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Abstract

A helix surface or constant angle surface is a surface whose unit normal vector
field forms a constant angle with a fixed field of directions of the ambient space.
In this paper we study surfaces in S2 × R for which the unit normal makes a
constant angle with the R-direction. The main idea is to show that a constant
angle surface in S2 × R can be obtained by a quaternion product and a matrix
representation. Also we give some related examples with figures of projections of
obtained surfaces

1 Introduction

An interesting problem of differential geometry of submanifolds, intensively studied in
last years, consists in classification and characterization of surfaces whose unit normal
vector field forms a constant angle with a fixed field of directions of the ambient space.
These surfaces are called helix surfaces or constant angle surfaces and they have been
studied in all the 3-dimensional geometries. In recent years much work has been done
to understand the geometry of the helix surfaces and they have been classsified in
all the 3-dimensional Riemannian geometries (see [1, 3, 4, 15, 17] etc.). This kind of
surfaces are strictly related to describe some phenomena in physics of interfaces in
liquids crystals and of layered fluids [17]. The early results were obtained by studying
surfaces isometrically immersed in product spaces of type M2 × R, namely taken M2

to be the unit 2-sphere S2, the hyperbolic plane H2 respectively in [3, 4]. The angle
was considered between the unit normal of the surface M and the tangent direction
to R. An interesting classification of surfaces in the 3-dimensional Heisenberg group
making a constant angle with the fibers of the Hopf-fibration was obtained in [10].
Moreover, Munteanu and Nistor obtained a classification of all surfaces in Euclidean
3-space for which the unit normal makes a constant angle with a fixed vector direction
being the tangent direction to R [15]. In [1], it is also classified certain special ruled
surfaces in R3 under the general theorem of characterization of constant angle surfaces.
A classification is given of special developable surfaces and some conical surfaces from
the point of view the constant angle property in [22]. Also some characterization are
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given for a curve lying on a surface for which the unit normal field along the curve
makes a constant angle with a fixed direction [22]. These curves are called isophote
curves in literature.

On the other hand, several authors have studied constant angle surfaces in Minkowski
3-space. Lopez and Munteanu investigated spacelike surfaces with the constant timelike
direction [18]. By choosing the constant direction as a spacelike vector, Atalay et al.
obtained different parametrization for the spacelike constant angle surfaces [6]. Also,
the classifications are given for the timelike surfaces whose normal vector field makes a
constant angle with a constant direction by Guler et al in [5]. In another recent paper
[9] it is defined constant angle spacelike and timelike surfaces in the three-dimensional
Heisenberg group and equipped with a 1-parameter family of Lorentzian metrics.

A rotation in R3 about an axis through the origin can be represented by a 3 × 3
orthogonal matrix with determinant 1. However, the matrix representation seems
redundant because only four of its nine elements are independent. Also the geometric
interpretation of such a matrix is not clear until we carry out several steps of calculation
to extract the rotation axis and angle. Furthermore, to compose two rotations, we need
to compute the product of the two corresponding matrices, which requires twenty-seven
multiplications and eighteen additions.

Quaternions are very effi cient for analyzing situations where rotations in R3 are
involved. A quaternion is a 4-tuple, which is a more concise representation than a
rotation matrix. Its geometric meaning is also more obvious as the rotation axis and
angle can be trivially recovered. The quaternion algebra to be introduced will also
allow us to easily compose rotations. This is because quaternion composition takes
merely sixteen multiplications and twelve additions [24]. So, quaternionic approach is
a very important method for obtaining surfaces. For example in recent years several
authors used this method for obtaining canal surfaces and constant slope surfaces
[2, 8, 12, 13, 14, 16, 19, 20, 21, 25].

Quaternions are members of a noncommutative division algebra first invented by
William Rowan Hamilton. The idea for quaternions occurred to him while he was
walking along the Royal Canal on his way to a meeting of the Irish Academy, and
Hamilton was so pleased with his discovery that he scratched the fundamental formula
of quaternion algebra,

i2 = j2 = k2 = ijk = −1

into the stone of the bridge.

While the quaternions are not commutative, they are associative, and they form a
group known as the quaternion group. Many physical laws in classical, relativistic, and
quantum mechanics can be written nicely using them.

The main idea in this paper is to show that constant angle surfaces in S2×R can be
obtained by quaternion product and the matrix representations with similar methods of
the paper [12]. Finally, some examples of these surfaces are given with their projections
of figures by using the Mathematica Programme.
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2 Preliminary

In this section we introduce the notion of constant angle surfaces in S2×R and give some
first characterizations. Let S2 × R be the Riemannian product of the 2-sphere S2(1)

and R with the standard metric 〈, 〉 and Levi-Civita connection 5̃. We denote by ∂
∂t a

unit vector field in the tangent bundle T
(
S2 × R

)
that is tangent to the R−direction.

Now consider a surface M in S2×R. Let us denote by ξ a unit normal to M . Then
we can decompose ∂

∂t as

∂

∂t
= T + cos θξ

where T is the projection of ∂
∂t on the tangent space of M and is the angle function

defined by

cos θ(p) =

〈
∂

∂t
, ξ

〉
for every point p ∈M .
By a constant angle surface M in S2 × R, we mean a surface for which the angle

function θ is constant on M . There are two trivial cases, θ = 0 and θ = π
2 . The

condition θ = 0 means that ∂
∂t is always normal, so we get a S

2 × {t0} . In the second
case ∂

∂t is always tangent. This corresponds to the Riemannian product of a curve in
S2and R.

The characterization of constant angle surface in S2×R was given in [3], where look
at S2 × R as a hypersurface in E4 and denote by ∂

∂t = (0, 0, 0, 1). The main result is
the following:

THEOREM 1. A surface M in S2 ×R is a constant angle surface if and only if the
immersion F is (up to isometries of S2 × R) locally given by

F : M −→ S2 × R : (u, v)→ F (u, v),

where
F (u, v) = (cos (ξ) f(v) + sin (ξ) f(v)Λf ′(v), u sin θ) ,

f : I → S2 is a unit speed curve in S2 and θ ∈
[
0, π2

]
is the constant angle, ξ = ξ(u) =

u cos θ, and Λ denotes the cross product in R3 [3].

Now let us give some basic concepts about the real quaternions. Let

Q = {q = d+ ai+ bj + ck : a, b, c, d ∈ R}

denotes the set of all real quaternions. A real quaternion is defined by q = d+ai+bj+ck
where a, b, c, d are real numbers and i, j, k are orthogonal unit spatial vectors in three
dimensional space such that i2 = j2 = k2 = ijk = −1. Moreover, i, j and k are
orthogonal unit spatial vectors of R3 and the quaternion product × of spatial vectors
is the same as the cross product of the vectors which satisfy following multiplication
rules: i × j = k, j × k = i, k × i = j. Although quaternion algebra is associative,
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it is not commutative. For this reason, extra care has to be taken when performing
arbitrary multiplications in Q. Standard orthonormal basis of quaternions is {1, i, j, k}
and identity element of Q is 1. A quaternion can be written as q = d+ ai+ bj + ck or
q = Sq + V q, where Sq = d ∈ R is the scalar component of q and V q = ai+ bj + ck is
the vectorial component of q. We also write following four-tuple notation to represent
a quaternion:

q = (a, b, c, d) = (w, d) ,

where Sq = d ∈ R and V q = w ∈ R3. If Sq = 0, the quaternion is called pure
quaternion. Addition of two quaternions, multiplication of a quaternion with a scalar
λ ∈ R and conjugate of a quaternion, q, can be given in Q as follows:

q + p = (Sq + Sp) + (V q + V p),

λq = λSq + λV q,

q = Sq − V q.

By using dot and cross-product we can give the quaternion product of two quaternions
p and q as:

q × p = SqSp− 〈V q, V p〉+ SqV p+ SpV q + V q ∧ V p,

where × is the quaternion product. Given q = d + ai + bj + ck ∈ Q, the norm of q is
denoted by Nq = d2 + a2 + b2 + c2 and we can note the following relationship between
q and its conjugate q

Nq = q × q = q × q.

If Nq = 1, it is called a unit quaternion. So if q 6= 0, then we get the equation
q × q

Nq = q
Nq × q = 1, which gives us that the inverse of q can be given as

q−1 =
q

Nq

Moreover, a unit quaternion can be written as q = cos θ + sin θS, where S ∈ R3 and
‖S‖ = 1, [7, 11, 23].
Let Φ : R3 → R3 be a linear mapping and Φ = q × v × q−1, where q is a unit

quaternion and v is a pure quaternion (that is, a vector in R3). So, for every unit
quaternion q = a0 + a1i + a2j + a3k, we can give matrix representation Mq of Φ by
using pure quaternion basis elements of Q as:

Mq =

 a20 + a21 − a22 − a23 −2a0a3 + 2a1a2 2a0a2 + 2a1a3
2a0a3 + 2a1a2 a20 − a21 + a22 − a23 −2a0a1 + 2a2a3
−2a0a2 + 2a1a3 2a0a1 + 2a2a3 a20 − a21 − a22 + a23


where Mq is orthogonal because MqM

T
q = I3 and detMq = 1. Thus, we can say that

the linear mapping Φ is a rotation in 3-dimensional space.
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3 A New Approach On Constant Angle Surface in
S2 × R with Quaternions

In this section we consider Q(u, v) = cos ξ(u) − sin ξ(u)f ′(v) defines a 2-dimensional
surface in S3 ⊂ R4, where f ′(v) = (f ′1(v), f ′2(v), f ′3(v)) and ‖f ′(v)‖ = 1. As we gave
earlier, for the unit quaternion Q(u, v), the matrix represantation of the map Φ : R3 →
R3 is given by

MQ =

 cos2 ξ +
(
f ′21 − f

′2
2 − f

′2
3

)
sin2 ξ 2

(
f ′3 cos ξ + f ′1f

′
2 sin ξ

)
sin ξ 2

(
−f ′2 cos ξ + f ′1f

′
3 sin ξ

)
sin ξ

2
(
−f ′3 cos ξ + f ′1f

′
2 sin ξ

)
sin ξ cos2 ξ +

(
−f ′21 + f ′22 − f

′2
3

)
sin2 ξ 2

(
f ′1 cos ξ + f ′2f

′
3 sin ξ

)
sin ξ

2
(
f ′2 cos ξ + f ′1f

′
3 sin ξ

)
sin ξ 2

(
−f ′1 cos ξ + f ′2f

′
3 sin ξ

)
sin ξ cos2 ξ +

(
−f ′21 − f

′2
2 + f ′23

)
sin2 ξ

 .
We are now ready to show main result of this paper:

THEOREM 2. Let F : M −→ S2 × R : (u, v) → F (u, v) be an immersion (up to
isometries of S2 × R). Then the constant angle surface M can be reparametrized by

F (u, v) = u sin θ +Q(u, v)×Q1(u, v), (1)

where "×" is the quaternion product, Q1(u, v) = f(v) is a unit speed curve in S2 and
a pure quaternion and θ ∈

[
0, π2

]
is the constant angle.

PROOF. Since Q(u, v) = cos ξ(u)− sin ξ(u)f ′(v) and Q1(u, v) = f(v), we obtain

Q(u, v)×Q1(u, v) = (cos ξ(u)− sin ξ(u)f ′(v))× f(v)

= cos ξ(u)f(v)− sin ξ(u)f ′(v)× f(v).

By using the quaternion product, we get

f ′(v)× f(v) = −〈f ′(v), f(v)〉+ f ′(v)Λf(v).

We know that 〈f ′(v), f(v)〉 = 0 since f is a unit speed curve in S2. Thus

f ′(v)× f(v) = f ′(v)Λf(v) = −f(v)Λf ′(v).

So we find that Q(u, v)×Q1(u, v) is given by

Q(u, v)×Q1(u, v) = cos ξ(u)f(v) + sin ξ(u)f(v)Λf ′(v).

Then the immersion F : M → S2 × R is given by

F (u, v) = u sin θ + cos (u cos θ) f(v) + sin (u cos θ) f(v)Λf ′(v)

= (cos (u cos θ) f(v) + sin (u cos θ) f(v)Λf ′(v), u sin θ) ,

which conclude the proof.

REMARK 1. Theorem 2 says that a unit speed curve f (v) in S2 is rotated by
Q(u, v) through the angle ξ(u) about the axis Sp{f ′ (v)} to obtain a constant angle
surface in S2 × R.
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As a consequence of this theorem, we get the following corollary.

COROLLARY 1. Let MQ be the matrix representation of the map Φ : R3 → R3
for the unitary quaternion Q(u, v). Then, for the pure quaternion Q1(u, v), we get the
constant angle surface in S2 × R as

F (u, v) = u sin θ +MQQ1(u, v).

Remark also that the two trivial cases are included in the parametrization (1).

(i) If θ = 0, then ξ(u) = u, Q(u, v) = cosu− sinuf ′(v), (1) becomes

F (u, v) = Q(u, v)×Q1(u, v)

which gives us S2 × {0} .

(ii) If θ = π
2 , then ξ(u) = 0, Q(u, v) = 1, (1) becomes

F (u, v) = u+Q1(u, v)

This clearly gives the Riemannian product of a curve in S2 and R.

We now want to give some examples about the constant angle surfaces in S2 × R.

EXAMPLE 1. Let f(v) =
(√

2
2 sin v, cos v,

√
2
2 sin v

)
is a unit speed curve in S2 and

θ = 0. Then the constant angle surface M can be parametrized by

F (u, v) = Q(u, v)×Q1(u, v)

= cosu

(√
2

2
sin v, cos v,

√
2

2
sin v

)
+ sinu

(√
2

2
, 0,−

√
2

2

)

=

(√
2

2
(cosu sin v + sinu) , cosu cos v,

√
2

2
(cosu sin v − sinu) , 0

)
,

see Figure 1.

EXAMPLE 2. Let f(v) =
(√

3
2 cos v, sin v, 12 cos v

)
is a unit speed curve in S2 and

θ = π
2 . Then the constant angle surface M can be parametrized by

F (u, v) = u+Q1(u, v)

=

(√
3

2
cos v, sin v,

1

2
cos v, u

)
,

see Figure 2.
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EXAMPLE 3. Let Q1(u, v) = f(v) = (cos v, sin v, 0) is a great circle in S2,
ξ(u) = u cos θ and Q(u, v) = cos ξ(u) − sin ξ(u)(− sin v, cos v, 0). Then the constant
angle surface M can be parametrized by

F (u, v) = u sin θ +Q(u, v)×Q1(u, v)

= u sin θ + cos ξ(u)f(v) + sin ξ(u)f(v)× f ′(v)

= u sin θ + cos ξ(u)(cos v, sin v, 0) + sin ξ(u)(0, 0, 1)

= u sin θ + (cos ξ(u) cos v, cos ξ(u) sin v, sin ξ(u)).

Up to parametrization we get

F (u, v) = (cosu cos v, cosu sin v, sinu, u tan θ) ,

where θ ∈
(
0, π2

)
, see Figure 3.

4 Visualization

Geometric modeling of the 3D-surfaces is very important step at the surface modeling
systems. We visualize the surfaces with the parametrization

F (u, v) = (x(u, v), y(u, v), z(u, v), w(u, v))

in R4 by Mathematica Programme. We plot the graph of the surface with plotting
command

ParametricPlot3D[{x(u,v),y(u,v),z(u,v)+w(u,v)},{u,a,b},{v,c,d}]
We construct the geometric model of the constant angle surfaces in S2 ×R defined

in Example 1 (See Figure 1), Example 2 (See Figure 2) and Example 3 (See Figure 3).

Figure 1: The projections of constant angle surfaces in S2 × R, obtained for
u ∈ [−π, π] , v ∈ [−π, π] .
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Figure 2: The projections of constant angle surfaces in S2 × R, obtained for
u ∈ [−π, π] , v ∈ [−π, π] .

Figure 3: The projections of constant angle surfaces in S2 × R, obtained for
u ∈ [−π, π] , v ∈

[
−π2 ,

π
2

]
θ = π

6 .
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