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Abstract

In this paper, we establish some fixed point results for large-Kannan mappings
in complete metric spaces. Our results are applied to solve some implicit integral
equations.

1 Introduction and Preliminaries

It is well known that Banach’s contraction principle (1922) is a powerful tool in analy-
sis, that most mathematicians applying about to solve many of their problems. It is
remarkable by its simplicity; this comes from the fact that the contractive condition
on the mapping is easy to check and it requires only a complete metric space for its
framework. Banach’s contraction principle appeared in explicit form in Banach’s thesis
[2], where it was used to obtain the solution of an integral equation in the functional
space C([0, 1]). One of the other application of the Banach contraction principle is
for example, the study of existence and uniqueness of solutions of the Itô stochastic
equation with deviating argument. Indeed, it was proved (see [5]) that if the stochas-
tic parameters satisfy Lipschitz condition in the second variable, then the associated
integral operator turns out to be a contraction and the solution is obtained by using
the method of successive approximations. In Banach spaces setting, recall that Kras-
noselskii’s fixed point result is a combination of Banach and Schauder’s fixed point
theorems, this result can be seen as a consequence of the fact that the measure of
noncompactness is invariant by compact perturbations. The sum of two operators is
a powerful tool used to solve delay integral equations, neutral functional equations,
Cauchy problems for ordinary differential equations and partial differential equations
modeled by Hammerstein integral operators in Lp-spaces. For more details, see [1, 3,
4].

In this work, we establish existence and uniqueness results for large-Kannan map-
pings extending those in [8, 9, 12]. In particular, we distinguish the continuous and
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536 On the Fixed Points of Large-Kannan Contraction Mappings

non-continuous cases. Finally, our results are explored to solve an implicit functional
equation.

The classical statement of Banach fixed point theorem is the following:

THEOREM 1. Let (X, d) be a complete metric space and T : X → X be a
contraction mapping, i.e.,

d (Tx, Ty) ≤ λd(x, y),

for all x, y ∈ X, where 0 < λ < 1. Then T has a unique fixed point y0 in X. Moreover
for each x0 ∈ X, the sequence of iterates {Tnx0}n converges to y0.

In 1968, R. Kannan [8, 9] obtained the following fixed point result.

THEOREM 2. Let (X, d) be a complete metric space and T : X → X be a
selfmapping on X. Assume that there exists λ ∈

[
0, 12
)
such that

d (Tx, Ty) ≤ λ [d(x, Tx) + d(y, Ty)] ,

for all x, y ∈ X. Then T has a unique fixed point z0 in X. Moreover for each x0 ∈ X,
the sequence of iterates {Tnx0}n converges to z0.

It has be seen that contraction mappings are continuous which is not in general the
case of Kannan mappings as shown in the following examples.

EXAMPLE 1. Let (X, d) = (R, |·|) and T : R→ R be defined by

Tx =

{
0 if x ≤ 2,
−1
4 if x > 2.

For all x, y ∈ R, we prove easily that

|Tx− Ty| ≤ 1

4
(|x− Tx|+ |y − Ty|) .

EXAMPLE 2. Let (X, d) = ([0, 1] , |·|) and T : [0, 1]→ [0, 1] be given by

Tx =

{
x
16 if x ∈ [0, 1[ ,
1
18 if x = 1.

Let x, y ∈ [0, 1[. Thus

|Tx− Ty| =
∣∣∣ x
16
− y

16

∣∣∣ =
1

16
|x− y| ,

and

|x− Tx| = 15x

16
, |y − Ty| = 15y

16
,
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which implies that

|Tx− Ty| = 1

16
|x− y| ≤ 1

14
(|x− Tx|+ |y − Ty|) .

Now, if x ∈ [0, 1[ and y = 1, we get

|Tx− Ty| =
∣∣∣∣ x16
− 1

18

∣∣∣∣ ,
and

|x− Tx| = 15x

16
, |T1− 1| = 17

18
.

Consequently, for all x, y ∈ [0, 1], we have

|Tx− Ty| ≤ x

16
+

1

18
≤ 1

14
(|x− Tx|+ |y − Ty|) .

EXAMPLE 3. Let (X, d) = ([0, 1] , |·|) and T : [0, 1]→ [0, 1] be defined by

Tx =

{
x
6 if 0 ≤ x < 1

2 ,
x
4 if 12 ≤ x ≤ 1.

If x, y ∈
[
0, 12
[
, we get

|Tx− Ty| ≤ 1

6
(x+ y) =

1

5
(|x− Tx|+ |y − Ty|) .

On the other hand, if x, y ∈
[
1
2 , 1
]
, we get

|Tx− Ty| ≤ 1

4
(x+ y) =

1

3
(|x− Tx|+ |y − Ty|) .

Now, if 0 ≤ x < 1
2 ≤ y, then

|Tx− Ty| =
∣∣∣∣16x− 1

4
y

∣∣∣∣ ≤ 1

4
(x+ y) ≤ 1

3
(|x− Tx|+ |y − Ty|) .

Consequently, for all x, y ∈ [0, 1], we obtain that

|Tx− Ty| ≤ 1

3
(|x− Tx|+ |y − Ty|) .

There is a large literature dealing with Kannan mappings and their generalizations,
we can quote for examples [6, 7, 8, 9, 10] and [12]. In [3], Burton observed that Theorem
1 is more interesting in applications through some modification and formulated it as
follows:
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DEFINITION 1. Let (X, d) be a metric space and let T : X → X be a selfmapping
on X. T is said to be a large contraction, if for x, y ∈ X, with x 6= y, we have
d (Tx, Ty) < d (x, y), and if for all ε > 0, there exists δ < 1 such that

[x, y ∈ X, d (x, y) ≥ ε] =⇒ d (Tx, Ty) ≤ δd (x, y) .

REMARK 1. We observe that every contraction mapping is a large contraction.
The converse does not hold in general, as the following example shows [3].

EXAMPLE 4. Let (X, d) = (R, |.|) and let T : R −→ R be defined by Tx = x− x3.
Then for x, y ∈ R, by applying the Mean Value Theorem, we get

|Tx− Ty| =
∣∣x− x3 − y + y3

∣∣ ≤ ∣∣1− 3c2
∣∣ |x− y| ,

where c ∈ ]min {x, y} ,max {x, y}[.
Afterwards, from the inequality given above, it is easy to observe that there exists

δ suffi ciently small such that for all x, y ∈ [−δ, δ] (x 6= y), we have |Tx− Ty| < |x− y|.
Additionally, it was proved in [3] that for a given ε > 0, if |x− y| ≥ ε, then

|Tx− Ty| ≤
∣∣∣∣1− ε2

4

∣∣∣∣ |x− y| ,
moreover, since T0 = 0 and limx→0

∣∣∣x−x3x

∣∣∣ = 1, we deduce that T is not a contraction

selfmapping on [−δ, δ].

EXAMPLE 5. Let f : [0, 1]→ [0, 1] be given by f (x) = x− x4

4 . Then

|f (x)− f (y)| =

∣∣∣∣x− x4

4
−
(
y − y4

4

)∣∣∣∣ =

∣∣∣∣(x− y)− 1

4

((
x2
)2 − (y2)2)∣∣∣∣

=

∣∣∣∣(x− y)− 1

4

(
x2 − y2

) (
x2 + y2

)∣∣∣∣
=

∣∣∣∣(x− y)− 1

4
(x− y) (x+ y)

(
x2 + y2

)∣∣∣∣
=

∣∣∣∣(x− y)

[
1− 1

4
(x+ y)

(
x2 + y2

)]∣∣∣∣ .
Since |x− y| ≤ |x+ y| and |x− y|2 = x2 + y2 − 2xy ≤ 2

(
x2 + y2

)
, it follows that

|f (x)− f (y)| =

∣∣∣∣(x− y)

[
1− 1

4
(x+ y)

(
x2 + y2

)]∣∣∣∣
≤ |x− y|

(
1− |x− y|

3

8

)
.

Next, if |x− y| ≥ ε, we infer that

|f (x)− f (y)| ≤ |x− y|
(

1− ε3

8

)
.
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Hence, to deduce that f is a large contraction, it suffi ces to take δ (ε) =
(

1− ε3

8

)
.

Now, to show that f is not a contraction mapping, it suffi ces to see that

lim
x→0

∣∣∣∣∣x− x4

4

x

∣∣∣∣∣ = 1.

Thus, there is no k ∈ (0, 1) such that∣∣∣∣x− x4

4
−
(
y − y4

4

)∣∣∣∣ ≤ k |x− y| , ∀x, y ∈ (0, 1) .

THEOREM 3 ([3]). Let (X, d) be a complete metric space and let T : X → X be a
large contraction selfmapping. Assume that there exist x0 ∈ X and L > 0, such that
d(x0, T

nx0) ≤ L for all n ≥ 1. Then T has a unique fixed point in X.

REMARK 2. Notice that, if (X, d) is a compact metric space, then the assumption
that there exist x0 ∈ X and L > 0, such that d(x0, T

nx0) ≤ L for all n ≥ 1 can be
dropped. Indeed, in this case, the existence and uniqueness of the fixed point is ensured
by Edelstein’s theorem.

REMARK 3. If (X, d) is a bounded complete metric space, then for all x0 ∈ X and
for all integer n ≥ 1, we have d(x0, T

nx0) ≤ δ (X), where δ (X) is the diameter of X.
So the boundedness assumption given above is trivially satisfied in this setting.

2 Main Results

We start this section by the following lemma which asserts that the set of contraction
mappings has an infinite subset of Kannan mappings.

LEMMA 1. Let (X, d) be a metric space. Assume that T : X → X be a selfmapping
on X satisfying that

d(Tx, Ty) ≤ αd(x, y) for all x, y ∈ X,

where α ∈
[
0, 13
[
. Then T is a Kannan mapping with a constant of contraction equals

to α
1−α .

PROOF. Let x, y ∈ X. Then by assumption, we have

d(Tx, Ty) ≤ αd(x, y),

where α ∈
[
0, 13
[
. On the other hand, by using the triangle inequality, we get

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y).
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Multiplying the previous inequality by α, it follows that

d(Tx, Ty) ≤ αd(x, y) ≤ α(d(x, Tx) + d(Tx, Ty) + d(Ty, y)),

therefore,
d(Tx, Ty) ≤ α

1− α (d(x, Tx) + d(y, Ty)).

Since α ∈
[
0, 13
[
, then α

1−α ∈
[
0, 12
[
. Consequently, T is a Kannan mapping.

2.1 Large-Kannan Contractions in the Continuous Sense

Now, we give the following definition of a large-Kannan contraction (in the continuous
sense) as an extension of the classical ones.

DEFINITION 2. Let (X, d) be a metric space and let T : X → X be a selfmapping
on X. T is said to be a large-Kannan contraction (in the continuous sense), if for
x, y ∈ X, with x 6= y, we have d (Tx, Ty) < d (x, y), and if for all ε > 0, there exists
δ < 1

2 such that

[x, y ∈ X, d (x, y) ≥ ε] =⇒ d (Tx, Ty) ≤ δ [d (x, Tx) + d (y, Ty)] .

REMARK 4. Large-Kannan contractions (in the continuous sense) are continuous.
This is an immediate consequence of the inequality d (Tx, Ty) < d (x, y) for x 6= y.

REMARK 5. Let (X, d) be a metric space and let T : X → X be a large contraction
on X. Assume that δ ∈ [0, 13 [, then by Lemma 1, it is easy to conclude that T is a
large-Kannan contraction mapping.

Now, we give the following fixed point result for large-Kannan contractions.

THEOREM 4. Let (X, d) be a complete metric space and T : X → X be a large-
Kannan contraction mapping (in the continuous sense). Then T has a unique fixed
point in X.

PROOF. Let x0 ∈ X, if there exists an integer m ≥ 1 such that Tm (x0) =
Tm+1 (x0), then T (Tmx0) = Tmx0 and Tmx0 is a fixed point of T .

Now, assume that Tnx0 6= Tn+1x0 for every integer n ≥ 1. Since T is large-Kannan
contraction (in the continuous sense), then

d
(
Tn+1x0, T

nx0
)
< d

(
Tnx0, T

n−1x0
)
< ... < d (Tx0, x0) .

This proves that the sequence ζn = d
(
Tn+1x0, T

nx0
)
is strictly decreasing, hence

lim
n−→+∞

ζn = γ ≥ 0. If γ > 0, then for all n ≥ 1, we get

d
(
Tn+1x0, T

nx0
)
≥ γ.
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Consequently, there exists δ < 1
2 such that

d
(
Tn+1x0, T

n+2x0
)

= d
(
T (Tnx0) , T

(
Tn+1x0

))
≤ δ

[
d
(
Tnx0, T

n+1x0
)

+ d
(
Tn+1x0, T

n+2x0
)]
.

This implies that

(1− δ) d
(
Tn+1x0, T

n+2x0
)
≤ δd

(
Tnx0, T

n+1x0
)
.

Thus, we have

d
(
Tn+1x0, T

n+2x0
)
≤ δ

1− δ d
(
Tnx0, T

n+1x0
)

≤
(

δ

1− δ

)2
d
(
Tn−1x0, T

nx0
)

...

≤
(

δ

1− δ

)n
d
(
Tx0, T

2x0
)

≤
(

δ

1− δ

)n+1
d (x0, Tx0) . (1)

Since δ < 1
2 , we see that k = δ

1−δ < 1. So, by using (1), it follows that

lim
n→∞

d
(
Tnx0, T

n+1x0
)

= 0, (2)

which is a contradiction. Hence γ = 0 and achieves the proof of this step.

Now, we shall prove that {xn}n given by xn = Tnx0 is a Cauchy sequence in X.
Suppose, to the contrary that {xn}n is not a Cauchy sequence. Thus, there exist ε > 0
and subsequences of integers (Nk), (nk), (mk) such that

Nk →∞, mk > nk > Nk,

and
ε ≤ d (xmk , xnk) . (3)

Since T is large-Kannan mapping, by using (3), there exists δ < 1
2 such that

ε ≤ d (xmk , xnk) = d (Txmk−1, Txnk−1) ≤ δ [d (xmk−1, xmk) + d (xnk−1, xnk)] .

Letting k →∞, from (2), follows that

lim
k→∞

d (xmk−1, xmk) = lim
k→∞

d (xnk−1, xnk) = 0.

Hence lim
k→∞

d (xmk , xnk) = 0, which is a contradiction. Thus {xn}n is a Cauchy
sequence in X. Finally, since X is complete, then there exists l ∈ X such that
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lim
n→∞

xn = lim
n→∞

Tnx0 = l. The continuity of T implies that T (l) = l, which proves that

l is a fixed point of T .
Now, suppose that l′ is another fixed point for T such that l 6= l′. Thus d (l, l′) ≥ ε0

for some ε0 > 0. Since T is Kannan-large mapping, there exists δ0 < 1
2 such that

d (l, l′) = d (T (l) , T (l′)) ≤ δ0 [d (l, T (l)) + d (l′, T (l′))] .

Hence, we get d (l, l′) = 0, which is a contradiction. Thus, we must have l = l′.

REMARK 6. For the case of large-Kannan mappings (in the continuous sense), the
existence of fixed points is proved without any assumption on the boundedness of the
set {d (x0, T

nx0)} for some x0 ∈ X.

COROLLARY 1. Let (X, d) be a complete metric space and T : X → X be a
selfmapping on X such that Tm0 is a large-Kannan mapping (in the continuous sense)
for some integer m0 ≥ 1. Then T has a unique fixed point in X.

PROOF. From Theorem 4, there exists z0 ∈ X such that Tm0z0 = z0, then

T (Tm0z0) = Tm0+1z0 = Tz0.

This gives Tm0 (Tz0) = Tz0 and implies that Tz0 is a fixed point for Tm0z0. The
uniqueness of the fixed point for the mapping Tm0 (given by Theorem 4) shows that
Tz0 = z0. Now, if z1 is another fixed point for T , then z1 is a fixed point for Tm0 .
Hence z0 = z1, which achieves the proof.

EXAMPLE 6. Let f : R → R, defined by f (x) = −x3. If x ≥ 0, we have |x| =
x ≤ x + x3 = x −

(
−x3

)
= |x− f (x)|. If x ≤ 0, we have |x| = −x ≤ −x − x3 =

−x +
(
−x3

)
= |x− f (x)|. Let us prove that f is not a Kannan mapping. For all

x, y ∈ R, we have
|f (x)− f (y)| =

∣∣x3 − y3∣∣ .
Thus

|x− f (x)|+ |y − f (y)| =
∣∣x+ x3

∣∣+
∣∣y + y3

∣∣ .
By taking y = 0 and letting x→ +∞, we get

lim
x→+∞

|f (x)− f0|
|x− f(x)|+ |0− f0| = lim

x→+∞

|f (x) |
|x+ x3| = lim

x→+∞

|x3|
|x+ x3| = 1 >

1

2
.

Consequently, f need not be a Kannan mapping.
Now, set

Ω =

{
(x, y) ∈ [−1, 1]

2
:
∣∣x2 + y2 + xy

∣∣+
1

2
|x− y|2 ≤ 1

2

}
.
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If x, y ∈ Ω, then

|f (x)− f (y)| =
∣∣x3 − y3∣∣

= |x− y|
∣∣x2 + y2 + xy

∣∣
≤ (|x|+ |y|)

∣∣x2 + y2 + xy
∣∣

≤ (|x− f (x)|+ |y − f (y)|)
∣∣x2 + y2 + xy

∣∣
≤ (|x− f (x)|+ |y − f (y)|)

(
1− |x− y|2

2

)
.

So, for a given (suffi ciently small) ε > 0, if x, y ∈ Ω satisfying that |x− y| ≥ ε, we have

|f (x)− f (y)| ≤ (|x− f (x)|+ |y − f (y)|)
(

1− ε2
2

)
.

Finally, to conclude that f is a large-Kannan mapping, it suffi ces to take δ (ε) = 1−ε2
2

which achieves the proof.

By Rakotch [11], let Σ denote the class of real-valued control functions (not neces-
sarily continuous) which satisfy the condition

Σ =

{
f : (0,∞)→

[
0,

1

2

[
, f (tn) 7→ 1

2
⇒ tn → 0 (n→∞)

}
.

Now, we are in position to prove a general version of Theorem 4 given as follows:

THEOREM 5. Let (X, d) be a complete metric space and T : X → X be a
selfmapping such that, for x, y ∈ X, with x 6= y, we have d (Tx, Ty) < d (x, y) and for
all ε > 0, there exists fε ∈ Σ such that

[x, y ∈ X, d (x, y) ≥ ε] =⇒ d (Tx, Ty) ≤ fε (d (x, y)) [d (x, Tx) + d (y, Ty)] .

Then T has a unique fixed point z0 in X.

PROOF. Let x0 ∈ X, if there exists an integer m0 ≥ 1 such that Tm0 (x0) =
Tm0+1 (x0), then T (Tm0x0) = Tm0x0 and Tm0x0 is a fixed point of T .
Now, assume that Tnx0 6= Tn+1x0 for every integer n ≥ 1. Define the sequence

{xn}n by xn = Tnx0. Hence

d (xn, xn+1) = d
(
Tnx0, T

n+1x0
)
< d

(
Tnx0, T

n−1x0
)

= d (xn−1, xn) ,

this implies that the sequence ζn = d (xn, xn+1) is strictly decreasing, consequently
lim

n−→+∞
ζn = γ ≥ 0. If γ > 0, by assumption, there exists fγ ∈ Σ such that

d (xn, xn+1) = d
(
Tnx0, T

n+1x0
)
≤ fγ (d (xn−1, xn)) [d (xn, xn+1) + d (xn−1, xn)] .

Therefore
d (xn, xn+1)

d (xn, xn+1) + d (xn−1, xn)
≤ fγ (d (xn−1, xn)) <

1

2
.
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Letting n→∞, it follows that

lim
n→∞

d (xn, xn+1)

d (xn, xn+1) + d (xn−1, xn)
=

γ

2γ
=

1

2
≤ lim
n→∞

fγ (d (xn−1, xn)) <
1

2
, (4)

which is a contradiction, then we must have γ = 0.
Now, we shall prove that {xn}n given by xn = Tnx0 is a Cauchy sequence in X.
Suppose, to the contrary, that {xn}n is not a Cauchy sequence in X. Thus, there

exist ε0 > 0, subsequences of positive integers (Nk), (nk) and (mk) such that

Nk →∞, mk > nk > Nk,

and
ε0 ≤ d (xmk , xnk) = d (Txnk−1, Txmk−1) . (5)

This last inequality shows that xmk−1 6= xnk−1. Now, by assumptions and using the
relation 5, there exists fε ∈ Σ such that

ε0 ≤ d (xnk , xmk) = d (Txnk−1, Txmk−1)

≤ fε (d (xnk−1, xmk−1)) [d (xnk−1, xnk) + d (xmk−1, xmk)]

<
1

2
[d (xnk−1, xnk) + d (xmk−1, xmk)] .

Letting k →∞, it follows that

ε0 ≤ lim
k→∞

d (xnk , xmk) = 0,

which is a contradiction. Thus {xn}n is a Cauchy sequence in X. Since X is a complete
metric space, there exists z0 ∈ X such that lim

n−→+∞
xn = z0. To prove that z0 is a fixed

point for T , we argue as follows:

Select an arbitrary integer n ≥ 1. By using the triangle inequality, we get

d(z0, T z0) ≤ d(z0, xn+1) + d(Tz0, xn+1)

= d(z0, xn+1) + d(Tz0, Txn).

Without loss of generality, we assume that xn 6= z0. Hence

d(z0, T z0) ≤ d(z0, xn+1) + d(Tz0, xn+1)

≤ d(z0, xn+1) + 1
2 (d(xn, xn+1) + d(z0, T z0)).

Similarly

0 ≤ 1
2d(z0, T z0) ≤ d(z0, xn+1) + 1

2d(xn, xn+1).

Letting n −→ +∞, it follows that

0 ≤ 1
2d(z0, T z0) ≤ lim

n−→+∞
d(z0, xn+1) +

1

2
lim

n−→+∞
d(xn, xn+1) = 0.
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Consequently, z0 is a fixed point for T .

If T has two fixed points z0, z1 ∈ X, z0 6= z1, thus, by our assumption and putting
ε = d(z0, z1), there exists f ε2 (taking its values in the interval [0, 12 [) such that

0 <
ε

2
< d(z0, z1) = d(Tz0, T z1) ≤ f ε2 (d(z0, z1)) (d(z0, T z0) + d(z1, T z1))

<
1

2
(d(z0, T z0) + d(z1, T z1)) = 0.

This is a contradiction. Consequently, we must have z0 = z1 which achieves the proof.

REMARK 7. It is worth noting that the condition d (Tx, Ty) < d (x, y) , (x 6= y)
does not imply the existence of the fixed point. To see this, it suffi ces to take (X, d) =
(R, |·|) and Tx =

√
x2 + 1.

DEFINITION 3. Let (X, d) be a metric space and T be a selfmapping on X. T is
said to be asymptotically regular if for each x ∈ X we have lim

n→∞
d
(
Tnx, Tn+1x

)
= 0.

Define now the class of functions Σ′ by

Σ′ = {f : (0,∞)→ [0, 1[ , f (tn) 7→ 1⇒ tn → 0 (n→∞)}

In the following fixed point theorem, we drop the condition d (Tx, Ty) < d (x, y),
(x 6= y) and we replace it by T continuous and asymptotically regular.

THEOREM 6. Let (X, d) be a metric space and let T be a continuous selfmapping
on X which is asymptotically regular. Assume that for every ε > 0, there exist fε ∈ Σ′

such that

[x, y ∈ X, d (x, y) ≥ ε] =⇒ d (Tx, Ty) ≤ fε (d (x, y)) [d (x, Tx) + d (y, Ty)] .

Then T has a unique fixed point z0 in X. Moreover for each x0 ∈ X, the sequence of
iterates {Tnx0}n converges to z0.

PROOF. Let x0 ∈ X and define the sequence {xn}n by xn = Tnx0 for all integer
n ≥ 1. If there exists m0 ≥ 1 such that Tm0 (x0) = Tm0+1 (x0), then T (Tm0x0) =
Tm0x0 and Tm0x0 is a fixed point of T .
Now, suppose that Tnx0 6= Tn+1x0 for all n ≥ 1. We shall prove that {xn}n is a
Cauchy sequence in X.
If it’s not the case, there exist ε0 > 0 and subsequences of positive integers (Nk), (nk)
and (mk) such that lim

k−→+∞
Nk = +∞, mk > nk > Nk and d (xmk , xnk) ≥ ε0. Thus,

by using our assumptions and the triangle inequality, we get

d (xmk , xnk) ≤ d (xmk , xmk+1) + d (xmk+1, xnk+1) + d (xnk+1, xnk)

≤ d (xmk , xmk+1) + fε0 (d (xnk , xmk)) [d (xnk , xnk+1) + d (xmk , xmk+1)]

+ d (xnk+1, xnk) ,
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for some fε0 ∈ Σ′.
Then,

[1− fε0 (d (xnk , xmk))] d (xnk , xmk) ≤ d (xnk , xmk)

≤ [1 + fε0 (d (xnk , xmk))]

× (d (xnk , xnk+1) + d (xmk , xmk+1)) . (6)

Dividing each right side in (6) by

[1− fε0 (d (xnk , xmk))]× (d (xnk , xnk+1) + d (xmk , xmk+1)) ,

and using the fact that d (xmk , xnk) ≥ ε0, we conclude

ε0
d (xnk , xnk+1) + d (xmk , xmk+1)

≤ d (xnk , xmk)

d (xnk , xnk+1) + d (xmk , xmk+1)

≤ 1 + fε0 (d (xnk , xmk))

1− fε0 (d (xnk , xmk))
.

Letting k →∞, thus

lim
k→+∞

1 + fε0 (d (xnk , xmk))

1− fε0 (d (xnk , xmk))
= +∞.

Consequently,
lim sup
n,m→∞

fε0 (d (xn, xm)) = 1. (7)

Since fε0 ∈ Σ′, we obtain
lim

n,m→∞
d (xn, xm) = 0,

which is a contradiction. Hence {xn}n must be a Cauchy sequence.
Therefore, sinceX is a complete metric space, there exists z′0 ∈ X such that limxn =

z′0. The continuity of T implies that Tz
′
0 = z′0.

If z′1 is another fixed point for T such that z
′
0 6= z′1. Set d (z′0, z

′
1) = ε1 >

ε1
2 . Then

by assumption there exists f ε1
2
∈ Σ′ such that[

x, y ∈ X, d (x, y) ≥ ε1
2

]
=⇒ d (Tx, Ty) ≤ f ε1

2
(d (x, y)) [d (x, Tx) + d (y, Ty)] .

It follows that

d (z′0, z
′
1) ≤ fε1 (d (z′0, z

′
1))× [d (z′0, T z

′
0) + d (z′1, T z

′
1)] = 0,

which is a contradiction. Hence z′0 = z′1 which achieves the proof.

2.2 Large-Kannan Contractions in the Non (Necessarily) Con-
tinuous Sense

In this section, we focus our study on fixed point results for Kannan-large mappings
which are not necessarily continuous. First of all, we start by following definition
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DEFINITION 4. Let (X, d) be a metric space and let T : X → X be a selfmapping.
T is said to be a large-Kannan contraction (in the non-necessarily-continuous sense),
if for x, y ∈ X, with x 6= y, we have d (Tx, Ty) < 1

2 (d (x, Tx) + d (y, Ty)), and if for all
ε > 0, there exists δ < 1

2 such that

[x, y ∈ X, d (x, y) ≥ ε] =⇒ d (Tx, Ty) ≤ δ [d (x, Tx) + d (y, Ty)] .

REMARK 8. The following example given in [7] shows that mappings satisfying
that d (Tx, Ty) < 1

2 (d (x, Tx) + d (y, Ty)) may fail to have fixed points.

EXAMPLE 7. Let X = {1 + 1
n , n = 1, 2, ...} and d0 : X×X −→ [0,+∞[ defined by

d0(x, y) =

{
0 if x = y,
x+ y if x 6= y.

Thus (X, d0) is a complete metric space. On the other hand, let T : (X, d0) −→ (X, d0)
defined by T (1 + 1

n ) = 1 + 1
n+1 . In [7], it was proved that T satisfies the inequality

d0 (Tx, Ty) < 1
2 (d0 (x, Tx) + d0 (y, Ty)) for x 6= y but T has no fixed points.

THEOREM 7. Let (X, d) be a complete metric space and let T : (X, d) −→ (X, d)
be a large-Kannan mapping (in the non-necessarily continuous sense). Then T has a
unique fixed point.

PROOF. The uniqueness: If T has two fixed points x0, x1 ∈ X,x0 6= x1. Thus

0 ≤ d(x0, x1) = d(Tx0, Tx1) <
1

2
(d(x0, Tx0) + d(x1, Tx1)) = 0,

which is a contradiction.

The existence: Step 1: Let x0 ∈ X and define the Picard sequence {xn}n by xn =
Tnx0 for all integer n ≥ 1. If there exists an integer m0 ≥ 1 such that Tm0x0 =
Tm0+1x0, thus Tm0x0 is a fixed point point for T and the proof is achieved. Now,
assume that xn = Tnx0 6= Tn+1x0 = xn+1 for all n ≥ 1. We shall prove that the
sequence εn = d(xn, xn+1) is strictly decreasing.

We have

d(xn, xn+1) = d(TTn−1x0, TT
nx0)) <

1
2 (d(Tn−1x0, T

nx0) + d(Tnx0, T
n+1x0))

= 1
2 (d(xn−1, xn) + d(xn, xn+1)).

So, we conclude that d(xn, xn+1) < d(xn−1, xn), which proves that εn = d((xn−1, xn)
is strictly decreasing. Hence, there exists ε0 ≥ 0 such that lim

n−→+∞
d(xn, xn+1) = ε0.

Step 2: ε0 = 0 : Suppose that ε0 > 0, since the sequence εn = d(xn, xn+1) is decreasing,
we get ε0 < d(xn, xn+1) for all integer n ≥ 1. Thus, by assumption there exists
0 < δ0 <

1
2 such that
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d(xn, xn+1) = d(TTn−1x0, TT
nx0)) ≤ δ0(d(Tn−1x0, T

nx0) + d(Tnx0, T
n+1x0))

= δ0(d(xn−1, xn) + d(xn, xn+1)),
which gives

d(xn, xn+1) ≤ δ0
1−δ0 d(xn−1, xn).

By induction, it follows that

d(xn, xn+1) ≤ ( δ0
1−δ0 )nd(x0, x1).

Afterwards, since 0 < δ0 <
1
2 , then

δ0
1−δ0 < 1. This proves that lim

n−→+∞
(

δ0
1− δ0

)n = 0

and implies lim
n−→+∞

d(xn, xn+1) = 0 which is a contradiction. Consequently ε0 = 0.

Step 3: {xn}n is a Cauchy sequence in X:

If it is not the case, then there exists α0 and subsequences of integers {Nk}, {nk} and
{mk} with mk > nk > Nk such that α0 ≤ d(xnk , xmk) = d(Txnk−1, Txmk−1), which
leads to deduce that xmk−1 6= xnk−1.

Thus, by assumption and using the fact that the sequence εn = d(xn, xn+1) is decreas-
ing, we get

α0 ≤ d(xmk , xnk) = d(Txnk−1, Txmk−1)

≤ 1
2 (d(xnk−1, xnk) + d(xmk−1, xmk))

≤ d(xnk−1, xnk).

Letting k −→ +∞, it follows that

α0 ≤ lim
k→+∞

d(xmk , xnk) ≤ lim
k→+∞

d(xnk , xnk−1) = 0,

which is a contradiction. Hence {xn}n is a Cauchy sequence.

Since X is a complete metric space, there exists z0 ∈ X such that lim
n−→+∞

xn = z0.

Step 4: z0 is a fixed point for T :

Select an arbitrary integer n ≥ 1 and using the triangle inequality, we obtain

d(z0, T z0) ≤ d(z0, xn+1) + d(Tz0, xn+1).

= d(z0, xn+1) + d(Tz0, Txn).

Without loss of generality, we assume that xn 6= z0. Thus

d(z0, T z0) ≤ d(z0, xn+1) + d(Tz0, xn+1).

≤ d(z0, xn+1) + 1
2 (d(xn, xn+1) + d(z0, T z0)).

Similarly
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0 ≤ 1
2d(z0, T z0) ≤ d(z0, xn+1) + 1

2d(xn, xn+1).

Letting n −→ +∞, we deduce

0 ≤ 1
2d(z0, T z0) ≤ lim

n−→+∞
d(z0, xn+1) +

1

2
lim

n−→+∞
d(xn, xn+1) = 0.

Hence d(z0, T z0) = 0. Consequently, z0 is a fixed point for T which achieves the proof.

REMARK 9. Following the same way given in Theorem 7, we can establish a
variants of Corollary 1 and Theorem 6 for the case of large-Kannan mappings (in the
non-necessarily continuous sense).

3 Applications

In this last section, we prove that our results established in the previous section enable
us to solve some implicit functional integral equations.
Let (8) be the integral equation formulated as a fixed point problem of the following

nonlinear mapping

Tx (t) = γx (t) +

∫ t

−1
κ (t, s, x (s) , Tx (s)) ds where 0 < γ <

1

3
, (8)

in Banach space E = C ([−1, 1] ,R) of scalar continuous functions where the investiga-
tion is essentially based on the properties of the kernel κ (·, ·, ·, ·).

Under the following assumptions:

1. κ (t, s, x (s) , Tx (s)) ≥ 0 for t, s ∈ [−1, 1] such that κ (·, ·, 0, ·) 6= 0 and T (M) ⊆M
where M = {z ∈ E : −1 ≤ z (t) ≤ 1}.

2. The mapping G defined by Gx (t) =

∫ t

−1
κ (t, s, x (s) , Tx (s)) ds satisfies Gx ∈M

for all x ∈M and

‖Gx−Gy‖ < (1− γ) ‖x− y‖ , ∀x, y ∈M, (x 6= y) .

3. For a given ε > 0, there exists δ < 1−3γ
2 such that if x, y ∈ M and ‖x− y‖ ≥ ε ,

we have for all t ∈ [−1, 1]

|Gx (t)−Gy (t) | ≤ δ (|x (t)− Tx (t) |+ |y (t)− Ty (t) |) .

Then T has unique fixed point in M .

PROOF. We have

x (t)− Tx (t) = (1− γ)x (t)−
∫ t

−1
κ (t, s, x (s) , Tx (s)) ds.
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Let x, y ∈M with ‖x− y‖ ≥ ε. Then, by using our assumptions, we get

|Tx (t)− Ty (t)|

=

∣∣∣∣γ (x (t)− y (t)) +

∫ t

−1
κ (t, s, x (s) , Tx (s)) ds−

∫ t

−1
κ (t, s, y (s) , T y (s)) ds

∣∣∣∣
≤ γ |x (t) + Tx (t)− Tx (t) + Ty (t)− Ty (t)− y (t)|

+

∣∣∣∣∫ t

−1
[κ (t, s, x (s) , Tx (s))− κ (t, s, y (s) , T y (s))] ds

∣∣∣∣
≤ γ (‖x− Tx‖+ ‖y − Ty‖+ ‖Tx− Ty‖)

+δ (‖x− Tx‖+ ‖y − Ty‖) ,

which gives that

‖Tx− Ty‖ ≤ γ ‖Tx− Ty‖+ (γ + δ) (‖x− Tx‖+ ‖y − Ty‖) .

Hence

‖Tx− Ty‖ ≤
(
γ + δ

1− γ

)
(‖x− Tx‖+ ‖y − Ty‖) .

Now, since 0 < δ < 1−3γ
2 , then γ+δ

1−γ <
1
2 and the result is an immediate consequence of

Theorem 4.

REMARK 10. In equation (8), if T is a large-Kannan mapping (in the non-
necessarily continuous sense) which is satisfied under assumptions (1) and (3) and
if (2) is replaced by the following;

(2′) The mapping G defined by Gx (t) =

∫ t

−1
κ (t, s, x (s) , Tx (s)) ds satisfies that Gx ∈

M for all x ∈M and for all x, y ∈M with x 6= y, we have

‖Gx−Gy‖ < 1−3γ
2 (‖x−Gx‖+ ‖y −Gy‖).

Thus, by the same reasoning given above and using Theorem 7, we prove that the
equation (8) has a unique solution.

REMARK 11. If G is continuous and G (M) is a compact set in M , then the fixed
point of T can be deduced as an immediate consequence of Krasnoselskii’s theorem
since the mapping A : M →M defined by Aψ = γψ is a contraction and satisfies that
A (M) ⊂M .

4 Conclusion

In applications, the implicit functional equation (8) is related to a large class of inter-
esting problems. Several authors have studied important properties of their solutions
(stability, controlability, ....). A major problem appears when the inversion of a per-
turbed differential operator does not yield a contraction and a compact mapping or
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when it is hard to check this fact, since in this situation the classical Krasnoselskii’s
fixed point result or analog does not apply. To overcome this constrainst, we solve
this equation by treating the continuous and non-continuous cases provided that the
kernel or its associated mapping satisfies large-Kannan assumptions which is the main
motivation of this work.
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