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Abstract

In this work, we introduce the notion of a common (ψ, θ,G)-contraction multi-
valued mapping in order to establish some new common fixed point theorems
for these classes of mappings in complete metric spaces endowed with a graph.
An example of application illustrates the main existence theorem. Our results
generalize some recent known results.

1 Introduction and Preliminaries

Since the proof of Banach’s fixed contraction principle [2] in 1922, many research works
have considered different kinds of generalizations. Among them, the classical multi-
valued version was established by Covitz and Nadler [12] in 1969 using the Hausdorff-
Pompeiu metric in a complete metric space.

In 2008, Jachymski [8] provided a new approach in metric fixed point theory by re-
placing the order structure with a graph structure on a metric space. He introduced the
concept of G-contraction, where the contraction condition is only verified on the edge
of the graph. Subsequently, many authors have extended the Banach G-contraction in
different ways (we refer to [1], [3], [13], [15], [16], and references therein).
Recently, Jleli and Samet [10] introduced another definition called θ-contraction

and proved a fixed point result as a generalization of the Banach contraction principle.
Their result has then been extended by many authors (see, e.g., [6], [7], [9], [11], [17]).
Given a metric space (X, d), a mapping T : X −→ X is a θ-contraction if there exist
θ ∈ Θ and k ∈ (0, 1) such that:

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]
k
,

for all x, y ∈ X with d(Tx, Ty) > 0. Here Θ refers to the set of all functions θ :
(0,∞)→ (1,∞) satisfying the following conditions:
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(Θ1) θ is non-decreasing,

(Θ2) for each sequence (tn)n ⊂ (0,∞), lim
n→∞

θ(tn) = 1 if and only if lim
n→∞

tn = 0+

(Θ3) there exist r ∈ (0, 1) and l ∈ (0,∞] such that lim
t→0+

θ(t)−1
tr = l.

The aim of this paper is to prove some common fixed point results for a new class
of multi-valued mappings called (ψ, θ,G)-contractions in a metric space endowed with
a graph G.
Let us collect some basic notions and primary results we need to develop our ex-

istence results. Let (X, d) be a metric space. We denote by CB(X) the family of
nonempty closed bounded subsets of X and by C(X) the family of nonempty closed
subsets of X. For A,B ∈ C(X), let

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)},

where d(x,B) = inf{d(x, y) : y ∈ B}. H is called the Hausdorff-Pompeiu distance on
C(X). This is a metric on CB(X).
A graph G is an ordered pair (V,E), where V is a set and E ⊂ V × V is a binary

relation on V . Elements of E are called edges and are denoted by E(G) while elements
of V , denoted V (G), are called vertices. If a direction is imposed in E, that is the edges
are directed, then we get a digraph (directed graph). Hereafter, we assume that G has
no parallel edges, i.e., two vertices cannot be connected by more than one edge. Thus,
G can be identified with the pair (V (G), E(G)). If x and y are vertices of G, then a
path in G from x to y of length k ∈ N is a finite sequence (xn)n, n ∈ {0, 1, 2, . . . , k}
of vertices such that x = x0, . . . , xk = y and (xn−1, xn) ∈ E(G) for n ∈ {1, 2, . . . , k}.
A graph G is connected if there is a path between any two vertices and it is weakly
connected if G̃ is connected, where G̃ denotes the undirected graph obtained from G
by ignoring the direction of edges. Let G−1 be the graph obtained from G by reversing
the direction of edges (the conversion of the graph G). We have

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

It is more convenient to treat G̃ as a directed graph for which the set of edges is
symmetric. Then

E(G̃) = E(G) ∪ E(G−1).

Let Gx be the component of G consisting of all edges and vertices which are contained
in some path in G beginning at x. If G is such that E(G) is symmetric, then for
x ∈ V (G), we may define the equivalence class [x]G on V (G) by the relation xRy if
there is a path in G from x to y. Then V (Gx) = [x]G.
Throughout this paper, (X, d) denotes a metric space, G = (V (G), E(G)) is a

directed graph without parallel edges with V (G) = X and (x, x) /∈ E(G) (the graph
does not contain loops). The following condition first appeared in [8]:

PROPERTY (A). For any sequence (xn)n in X, if xn → x and (xn, xn+1) ∈ E(G),
for all n ∈ N, then (xn, x) ∈ E(G) for n ∈ N.
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With this condition, Jachymski showed that in a complete metric space, a G-
contraction mapping f has a fixed point if and only if

Xf = {x ∈ X : (x, f(x)) ∈ E(G)} 6= ∅, (1)

that is the graph of f intersects the edge of the space graph.
Further to the set Φ, we consider the following classes of functions:

DEFINITION 1. We denote by Ψ the set of functions ψ : (1,∞)→ (1,∞) satisfying
the following conditions:

(i) ψ is non-decreasing;

(ii) For each sequence (tn)n ⊂ (1,∞), lim
n→∞

ψ(tn) = 1 if and only if lim
n→∞

tn = 1.

Now we give the following definition, extending the definitions of G-contraction [8],
θ-contraction [10], and (G− ψ)-contraction [4].

DEFINITION 2. Let (X, d) be a metric space endowed with a graph G. Two
mappings T1, T2 : X → C(X) are said to be a common (ψ, θ,G)-contraction if for all
x, y ∈ X such that (x, y) ∈ E(G) and a ∈ Ti(x), there exists b ∈ Tj(y) for i, j ∈ {1, 2}
with i 6= j such that (a, b) ∈ E(G) and

ψ(θ(dp(a, b))) ≤ ψ([θ((Mp(Tix, Tjy))]k(d(x,y))) + LNp(Tix, Tjy),

where

Np(Tix, Tjy) = min{dp(x, Ti(x)), dp(y, Tj(y)), dp(y, Ti(x)), dp(x, Tj(y))},

Mp(Tix, Tjy) = max
{
dp(x, y), dp(x, Ti(x)), dp(y, Tj(y)),

dp(y, Ti(x)) + dp(x, Tj(y))

2p
,

dp(x, Ti(x))dp(y, Tj(y))

1 + dp(x, y)
,
dp(y, Ti(x))dp(x, Tj(y))

1 + dp(x, y)

}
,

k : (0,+∞)→ [0, 1) satisfies lim sup
s→t+

k(s) < 1, for all t ∈ [0,+∞), L ≥ 0, θ ∈ Θ, ψ ∈ Ψ,

ψ ◦ θ is lower semi continuity, and 1 ≤ p < 1
r .

2 Main Result

Our existence results for common fixed points are collected in the following:

THEOREM 1. Let (X, d) be a complete metric space endowed with a directed graph
G and suppose that the triple (X, d,G) has the property (A). Let T1, T2 : X → C(X)
be a common (ψ, θ,G)-contraction. Then the following statements hold:
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(i) For every x ∈ XTi , i = 1 or i = 2, the mappings T1, T2 |[x]G̃ have a common fixed
point, where XTi is as defined in (1).

(ii) If XTi 6= ∅, i = 1 or i = 2, and G is weakly connected, then T1 and T2 have a
common fixed point in X.

(iii) If X ′ = ∪{[x]G̃ : x ∈ XTi}, i = 1 or i = 2, then T1, T2 |X′ have a common fixed
point.

(iv) If Graph(Ti) ⊆ E(G), i = 1 or i = 2, then T1 and T2 have a common fixed point.

PROOF.
Claim 1. (a) Construction of a Cauchy sequence (xn)n. Given x0 ∈ XTi

(i = 1 or 2), there is an x1 ∈ Ti(x0) such that (x0, x1) ∈ E(G). Since T1 and T2 are
a common (ψ, θ,G)-contraction, then there exists x2 ∈ Tj(x1) (j = 2 or 1) such that
(x1, x2) ∈ E(G) and

ψ(θ(dp(x1, x2))) ≤ ψ([θ(Mp(Tix0, Tjx1))]
k(d(x0,x1))) + LNp(Tix0, Tjx1))

≤ ψ([θ(Mp(Tix0, Tjx1))]
k(d(x0,x1))) + Ldp(x1, Ti(x0)))

= ψ([θ(Mp(Tix0, Tjx1))]
k(d(x0,x1))).

Since (x1, x2) ∈ E(G) and T1, T2 are common (ψ, θ,G)-contraction, there exists x3 ∈
Ti(x2) such that (x2, x3) ∈ E(G) and

ψ(θ(dp(x2, x3))) ≤ ψ([θ(Mp(Tjx1, Tix2))]
k(d(x1,x2))) + LNp(Tjx1, Tix2)

≤ ψ([θ(Mp(Tjx1, Tix2))]
k(d(x1,x2))) + Ldp(x2, Tj(x1)))

= ψ([θ(Mp(Tjx1, Tix2))]
k(d(x1,x2))).

By induction, we construct a sequence (xn)n such that x2n+1 ∈ Ti(x2n), x2n+2 ∈
Tj(x2n+1), (xn, xn+1) ∈ E(G), and

ψ(θ(dp(xn, xn+1))) ≤
{
ψ([θ(Mp(Tixn−1, Tjxn))]k(d(xn−1,xn))) for odd n,
ψ([θ(Mp(Tjxn−1, Tixn))]k(d(xn−1,xn))) for even n.

Let us distinguish between two cases:

•Case 1: n is odd.

Mp(Tix2k, Tjx2k+1)

= max
{
dp(x2k, x2k+1), d

p(x2k, Ti(x2k)), dp(x2k+1, Tj(x2k+1)),

dp(x2k+1, Ti(x2k)) + dp(x2k, Tj(x2k+1))

2p
,
dp(x2k, Ti(x2k))dp(x2k+1, Tj(x2k+1))

1 + dp(x2k, x2k+1)
,

dp(x2k+1, Ti(x2k))dp(x2k, Tj(x2k+1))

1 + dp(x2k, x2k+1)

}
≤ max

{
dp(x2k, x2k+1), d

p(x2k, x2k+1), d
p(x2k+1, x2k+2),
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dp(x2k+1, x2k+1) + dp(x2k, x2k+2)

2p
,
dp(x2k, x2k+1)d

p(x2k+1, x2k+2)

1 + dp(x2k, x2k+1)
,

dp(x2k+1, x2k+1)d
p(x2k, x2k+2)

1 + dp(x2k, x2k+1)

}
= max

{
dp(x2k, x2k+1), d

p(x2k+1, x2k+2),
dp(x2k, x2k+2)

2p

}
.

Since for all a, b ≥ 0 and p ≥ 1, we have

(a+ b)p ≤ 2p−1(ap + bp).

Then

dp(x2k, x2k+2)

2p
≤ (d(x2k, x2k+1) + d(x2k+1, x2k+2))

p

2p

≤ dp(x2k, x2k+1) + dp(x2k+1, x2k+2)

2
.

We deduce that

Mp(Tix2k, Tjx2k+1) = max
{
dp(x2k, x2k+1), d

p(x2k+1, x2k+2)
}
.

If Mp(Tix2k, Tjx2k+1) = dp(x2k+1, x2k+2), then

ψ(θ(dp(x2k+1, x2k+2))) ≤ ψ([θ(dp(x2k+1, x2k+2))]
k(d(x2k,x2k+1)))

< ψ(θ(dp(x2k+1, x2k+2))),

which is a contradiction. Therefore Mp(Tix2k, Tjx2k+1) = dp(x2k, x2k+1).

•Case 2: n is even. In an analogous manner, we can show that

Mp(Tjx2k+2, Tix2k+1) = dp(x2k+1, x2k+2).

Hence for all n ∈ N, we have

ψ(θ(dp(xn, xn+1))) ≤ ψ([θ(dp(xn−1, xn))]k(d(xn−1,xn))). (2)

Since 0 < k(d(xn−1, xn)) < 1 for all n ∈ N, then

ψ(θ(dp(xn, xn+1))) < ψ(θ(dp(xn−1, xn))),

that is (d(xn, xn+1))n is a decreasing sequence of positive numbers. Hence the sequence
(d(xn, xn+1))n is convergent.

(b) (xn)n is a Cauchy sequence in (X, d). Since lim sup
s→t+

k(s) < 1 and the

sequence (d(xn, xn+1)) is convergent, then there exists a ∈ (0, 1) and n0 ∈ N such that
k(d(xn, xn+1)) < a, for all n ≥ n0. From the inequality in (2), we obtain that for
n ≥ n0

1 < ψ(θ(dp(xn, xn+1))) ≤ ψ([θ(dp(xn−1, xn))]a) ≤ . . . ≤ ψ([θ(dp(xn0 , xn0+1))]
an−n0 ).

(3)
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Taking the limit as n→∞, we get ψ(θ(dp(xn, xn+1)))→ 1. By definition of θ and ψ,
dp(xn, xn+1)→ 0, as n→∞. By (Θ3), there exist r ∈ (0, 1) and l ∈ (0,+∞] such that

lim
n→∞

θ(dp(xn, xn+1))− 1

[dp(xn, xn+1)]r
= l.

• If l <∞, let B = l
2 . By the definition of the limit, there exists n0 ∈ N such that∣∣∣θ(dp(xn, xn+1))− 1

[dp(xn, xn+1)]r
− l
∣∣∣ ≤ B.

This implies that, for all n ≥ n0

θ(dp(xn, xn+1))− 1

[dp(xn, xn+1)]r
≥ B.

Then, for all n ≥ n0

n[dp(xn, xn+1)]
r ≤ An[θ(dp(xn, xn+1))− 1],

where A = 1
B .

• If l =∞. Let B > 0 be an arbitrary positive number. From the definition of the
limit, there exists n0 ∈ N such that, for all n ≥ n0

θ(dp(xn, xn+1))− 1

[dp(xn, xn+1)]r
≥ B.

Then, for all n ≥ n0

n[dp(xn, xn+1)]
r ≤ An[θ(dp(xn, xn+1))− 1],

where A = 1
B .

Therefore, in all cases, there exist A > 0 and n0 ∈ N such that

n[dp(xn, xn+1)]
r ≤ An[θ(dp(xn, xn+1))− 1].

By (3) and since ψ is non-decreasing, we obtain

n[dp(xn, xn+1)]
r ≤ An

[
[θ(dp(xn0 , xn0+1))]

an−n0 − 1
]
,

for all n ≥ n0. Taking the limit as n→∞, we get

lim
n→+∞

n[dp(xn, xn+1)]
r = 0.

From the definition of the limit, there exists n1 ∈ N such that, for all n ≥ n1

n[dp(xn, xn+1)]
r ≤ 1.
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Therefore, for all n ≥ n1
d(xn, xn+1) ≤

1

n
1
pr

.

Hence for each m,n ∈ N with m > n ≥ n1, we have

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) ≤
m−1∑
i=n

1

i
1
pr

.

As n,m → ∞, we get d(xn, xm) → 0 (since 1
pr > 1), showing that (xn)n is a Cauchy

sequence in (X, d). Since (X, d) is complete, there exists x ∈ X such that lim
n→+∞

xn = x.

(c) x is a common fixed point of T1 and T2. By the property (A), (xn, x) ∈
E(G), for each n ∈ N. Again two cases are discussed separately.

•Case 1: n = 2k is even. Suppose that d(x, Tj(x)) > 0. Since Ti and Tj are
common (ψ, θ,G)-contraction, then there exists yk ∈ Tj(x) such that for all k ∈ N

ψ(θ(dp(x2k+1, yk))) ≤ ψ([θ(Mp(Tix2k, Tjx))]k(d(x2k,x))) + LNp(Tix2k, Tjx)

≤ ψ([θ(Mp(Tix2k, Tjx))]k(d(x2k,x))) + Ldp(x, Ti(x2k)

≤ ψ([θ(Mp(Tix2k, Tjx))]k(d(x2k,x))) + Ldp(x, x2k+1),

where

Mp(Tix2k, Tjx) = max
{
dp(x2k, x), dp(x2k, Ti(x2k)), dp(x, Tj(x)),

dp(x, Ti(x2k)) + dp(x2k, Tj(x))

2p
,
dp(x2k, Ti(x2k))dp(x, Tj(x))

1 + dp(x2k, x)
,

dp(x, Ti(x2k))dp(x2k, Tj(x))

1 + dp(x2k, x)

}
≤ max

{
dp(x2k, x), dp(x2k, x2k+1), d

p(x, Tj(x)),

dp(x, x2k+1) + dp(x2k, Tj(x))

2p
,
dp(x2k, x2k+1)d

p(x, Tj(x))

1 + dp(x2k, x)
,

dp(x, x2k+1)d
p(x2k, Tj(x))

1 + dp(x2k, x)

}
.

Then we can choose k0 ∈ N such that Mp(Tix2k, Tjx) = dp(x, Tj(x)) for each k ≥ k0.
Since yk ∈ Tj(x), we have for each k ≥ k0

ψ(θ(dp(x2k+1, yk))) ≤ ψ([θ(dp(x, Tj(x)))]k(d(x2k,x))) + Ldp(x, x2k+1).

Taking into account the property of the function k, there exist a ∈ (0, 1) and k1 ∈ N
such that for all k ≥ max{k0, k0}

ψ(θ(dp(x2k+1, Tj(x)))) ≤ ψ(θ(dp(x2k+1, yk)))
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≤ ψ([θ(dp(x, Tj(x)))]a) + Ldp(x, x2k+1).

Taking the lower limit as k →∞, we deduce that

lim sup inf
k→∞

ψ(θ(dp(x2k+1, Tj(x)))) ≤ ψ([θ(dp(x, Tj(x)))]a).

Since ψ ◦ θ is lower semi-continuity and a ∈ (0, 1), we see that

ψ(θ(dp(x, Tj(x)))) ≤ lim sup inf
k→∞

ψ(θ(dp(x2k+1, Tj(x))))

≤ ψ([θ(dp(x, Tj(x)))]a)

< ψ(θ(dp(x, Tj(x)))),

which is a contradiction. Thus we have dp(x, Tj(x)) = 0 which implies that x ∈ Tj(x).

•Case 2: n = 2k + 1 is odd. Arguing as in Case 1, we obtain x ∈ Ti(x).
Since (xn, xn+1) ∈ E(G) and (xn, x) ∈ E(G), for n ∈ N, we conclude that

(x0, x1, x2, . . . , xn, x)

is a path in G̃ and so x ∈ [x0]G̃.
Claim 2. Since XTi 6= ∅, then there exists some x0 ∈ XTi . In addition, since G is

weakly connected, then [x0]G̃ = X and by Claim 1, T1 and T2 have a common fixed
point in X.
Claim 3. The result follows from Claim 1 and Claim 2.
Claim 4. Graph(Ti) ⊆ E(G) implies that all x ∈ X are such that there exists

some u ∈ Ti(x) with (x, u) ∈ E(G), so XTi = X which imply that T1 and T2 have a
common fixed point.

3 Example

Let X = { 12n , n ∈ N} ∪ {0, 1} and d(x, y) = |x − y| for all x, y ∈ X. Let E(G) =

{( 1
2n , 0), ( 1

2n ,
1

2n+1 ), n ∈ N}∪{(1, 0)}, θ(t) = e(te
t)

1
4 , L = 0, ψ(t) = ln(t)+1, 1 ≤ p < 4,

and

k(t) =

{
(e

1

2np+p
− 1
2np )

1
4 , if t = 1

2n , n ∈ {0, 1, 2, . . .},
0, if otherwise.

Let T1 and T2 : X → C(X) be two mappings defined by

T1(x) =

 {0}, if x = 0,
{ 12}, if x = 1,
{ 1
2n+3 ,

1
2n+4 , . . .}, if x = 1

2n , n ∈ N,

T2(x) =

 {0}, if x = 0,
{ 123 }, if x = 1,
{ 1
2n+3 ,

1
2n+4 , . . .}, if x = 1

2n , n ∈ N.
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Then T1 and T2 are a common (ψ, θ-G) contraction and 0 ∈ T1(0) ∩ T2(0). To check
the contraction type condition, we have to show that

dp(x, y)

Mp(Tix, Tjy)
ed

p(x,y)−Mp(Tix,Tjy) ≤ k4(d(x, y)).

For this, let x, y ∈ X be such that (x, y) ∈ E(G) and consider three cases:

•Case 1. If (x, y) =
(
1
2n , 0

)
, then

(i) T1
(
1
2n

)
= { 1

2n+3 ,
1

2n+4 , . . .} and T2(0) = {0}. For a = 1
2n+s where s ∈ {3, 4, . . .}, let

b = 0 and

dp(x, y)

Mp(T1x, T2y)
ed

p(x,y)−Mp(T1x,T2y) =
2np

2np+sp
e

1

2np+sp
− 1
2np

< e
1

2np+sp
− 1
2np

≤ e
1

2np+p
− 1
2np

= k4(d(x, y)).

(ii) T2
(
1
2n

)
= { 1

2n+3 ,
1

2n+4 , . . .} and T1(0) = {0}. For a = 1
2n+s where s ∈ {3, 4, . . .}, let

b = 0 and

dp(x, y)

Mp(T2x, T1y)
ed

p(x,y)−Mp(T2x,T1y) =
2np

2np+sp
e

1

2np+sp
− 1
2np

< e
1

2np+sp
− 1
2np

≤ e
1

2np+p
− 1
2np

= k4(d(x, y)).

•Case 2. If (x, y) =
(
1
2n ,

1
2n+1

)
, then

(i) T1
(
1
2n

)
= { 1

2n+3 ,
1

2n+4 , . . .} and T2
(

1
2n+1

)
= { 1

2n+4 ,
1

2n+5 , . . .}. For a = 1
2n+s where

s ∈ {3, 4, . . .}, let b = 1
2n+s+1 where s ∈ {3, 4, . . .} and

dp(x, y)

Mp(T1x, T2y)
ed

p(x,y)−Mp(T1x,T2y) =
2np+p

2np+sp+p
e

1

2np+sp+p
− 1

2np+p

< e
1

2np+sp+p
− 1

2np+p

≤ e
1

2p(n+2)
− 1

2p(n+1)

= k4(d(x, y)).

(ii) T2
(
1
2n

)
= { 1

2n+3 ,
1

2n+4 , . . .} and T1
(

1
2n+1

)
= { 1

2n+4 ,
1

2n+5 , . . .}. For a = 1
2n+s where

s ∈ {3, 4, . . .}, let b = 1
2n+s+1 where s ∈ {3, 4, . . .} and

dp(x, y)

Mp(T2x, T1y)
ed

p(x,y)−Mp(T2x,T1y) =
2np+p

2np+sp+p
e

1

2np+sp+p
− 1

2np+p

≤ e
1

2p(n+2)
− 1

2p(n+1)

= k4(d(x, y)).
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•Case 3. If (x, y) = (1, 0), then
(i) T1 (1) = { 12} and T2 (0) = {0}. For a = 1

2 , let b = 0 and

dp(x, y)

Mp(T1x, T2y)
ed

p(x,y)−Mp(T1x,T2y) =
1

2p
e

1
2p−1

< e
1
2p−1

= k4(d(x, y)).

(ii) T2 (1) = { 123 } and T1 (0) = {0}. For a = 1
23 , let b = 0 and

dp(x, y)

Mp(T1x, T2y)
ed

p(x,y)−Mp(T1x,T2y) =
1

23p
e

1
23p
−1

< e
1
2p−1

= k4(d(x, y)).

4 Consequences

If we let p = 1 in Theorem 1, we obtain

COROLLARY 1. Let (X, d) be a complete metric space endowed with a directed
graph G and suppose that the triple (X, d,G) has the property (A). Suppose that the
mappings T1, T2 : X → C(X) satisfy the following conditions:

(i) For all x, y ∈ X such that (x, y) ∈ E(G) and a ∈ Ti(x), there exists b ∈ Tj(y) for
i, j ∈ {1, 2} with i 6= j such that (a, b) ∈ E(G) and

ψ(θ(d(a, b))) ≤ ψ([θ((M(Tix, Tjy))]k(d(x,y))) + LN(Tix, Tjy),

where

N(Tix, Tjy) = min{d(x, Ti(x)), d(y, Tj(y)), d(y, Ti(x)), d(x, Tj(y))},

M(Tix, Tjy) = max

{
d(x, y), d(x, Ti(x)), d(y, Tj(y)),

d(y, Ti(x)) + d(x, Tj(y))

2
,

d(x, Ti(x))d(y, Tj(y))

1 + d(x, y)
,
d(y, Ti(x))d(x, Tj(y))

1 + d(x, y)

}
.

k : (0,+∞) → [0, 1) satisfies lim sup
s→t+

k(s) < 1, for all t ∈ [0,+∞), L ≥ 0, θ ∈ Θ,

ψ ∈ Ψ and ψ ◦ θ is lower semi-continuity.

(ii) There is x0 ∈ X such that (x0, y) ∈ E(G) for some y ∈ Ti(x0), i = 1 or i = 2.

If G is weakly connected, then T1 and T2 have a common fixed point.

If θ(t) = e
√
t, ψ(t) = (ln(t))2 + 1 and k(t) =

√
α(t) in Corollary 1, then we obtain
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COROLLARY 2. Let (X, d) be a complete metric space endowed with a directed
graph G and suppose that the triple (X, d,G) has the property (A). Suppose that the
mappings T1, T2 : X → C(X) satisfy the following conditions:

(i) For all x, y ∈ X such that (x, y) ∈ E(G) and a ∈ Ti(x), there exists b ∈ Tj(y) for
i, j ∈ {1, 2} with i 6= j such that (a, b) ∈ E(G) and

d(a, b) ≤ α(d(x, y))M(Tix, Tjy) + LN(Tix, Tjy),

where α : (0,+∞)→ [0, 1) satisfies lim sup
s→t+

α(s) < 1, for all t ∈ [0,+∞).

(ii) There is x0 ∈ X such that (x0, y) ∈ E(G) for some y ∈ Ti(x0), i = 1 or i = 2.

If G is weakly connected, then T1 and T2 have a common fixed point.

The following result is also an immediate consequence of Corollary 2.

COROLLARY 3. Let (X, d) be a complete metric space. Assume that the mappings
T1, T2 : X → CB(X) satisfy

H(T1(x), T2(y)) ≤ α(d(x, y))M(T1x, T2y) + LN(T1x, T2y),

for all x, y ∈ X such that x 6= y, where α : (0,+∞) → [0, 1) satisfies lim sup
s→t+

α(s) < 1,

for all t ∈ [0,+∞). Then T1 and T2 have a common fixed point.

5 Remark

(1) Taking T1 = T2 in Theorem 1, we obtain fixed point results for (ψ, θ,G)-contraction
maps.

(2) If in Corollary 1, we let T1 = T2, ψ(t) = t, and E(G) = X ×X −∆, then G is
connected and Corollary 1 improves Theorem 4 by Durmaz [5] and Theorem 2.1
by Jleli et al. [9].

(3) Corollary 3 extends Theorem 3.1 by Rouhani et al. [14].

Acknowledgment. We would like to thank the anonymous referee for his/her
careful reading of the original manuscript.
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