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Abstract

In this work, we introduce the notion of a common (¢, 8, G)-contraction multi-
valued mapping in order to establish some new common fixed point theorems
for these classes of mappings in complete metric spaces endowed with a graph.
An example of application illustrates the main existence theorem. Our results
generalize some recent known results.

1 Introduction and Preliminaries

Since the proof of Banach’s fixed contraction principle [2] in 1922, many research works
have considered different kinds of generalizations. Among them, the classical multi-
valued version was established by Covitz and Nadler [12] in 1969 using the Hausdorft-
Pompeiu metric in a complete metric space.

In 2008, Jachymski [8] provided a new approach in metric fixed point theory by re-
placing the order structure with a graph structure on a metric space. He introduced the
concept of G-contraction, where the contraction condition is only verified on the edge
of the graph. Subsequently, many authors have extended the Banach G-contraction in
different ways (we refer to [1], [3], [13], [15], [16], and references therein).

Recently, Jleli and Samet [10] introduced another definition called #-contraction
and proved a fixed point result as a generalization of the Banach contraction principle.
Their result has then been extended by many authors (see, e.g., [6], [7], [9], [11], [17]).
Given a metric space (X,d), a mapping T : X — X is a #-contraction if there exist
0 € © and k € (0, 1) such that:

0(d(Tz, Ty)) < [0(d(z, )",

for all z,y € X with d(Tz,Ty) > 0. Here O refers to the set of all functions 6 :
(0,00) — (1, 00) satisfying the following conditions:

*Mathematics Subject Classifications: 47H10, 54E50, 54H25.

tLaboratoire "Théorie du Point Fixe et Applications", ENS, BP 92 Kouba. Algiers, 16006. Algeria

IDepartment of Mathematics & Statistics, College of Sciences, Al Imam Mohammad Ibn Saud
Islamic University (IMSIU). PB 90950. Riyadh 11623, Saudi Arabia

515



516 Common Fixed Point for (¢, 0, G)-Contraction

(©1) 0 is non-decreasing,

(©3) for each sequence (t,), C (0,00), lim 6(t,) =1 if and only if lim ¢, = 0%

n—oo n—o0

(03) there exist r € (0,1) and ! € (0, 00] such that th%lJr 9(?7,,,71 =1

The aim of this paper is to prove some common fixed point results for a new class
of multi-valued mappings called (v, 8, G)-contractions in a metric space endowed with
a graph G.

Let us collect some basic notions and primary results we need to develop our ex-
istence results. Let (X,d) be a metric space. We denote by CB(X) the family of
nonempty closed bounded subsets of X and by C(X) the family of nonempty closed
subsets of X. For A, B € C(X), let

H(A, B) = max{sup d(z, B), sup d(y, A)},
€A yeB

where d(z, B) = inf{d(z,y) : y € B}. H is called the Hausdorff-Pompeiu distance on
C(X). This is a metric on CB(X).

A graph G is an ordered pair (V, E), where V is a set and E C V x V is a binary
relation on V. Elements of E are called edges and are denoted by E(G) while elements
of V, denoted V(G), are called vertices. If a direction is imposed in E, that is the edges
are directed, then we get a digraph (directed graph). Hereafter, we assume that G has
no parallel edges, i.e., two vertices cannot be connected by more than one edge. Thus,
G can be identified with the pair (V(G), E(G)). If « and y are vertices of G, then a
path in G from z to y of length k € N is a finite sequence (2,)n, n € {0,1,2,...,k}
of vertices such that = zq,...,zx =y and (x,—1,2,) € E(G) for n € {1,2,...,k}.
A graph G is connected if there is a path between any two vertices and it is weakly
connected if G is connected, where G denotes the undirected graph obtained from G
by ignoring the direction of edges. Let G~! be the graph obtained from G by reversing
the direction of edges (the conversion of the graph G). We have

E(GY ={(z,y) e X x X : (y,z) € E(G)}.

It is more convenient to treat G as a directed graph for which the set of edges is
symmetric. Then

E(G) = E(G)UE(G™).

Let G, be the component of G consisting of all edges and vertices which are contained
in some path in G beginning at x. If G is such that E(G) is symmetric, then for
xz € V(G), we may define the equivalence class [z]g on V(G) by the relation xRy if
there is a path in G from z to y. Then V(G,) = [z]a-

Throughout this paper, (X,d) denotes a metric space, G = (V(G), E(G)) is a
directed graph without parallel edges with V(G) = X and (x,2) ¢ E(G) (the graph
does not contain loops). The following condition first appeared in [§]:

PROPERTY (A). For any sequence (z, ), in X, if z, — z and (z,,x,11) € E(G),
for all n € N, then (z,,z) € E(G) for n € N.
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With this condition, Jachymski showed that in a complete metric space, a G-
contraction mapping f has a fixed point if and only if

X;={reX: (v.f(2) € B@)} 0, (1)

that is the graph of f intersects the edge of the space graph.
Further to the set ®, we consider the following classes of functions:

DEFINITION 1. We denote by ¥ the set of functions ¢ : (1, 00) — (1, 00) satisfying
the following conditions:

(i) v is non-decreasing;

(ii) For each sequence (t,), C (1,00), lim %(t,) =1 if and only if lim ¢, = 1.

Now we give the following definition, extending the definitions of G-contraction [8],
O-contraction [10], and (G — t)-contraction [4].

DEFINITION 2. Let (X,d) be a metric space endowed with a graph G. Two
mappings Ty, To : X — C(X) are said to be a common (v, 0, G)-contraction if for all
z,y € X such that (z,y) € E(G) and a € T;(z), there exists b € T;(y) for 4,5 € {1,2}
with 4 # j such that (a,b) € E(G) and

Y (0(d(a,b))) < W([O((My(Tiz, Tiy)]* @) + LNy (Tiz, Tyy),

where

Np(szvirjy) = mln{dp(x,TZ(x)), dp(va](y))a dp(y,T,L(CE)), dp(x7Tj(y))}7

M, (T Tyy) = max {d(2,y), d" @, T,(x)), " (3. T; (1)),
d"(y, Ti(x)) + d”(z, T;(y))
2p ’
o L@ T) ¢ T L))
dy 0 1+dmy) )

k:(0,400) — [0,1) satisfies limsup k(s) < 1, for all t € [0,+00), L > 0,0 € ©, ¢ € ¥,
s—tt
1) 0 0 is lower semi continuity, and 1 < p < %

2 Main Result

Our existence results for common fixed points are collected in the following:

THEOREM 1. Let (X, d) be a complete metric space endowed with a directed graph
G and suppose that the triple (X, d, G) has the property (A). Let T1, To : X — C(X)
be a common (¢, §, G)-contraction. Then the following statements hold:
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(i) For every « € Xr,, %=1 or ¢ = 2, the mappings 71, T» ‘[w]@ have a common fixed
point, where X7, is as defined in (1).

(i) If X7, #0,i=1o0r i =2, and G is weakly connected, then 77 and T have a
common fixed point in X.

(iii) If X’ = U{[z]g : # € X1}, i =1 or i = 2, then T}, T |x+ have a common fixed
point.

(iv) If Graph(T;) C E(G), i =1 or i = 2, then T} and T have a common fixed point.

PROOF.

Claim 1. (a) Construction of a Cauchy sequence (z,),. Given zy € X,
(1 =1 or 2), there is an z; € T;(zo) such that (xo,2z1) € E(G). Since T} and T are
a common (¢, §, G)-contraction, then there exists zo € Tj(z1) (j = 2 or 1) such that
(z1,22) € E(G) and

D(O(dP (z1,22))) )| Fld@om))y 4 LN, (Tiao, Tjar))

)]k(d(wo,wl))) + Ldp(:m, TZ(SEO)))
)]k(d(w0,$1))).

Y([0(My(Tiwo, Tjxy
w([e(Mp(Tiwm ijﬁ
Y([0(M(Tiwo, Tja

IA A

N ~— —

Since (z1,z2) € E(G) and Ty, Ty are common
T;(z2) such that (z2,23) € E(G) and

P(O(dP (z2,23)))

1, 0, G)-contraction, there exists x3 €

([O(My(Tywy, Tiw))M4e122))) 4 LN,(Tja, Tyxa)
([O(My(Tjy, Tiaz))M9072)) 4 LdP (25, T (1))
([O(My(Tjar, Tixs))]F @2y,

<
<

By induction, we construct a sequence (x,), such that zo,11 € T;(x2,), Tanto €
Tj(z2n+1), (Tn, Tny1) € E(G), and

Y([O(Mp(Tyzn—1, Tjzy))]kd@n-12)))  for odd n,

w(G(dP(xm:an))) < { w([e(Mp(le‘nfl,Tixn»]k(d(%kl’x"))) for even .

Let us distinguish between two cases:

e Case 1: n is odd.
M, (Tixor, Tjxok+1)
= max {dp(x%,szH),d”(x%,Ti(xzk)),dp(kaH,Tj(kaH)),

dP(xopy1, Ti(zor)) + dP(zok, Tj(xort1)) dP (2o, Ti(wor))dP (2ort1, T (T2k+1))
2v ’ 1+ dP(z2r, T2k+1)
dP (@2p41, Ti(w2k))dP (z2n, Tj (T25+41)) }
1+ dP(z2r, Taky1)

b

IA

max {dp(372ka$2k+1)7dp(392k71'2k+1)7 dP(xak41, Takt2)s
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dP(w2x41, Tony1) + dP (Tor, Toryo) dP(Tor, Tors1)dP (Topg1, Tort2)
2p ’ 1+ dP(wop, Tory1)
dP(Tap 11, Tok+1)dP (Tog, Taki2) }
1+ dP(x2k, Taky1)

)

dP(x ks Lok
= max {dp(xzk, Tok+1), AP (Tak+1, Tok+2), w}

op
Since for all a,b > 0 and p > 1, we have

(a4 b)P < 2P~ (aP + bP).

Then
dP (xak, Tak+2) < (d(xok, Taky1) + d(T2r41, Tokt2))?
2p - 2p
dP (zog, Tok+1) + dP (Tog+1, Takt2)
— 2 .

We deduce that
My (Tiwok, Tjwop1) = max {dp($2k,$2k+1)7 dp(332k+17332k+2)}-
If My(Tizor, Tjxoks1) = dP(Togt1, Takt2), then
Y(O(dP (wor 11, W2k12))) < Y([O(dP (Baks1, Dayo))]FLHF2RT2E41)))
< P(0(d” (T2r41, B2k+42))),

which is a contradiction. Therefore My, (T;zor, TjTor+1) = dP(Tak, Takt1)-

e Case 2: n is even. In an analogous manner, we can show that

M, (Tjzopyo, Titops1) = dP (Topq1, Taky2)-

Hence for all n € N, we have

V(O (@n, 2n11))) < YO (@nr, 20))]@E 10 D)), (2)
Since 0 < k(d(zn—1,%n)) < 1 for all n € N, then

@b(ﬂ(dp(xm $7,,+1))) < w(g(dp(xn—la In)))»

that is (d(xn, Trn+1))n is a decreasing sequence of positive numbers. Hence the sequence
(d(zn, Tp+1))n is convergent.

(b) (zn)n is a Cauchy sequence in (X,d). Since limsupk(s) < 1 and the
s—tt
sequence (d(x,,Znt1)) is convergent, then there exists a € (0,1) and ng € N such that

k(d(xn,Tny1)) < a, for all n > ng. From the inequality in (2), we obtain that for
n > ng
1 < (0(dP (zn, Tn1))) < ([0(d” (2n—1,20))]*) < ... S P([0(d” (Tng, Tno+1))]"

n—ng

).
(3)
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Taking the limit as n — oo, we get ¥(0(dP(xp, Trn11))) — 1. By definition of 6 and 1,
dP(Zp, Tnt1) — 0, as n — oo. By (O3), there exist r € (0,1) and [ € (0, 400] such that

lim O(dP (zpn, Tpy1)) — 1

=1.
n—00 [di"(a:n, $n+1)]r

o Ifl < o0, let B= % By the definition of the limit, there exists ng € N such that

H(dp(a:n, xn-i-l)) -

1
-1 <B.
[dP (2, Tnt1)]” -

This implies that, for all n > ng

O(dP (zp, Tpny1)) — 1
@)

Then, for all n > ng
n[d (@0, @n1))” < AnfO(d (@, @ny1)) — 1],
where A = 1.

o If [ = 00. Let B > 0 be an arbitrary positive number. From the definition of the
limit, there exists ng € N such that, for all n > ng

H(dp(.lfn,$n+1)) -1 Z B.
[dP (20, Tpy1)]"

Then, for all n > ng
n[d? (T, Tni1)]" < Anf[0(dP (Tp, Tpy1)) — 1],

where A = %.
Therefore, in all cases, there exist A > 0 and ng € N such that

n|d?(Tpn, Tri1)]” < Anl0(dP(Tp, Tpi1)) — 1]

By (3) and since v is non-decreasing, we obtain

n—mnq

Bl (20, 2] < An[[0(@ (g, g = 1),
for all n > ng. Taking the limit as n — oo, we get

lirf n[dP(zp, Tny1)]” = 0.

From the definition of the limit, there exists n; € N such that, for all n > ny

n[dP(zpn, Tny1)]” < 1.
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Therefore, for all n > ny
1
d(Tp, Tpy1) < —.

nor

Hence for each m,n € N with m > n > ny, we have

m—1 m—1
1
d(mnamm) g Z d(xivxiJrl) S Z 1
i=n i=n P7

As n,m — oo, we get d(xn, ) — 0 (since ;Tlr > 1), showing that (x,), is a Cauchy
sequence in (X, d). Since (X, d) is complete, there exists z € X such that lirf T, = T.
n—-1+:0oo
(c) z is a common fixed point of T} and T,. By the property (A), (z,,z) €
E(G), for each n € N. Again two cases are discussed separately.

e Case 1: n = 2k is even. Suppose that d(z,T;(x)) > 0. Since T; and T} are
common (v, 8, G)-contraction, then there exists yi € T;(x) such that for all k € N

V(O (zany1,9r))) < @[’([Q(Mp(Tix%azj))]k(d(IZk’gE))) + LNp(TivT%aij)
< ([0 My(Tiwar, Tjx))|F4E20"D) 4+ LdP (w, T, (w2
< W([0(My(Tizon, Tyjx))|FH@20")) 4 LdP (2, 29541),
where
M, (Tizor, Tjz) = max {dp($2k733)7 d?(zok, Ti(war)), dP (x, Tj(x)),
dP(x, Ti(xor)) + dP(zor, Tj(x)) dP(wok, Ti(x2r))dP (x, Tj(x))

)

2P ’ 1+ dp(kaa .’b)
d”(%Ti(ﬂf%))dp(fﬁzk,Tj(fc))}
1+ dp($2k7 .'L')
max {dp(xgk,l‘),dp(.’EQk,J?Qk—&-l)ydp(x7T’j(x))7
dP(z, Topt1) + dP (2or, Tj(x))  dP (o, Topt1)d” (z, Tj(x))
Y ’ 1+ dpP(zak, x)
dp(337-’f2k+1)dp($2vaj($))}
1+ dp(.Z‘Qk, l’) .

IN

7

Then we can choose ky € N such that M, (T;zak, Tjx) = dP(z,T;(x)) for each k > ky.
Since yi € Tj(z), we have for each k > ko

D(O(d (@21, 90))) < V((0(d (2, Ty ()] E202)) 4 LdP (2, wopn).

Taking into account the property of the function k, there exist a € (0,1) and k; € N
such that for all & > max{ko, ko}

Y(O(dP (241, Tj(z)))) < Y(O(dP(x2r41,Yx)))
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< PO (@, Ty (@)]%) + L (2, wak11).
Taking the lower limit as k — oo, we deduce that

timsup inf (0 (a1, () < V(00 (2, Ty ().
Since 1 o 6 is lower semi-continuity and a € (0, 1), we see that

PO, Ty(@)) < limsup inf (O (rar1,T5(2))))

< P([0(d? (2, Tj()))]")
< (0P (2, Tj(2)))),

which is a contradiction. Thus we have dP(x,T;(z)) = 0 which implies that = € T;(z).

o Case 2: n =2k + 1 is odd. Arguing as in Case 1, we obtain z € T;(z).
Since (zp, Tnt1) € E(G) and (z,,2) € E(G), for n € N, we conclude that

(.1'0,.731,.%2, R 7$n,1‘)

is a path in G and so z € [z0]&-

Claim 2. Since X7, # (), then there exists some xg € Xr,. In addition, since G is
weakly connected, then [zg] & = X and by Claim 1, T7 and T5 have a common fixed
point in X.

Claim 3. The result follows from Claim 1 and Claim 2.

Claim 4. Graph(T;) C E(G) implies that all x € X are such that there exists
some u € T;(x) with (z,u) € E(G), so X7, = X which imply that T} and T3 have a
common fixed point.

3 Example

Let X = {3, n € N}U{0,1} and d(z,y) = |z — y| for all z,y € X. Let E(G) =

{(2,0), (s, gr)s n € NYU{(1,0)}, 0(t) = e*)* L =0, ¢(t) =In(t) +1,1 <p < 4,
and

1 1 .1 .
k(t) — (€2np+p 27117)4’ if t= 2%, n e {07].,2,...}7
0, if otherwise.

Let Ty and Ty : X — C(X) be two mappings defined by

{O}a if x=0,
Ti(z) =4 {3} if z=1,

{ﬁ,ﬁ,}, if x:%,neN,

{0}, if z=0,
Tr(z) =1 {3}, if z=1,

1 1 : 1
{W7W""}’ if 1‘227,716[\1
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Then T} and T» are a common (1, 6-G) contraction and 0 € T7(0) N T2(0). To check
the contraction type condition, we have to show that

d?(z,y)

dp(x,y)—Mp(Tix,ij) < k4 d
— € = z,Y))-
My(Tiz, Tyy) (d(= )

For this, let 2,y € X be such that (z,y) € E(G) and consider three cases:

e Case 1. If (z,y) = (5=,0), then
(i) 71 (5%) = {355, 31, .- -} and T5(0) = {0}. For a = 54 where s € {3,4,.. .}, let
b= 0 and

A 1

P
d ('T?y) edp(a:,y)fMp(le,Tgy) m—ﬁ

M, (Tyz, Try) ~ g ©
1

1
< eanp¥sp 2P

1 1
e2nptp 2mp

<
= k4(d($7y))
(i) 7o (55) = {325, 31, - - .} and T1(0) = {0}. For a = 54 where s € {3,4,...}, let
b= 0 and
P (z,y) e (x.y)=Mp(Toz,Try) 2 TP FIF T

My (Tox, Thy) 2nptsp
< T T

1 1
e2np+p  2MP

= K(d(z,y)).

IN

o Case 2. If (z,y) = (21,1, 2"H) then

(i) Ty (2%) = {2n1+3, sasrs .- and T (2n+1) = {ﬁ, ﬁ,} For a = zn% where
s€{3,4,...}, let b= 577 where s € {3,4,...} and

P(L,y) a7 (ai) =M, (Tya Ton) 2y

My(T1z, Toy)  aneberte

___ 1
e2nptsptp  onptp

1 —_1__
< e2nptsptp  anptp

11
e2r(n+2)  op(n+1)
K (d(z,y))-

(ii) Ty 2%) {55 5 T Y and Ti (377) = {52r1: 35755 - - -}- For a = 52 where
s€{3,4,...}, let b= 5~ where s € {3,4,...} and

IN

P np+p
d ('T7 y) edp(x7y)—Mp(Tzw,T1y) — 72 e znp+lsp+p - 2n13+p
Mp (TQ"IJ, le) 2”P+SP+P

1 1
< e2r(nt2) T 2p(FD)

K (d(x,y))-
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e Case 3. If (z,y) = (1,0), then
(i) 71 (1) = {3} and T» (0) = {0}. For a = 3, let b =0 and
d?(z,y) ed? (@) =M, (Thz, Toy)  _ iezipq
MP(T1$7T2y) 2P
< e%”_1
= k'(d(z, ).

(i) T (1) = {35} and T (0) = {0}. For a = 55, let b =0 and

_ @y  wey-M@aTy L g
M, (T12, Tay) 2%

< e%”_1

— K@),

4 Consequences

If we let p =1 in Theorem 1, we obtain

COROLLARY 1. Let (X,d) be a complete metric space endowed with a directed
graph G and suppose that the triple (X, d, G) has the property (A). Suppose that the
mappings T1, Ty : X — C(X) satisfy the following conditions:

(i) For all z,y € X such that (x,y) € E(G) and a € T;(z), there exists b € T;(y) for
i,7 € {1,2} with i # j such that (a,b) € E(G) and

$(0(d(a, b)) < P([O((M(T.z, Tyy)))* D) + LN(Tiz, Tyy),
where

N(Tix’ ij) = min{d(x’ Tl(m))’ d<yv Tj (y))’ d(y> TZ('r))7 d(.%', Tj (y))}a

d(y, Ti(z)) + d(=, T;(y))
2 )

M (T, Tyy) = max{d(x,y»d(x,Ti(x)),d(y,Tj(y)),

d(z, Ti(z))d(y, Tj(y)) d(y,Ti(x))d(%Tj(y))}
1+d(z,y) ’ 1+d(z,y) '

k:(0,4+00) — [0,1) satisfies limsup k(s) < 1, for all ¢t € [0,+00), L >0, 6 € O,
s—tt
1 € U and ¥ o 0 is lower semi-continuity.
(ii) There is zg € X such that (zo,y) € E(G) for some y € T;(x), i =1or i = 2.

If G is weakly connected, then 77 and T, have a common fixed point.

If 0(t) = V%, ¢(t) = (In(t))2 + 1 and k(t) = y/a(t) in Corollary 1, then we obtain



S. Benchabane, S. Djebali 525

COROLLARY 2. Let (X,d) be a complete metric space endowed with a directed
graph G and suppose that the triple (X, d, G) has the property (A). Suppose that the
mappings 11,75 : X — C(X) satisfy the following conditions:

(i) For all z,y € X such that (z,y) € E(G) and a € T;(x), there exists b € Tj(y) for
i,7 € {1,2} with ¢ # j such that (a,b) € E(G) and

d(aa b) < O‘(d(xa y))M(TZCC, ij) + LN(TZx7 ij)’

where a : (0, 4+00) — [0,1) satisfies limsup a(s) < 1, for all ¢ € [0, +00).

s—tt

(ii) There is g € X such that (xo,y) € E(G) for some y € T;(zg), i =1 or i = 2.
If G is weakly connected, then T7 and T5 have a common fixed point.
The following result is also an immediate consequence of Corollary 2.

COROLLARY 3. Let (X, d) be a complete metric space. Assume that the mappings
T, Ty : X — CB(X) satisfy

H(T1(x), To(y)) < ald(z,y))M(Tix, Tay) + LN (Trz, Toy),
for all z,y € X such that x # y, where a : (0, +00) — [0, 1) satisfies limsup a(s) < 1,

s—tt+
for all ¢ € [0,400). Then T7 and T3 have a common fixed point.

5 Remark

(1) Taking Ty = Ty in Theorem 1, we obtain fixed point results for (¢, 8, G)-contraction
maps.

(2) If in Corollary 1, we let Ty = To, ¥(t) = t, and E(G) = X x X — A, then G is
connected and Corollary 1 improves Theorem 4 by Durmaz [5] and Theorem 2.1
by Jleli et al. [9].

(3) Corollary 3 extends Theorem 3.1 by Rouhani et al. [14].

Acknowledgment. We would like to thank the anonymous referee for his/her
careful reading of the original manuscript.
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