right)\right)\right) \leq \psi\left(\theta\left(d^{p}\left(x_{2 k+1}, y_{k}\right)\right)\right)
$$

$$
\leq \psi\left(\left[\theta\left(d^{p}\left(x, T_{j}(x)\right)\right)\right]^{a}\right)+L d^{p}\left(x, x_{2 k+1}\right)
$$

Taking the lower limit as $k \rightarrow \infty$, we deduce that

$$
\lim \sup _{k \rightarrow \infty} \inf _{k} \psi\left(\theta\left(d^{p}\left(x_{2 k+1}, T_{j}(x)\right)\right)\right) \leq \psi\left(\left[\theta\left(d^{p}\left(x, T_{j}(x)\right)\right)\right]^{a}\right)
$$

Since $\psi \circ \theta$ is lower semi-continuity and $a \in(0,1)$, we see that

$$
\begin{aligned}
\psi\left(\theta\left(d^{p}\left(x, T_{j}(x)\right)\right)\right) & \leq \lim \sup _{\inf _{k \rightarrow \infty}} \psi\left(\theta\left(d^{p}\left(x_{2 k+1}, T_{j}(x)\right)\right)\right) \\
& \leq \psi\left(\left[\theta\left(d^{p}\left(x, T_{j}(x)\right)\right)\right]^{a}\right) \\
& <\psi\left(\theta\left(d^{p}\left(x, T_{j}(x)\right)\right)\right)
\end{aligned}
$$

which is a contradiction. Thus we have $d^{p}\left(x, T_{j}(x)\right)=0$ which implies that $x \in T_{j}(x)$.

- Case 2: $n=2 k+1$ is odd. Arguing as in Case 1, we obtain $x \in T_{i}(x)$. Since $\left(x_{n}, x_{n+1}\right) \in E(G)$ and $\left(x_{n}, x\right) \in E(G)$, for $n \in \mathbb{N}$, we conclude that

$$
\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}, x\right)
$$

is a path in \widetilde{G} and so $x \in\left[x_{0}\right]_{\widetilde{G}}$.
Claim 2. Since $X_{T_{i}} \neq \emptyset$, then there exists some $x_{0} \in X_{T_{i}}$. In addition, since G is weakly connected, then $\left[x_{0}\right]_{\widetilde{G}}=X$ and by Claim $1, T_{1}$ and T_{2} have a common fixed point in X.

Claim 3. The result follows from Claim 1 and Claim 2.
Claim 4. $\operatorname{Graph}\left(T_{i}\right) \subseteq E(G)$ implies that all $x \in X$ are such that there exists some $u \in T_{i}(x)$ with $(x, u) \in E(G)$, so $X_{T_{i}}=X$ which imply that T_{1} and T_{2} have a common fixed point.

3 Example

Let $X=\left\{\frac{1}{2^{n}}, n \in \mathbb{N}\right\} \cup\{0,1\}$ and $d(x, y)=|x-y|$ for all $x, y \in X$. Let $E(G)=$ $\left\{\left(\frac{1}{2^{n}}, 0\right),\left(\frac{1}{2^{n}}, \frac{1}{2^{n+1}}\right), n \in \mathbb{N}\right\} \cup\{(1,0)\}, \theta(t)=e^{\left(t e^{t}\right)^{\frac{1}{4}}}, L=0, \psi(t)=\ln (t)+1,1 \leq p<4$, and

$$
k(t)= \begin{cases}\left(e^{\frac{1}{2^{n p+p}}-\frac{1}{2^{n p}}}\right)^{\frac{1}{4}}, & \text { if } t=\frac{1}{2^{n}}, n \in\{0,1,2, \ldots\} \\ 0, & \text { if otherwise }\end{cases}
$$

Let T_{1} and $T_{2}: X \rightarrow C(X)$ be two mappings defined by

$$
\begin{aligned}
& T_{1}(x)= \begin{cases}\{0\}, & \text { if } \quad x=0, \\
\left\{\frac{1}{2}\right\}, & \text { if } \quad x=1, \\
\left\{\frac{1}{2^{n+3}}, \frac{1}{2^{n+4}}, \ldots\right\}, & \text { if } \quad x=\frac{1}{2^{n}}, n \in \mathbb{N},\end{cases} \\
& T_{2}(x)= \begin{cases}\{0\}, & \text { if } x=0, \\
\left\{\frac{1}{2^{3}}\right\}, & \text { if } \quad x=1, \\
\left\{\frac{1}{2^{n+3}}, \frac{1}{2^{n+4}}, \ldots\right\}, & \text { if } \quad x=\frac{1}{2^{n}}, n \in \mathbb{N} .\end{cases}
\end{aligned}
$$

Then T_{1} and T_{2} are a common $(\psi, \theta-G)$ contraction and $0 \in T_{1}(0) \cap T_{2}(0)$. To check the contraction type condition, we have to show that

$$
\frac{d^{p}(x, y)}{M_{p}\left(T_{i} x, T_{j} y\right)} e^{d^{p}(x, y)-M_{p}\left(T_{i} x, T_{j} y\right)} \leq k^{4}(d(x, y))
$$

For this, let $x, y \in X$ be such that $(x, y) \in E(G)$ and consider three cases:

- Case 1. If $(x, y)=\left(\frac{1}{2^{n}}, 0\right)$, then
(i) $T_{1}\left(\frac{1}{2^{n}}\right)=\left\{\frac{1}{2^{n+3}}, \frac{1}{2^{n+4}}, \ldots\right\}$ and $T_{2}(0)=\{0\}$. For $a=\frac{1}{2^{n+s}}$ where $s \in\{3,4, \ldots\}$, let $b=0$ and

$$
\begin{aligned}
\frac{d^{p}(x, y)}{M_{p}\left(T_{1} x, T_{2} y\right)} e^{d^{p}(x, y)-M_{p}\left(T_{1} x, T_{2} y\right)} & =\frac{2^{n p}}{2^{n p+s p}} e^{\frac{1}{2^{n p+s p}}-\frac{1}{2^{n p}}} \\
& <e^{\frac{1}{2^{n p+s p}}-\frac{1}{2^{n} p}} \\
& \leq e^{\frac{1}{2^{n p+p}}-\frac{1}{2^{n p}}} \\
& =k^{4}(d(x, y))
\end{aligned}
$$

(ii) $T_{2}\left(\frac{1}{2^{n}}\right)=\left\{\frac{1}{2^{n+3}}, \frac{1}{2^{n+4}}, \ldots\right\}$ and $T_{1}(0)=\{0\}$. For $a=\frac{1}{2^{n+s}}$ where $s \in\{3,4, \ldots\}$, let $b=0$ and

$$
\begin{aligned}
\frac{d^{p}(x, y)}{M_{p}\left(T_{2} x, T_{1} y\right)} e^{d^{p}(x, y)-M_{p}\left(T_{2} x, T_{1} y\right)} & =\frac{2^{n p}}{2^{n p+s p}} e^{\frac{1}{2^{n p+s p}}-\frac{1}{2^{n p}}} \\
& <e^{\frac{1}{2^{n p+s p}}-\frac{1}{2^{n} p}} \\
& \leq e^{\frac{1}{2^{n p+p}}-\frac{1}{2^{n} p}} \\
& =k^{4}(d(x, y))
\end{aligned}
$$

- Case 2. If $(x, y)=\left(\frac{1}{2^{n}}, \frac{1}{2^{n+1}}\right)$, then
(i) $T_{1}\left(\frac{1}{2^{n}}\right)=\left\{\frac{1}{2^{n+3}}, \frac{1}{2^{n+4}}, \ldots\right\}$ and $T_{2}\left(\frac{1}{2^{n+1}}\right)=\left\{\frac{1}{2^{n+4}}, \frac{1}{2^{n+5}}, \ldots\right\}$. For $a=\frac{1}{2^{n+s}}$ where $s \in\{3,4, \ldots\}$, let $b=\frac{1}{2^{n+s+1}}$ where $s \in\{3,4, \ldots\}$ and

$$
\begin{aligned}
\frac{d^{p}(x, y)}{M_{p}\left(T_{1} x, T_{2} y\right)} e^{d^{p}(x, y)-M_{p}\left(T_{1} x, T_{2} y\right)} & =\frac{2^{n p+p}}{2^{n p+s p+p}} e^{\frac{1}{2^{n p+s p+p}}-\frac{1}{2^{n p+p}}} \\
& <e^{\frac{1}{2^{n p+s p+p}}-\frac{1}{2^{n p+p}}} \\
& \leq e^{\frac{1}{2^{p(n+2)}}-\frac{1}{2^{p(n+1)}}} \\
& =k^{4}(d(x, y))
\end{aligned}
$$

(ii) $T_{2}\left(\frac{1}{2^{n}}\right)=\left\{\frac{1}{2^{n+3}}, \frac{1}{2^{n+4} 1}, \ldots\right\}$ and $T_{1}\left(\frac{1}{2^{n+1}}\right)=\left\{\frac{1}{2^{n+4}}, \frac{1}{2^{n+5}}, \ldots\right\}$. For $a=\frac{1}{2^{n+s}}$ where $s \in\{3,4, \ldots\}$, let $b=\frac{1}{2^{n+s+1}}$ where $s \in\{3,4, \ldots\}$ and

$$
\begin{aligned}
\frac{d^{p}(x, y)}{M_{p}\left(T_{2} x, T_{1} y\right)} e^{d^{p}(x, y)-M_{p}\left(T_{2} x, T_{1} y\right)} & =\frac{2^{n p+p}}{2^{n p+s p+p}} e^{\frac{1}{2^{n p+s p+p}}-\frac{1}{2^{n p+p}}} \\
& \leq e^{\frac{1}{2^{p(n+2)}}-\frac{1}{2^{p(n+1)}}} \\
& =k^{4}(d(x, y))
\end{aligned}
$$

- Case 3. If $(x, y)=(1,0)$, then
(i) $T_{1}(1)=\left\{\frac{1}{2}\right\}$ and $T_{2}(0)=\{0\}$. For $a=\frac{1}{2}$, let $b=0$ and

$$
\begin{aligned}
\frac{d^{p}(x, y)}{M_{p}\left(T_{1} x, T_{2} y\right)} e^{d^{p}(x, y)-M_{p}\left(T_{1} x, T_{2} y\right)} & =\frac{1}{2^{p}} e^{\frac{1}{2^{p}}-1} \\
& <e^{\frac{1}{2^{p}}-1} \\
& =k^{4}(d(x, y)) .
\end{aligned}
$$

(ii) $T_{2}(1)=\left\{\frac{1}{2^{3}}\right\}$ and $T_{1}(0)=\{0\}$. For $a=\frac{1}{2^{3}}$, let $b=0$ and

$$
\begin{aligned}
\frac{d^{p}(x, y)}{M_{p}\left(T_{1} x, T_{2} y\right)} e^{d^{p}(x, y)-M_{p}\left(T_{1} x, T_{2} y\right)} & =\frac{1}{2^{3 p}} e^{\frac{1}{2^{p p}}-1} \\
& <e^{\frac{1}{2^{p}-1}} \\
& =k^{4}(d(x, y)) .
\end{aligned}
$$

4 Consequences

If we let $p=1$ in Theorem 1 , we obtain
COROLLARY 1. Let (X, d) be a complete metric space endowed with a directed graph G and suppose that the triple (X, d, G) has the property (A). Suppose that the mappings $T_{1}, T_{2}: X \rightarrow C(X)$ satisfy the following conditions:
(i) For all $x, y \in X$ such that $(x, y) \in E(G)$ and $a \in T_{i}(x)$, there exists $b \in T_{j}(y)$ for $i, j \in\{1,2\}$ with $i \neq j$ such that $(a, b) \in E(G)$ and

$$
\psi(\theta(d(a, b))) \leq \psi\left(\left[\theta\left(\left(M\left(T_{i} x, T_{j} y\right)\right)\right]^{k(d(x, y))}\right)+L N\left(T_{i} x, T_{j} y\right),\right.
$$

where

$$
\begin{gathered}
N\left(T_{i} x, T_{j} y\right)=\min \left\{d\left(x, T_{i}(x)\right), d\left(y, T_{j}(y)\right), d\left(y, T_{i}(x)\right), d\left(x, T_{j}(y)\right)\right\}, \\
M\left(T_{i} x, T_{j} y\right)=\max \left\{d(x, y), d\left(x, T_{i}(x)\right), d\left(y, T_{j}(y)\right), \frac{d\left(y, T_{i}(x)\right)+d\left(x, T_{j}(y)\right)}{2},\right. \\
\left.\frac{d\left(x, T_{i}(x)\right) d\left(y, T_{j}(y)\right)}{1+d(x, y)}, \frac{d\left(y, T_{i}(x)\right) d\left(x, T_{j}(y)\right)}{1+d(x, y)}\right\} .
\end{gathered}
$$

$k:(0,+\infty) \rightarrow[0,1)$ satisfies $\limsup _{s \rightarrow t^{+}} k(s)<1$, for all $t \in[0,+\infty), L \geq 0, \theta \in \Theta$, $\psi \in \Psi$ and $\psi \circ \theta$ is lower semi-continuity.
(ii) There is $x_{0} \in X$ such that $\left(x_{0}, y\right) \in E(G)$ for some $y \in T_{i}\left(x_{0}\right), i=1$ or $i=2$.

If G is weakly connected, then T_{1} and T_{2} have a common fixed point.
If $\theta(t)=e^{\sqrt{t}}, \psi(t)=(\ln (t))^{2}+1$ and $k(t)=\sqrt{\alpha(t)}$ in Corollary 1, then we obtain

COROLLARY 2. Let (X, d) be a complete metric space endowed with a directed graph G and suppose that the triple (X, d, G) has the property (A). Suppose that the mappings $T_{1}, T_{2}: X \rightarrow C(X)$ satisfy the following conditions:
(i) For all $x, y \in X$ such that $(x, y) \in E(G)$ and $a \in T_{i}(x)$, there exists $b \in T_{j}(y)$ for $i, j \in\{1,2\}$ with $i \neq j$ such that $(a, b) \in E(G)$ and

$$
d(a, b) \leq \alpha(d(x, y)) M\left(T_{i} x, T_{j} y\right)+L N\left(T_{i} x, T_{j} y\right)
$$

where $\alpha:(0,+\infty) \rightarrow[0,1)$ satisfies $\lim \sup \alpha(s)<1$, for all $t \in[0,+\infty)$.
(ii) There is $x_{0} \in X$ such that $\left(x_{0}, y\right) \in E(G)$ for some $y \in T_{i}\left(x_{0}\right), i=1$ or $i=2$.

If G is weakly connected, then T_{1} and T_{2} have a common fixed point.
The following result is also an immediate consequence of Corollary 2.
COROLLARY 3. Let (X, d) be a complete metric space. Assume that the mappings $T_{1}, T_{2}: X \rightarrow C B(X)$ satisfy

$$
H\left(T_{1}(x), T_{2}(y)\right) \leq \alpha(d(x, y)) M\left(T_{1} x, T_{2} y\right)+L N\left(T_{1} x, T_{2} y\right)
$$

for all $x, y \in X$ such that $x \neq y$, where $\alpha:(0,+\infty) \rightarrow[0,1)$ satisfies $\lim \sup \alpha(s)<1$, for all $t \in[0,+\infty)$. Then T_{1} and T_{2} have a common fixed point.

5 Remark

(1) Taking $T_{1}=T_{2}$ in Theorem 1, we obtain fixed point results for (ψ, θ, G)-contraction maps.
(2) If in Corollary 1, we let $T_{1}=T_{2}, \psi(t)=t$, and $E(G)=X \times X-\Delta$, then G is connected and Corollary 1 improves Theorem 4 by Durmaz [5] and Theorem 2.1 by Jleli et al. [9].
(3) Corollary 3 extends Theorem 3.1 by Rouhani et al. [14].

Acknowledgment. We would like to thank the anonymous referee for his/her careful reading of the original manuscript.

References

[1] M. R. Alfuraidan, M. Bachar and M. A. Khamsi, A graphical version of Reich's fixed point theorem, J. Nonlinear Sci. Appl., 9(2016), 3931-3938.
[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3(1922), 133-181.
[3] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., 75(2012), 3895-3901.
[4] M. H. Dehkordi and M. Ghods, Common fixed point theorem of multivalued graph contractions in metric spaces, Int. J. Nonlinear Anal. Appl., 7(2016), 225-230.
[5] G. Durmaz, Some theorems for a new type of multivalued contractive maps on metric space, Turkish J. Math., 41(2017), 1092-1100.
[6] H. A. Hançer, G. Minak and I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory, 18(2017), 229-236.
[7] N. Hussain, V. Parvaneh, B. Samet and C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2015, 2015:185, 17 pp.
[8] J. Jachymski, The contraction principle for mappings on a metric with a graph, Proc. Am. Math. Soc., 136(2008), 1359-1373.
[9] M. Jleli, E. Karapinar and B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl., 2014, 2014:439, 9 pp.
[10] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014, 2014:38, 8 pp.
[11] G. Minak and I. Altun, Overall approach to Mizoguchi-Takahashi type fixed point results, Turk. J. Math., 40(2016), 895-904.
[12] S. B. Nadler, Multi-valued contration mappings, Pacific J. Math., 30(1969), 475488.
[13] A. Nicolae, D. O'Regan and A. Petrusel, Fixed point theorems for single-valued and multivalued generalized contractions in metric spaces endowed with a graph, Georgian Math. J., 18(2011), 307-327.
[14] B. D. Rouhani and S. Moradi, Common fixed point of multivalued generalized φ-weak contractive mappings, Fixed Point Theory Appl., 2010, Art. ID 708984, 13 pp .
[15] M. Samreen and T. Kamran, Fixed point theorems for integral G-contractions, Fixed Point Theory Appl., 2013, 2013:149, 11 pp.
[16] J. Tiammee and S. Suantai, Coincidence point theorems for graph-preserving multi-valued mappings, Fixed Point Theory Appl., 2014, 2014:70, 11 pp.
[17] D. W. Zheng, Z. Y. Cai and P. Wang, New fixed point theorems for $\theta-\phi$ contraction in complete metric spaces, J. Nonlinear Sci. Appl., 10(2017), 2662-2670.

[^0]: *Mathematics Subject Classifications: 47H10, 54E50, 54H25.
 ${ }^{\dagger}$ Laboratoire "Théorie du Point Fixe et Applications", ENS, BP 92 Kouba. Algiers, 16006. Algeria
 \ddagger Department of Mathematics \& Statistics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU). PB 90950. Riyadh 11623, Saudi Arabia

