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Abstract

A stage structure single species model with cannibalism takes the form

dx

dt
= αy − γx− Ωx− θxy,

dy

dt
= Ωx− βy

is revisited in this paper, where α, γ,Ω, θ and β are all positive constants. We
first show by numeric simulation that one of the main result of Shujing Gao
is incorrect. Then by constructing some suitable Lyapunov function, suffi cient
conditions which ensure the globally asymptotically stability of the boundary
equilibrium of above system is obtained.

1 Introduction

The aim of this paper is to investigate the dynamic behaviors of the following stage
structure single species model with cannibalism

dx
dt = αy − γx− Ωx− θxy,
dy
dt = Ωx− βy, (1)

where α, γ, Ω, θ and β are all positive constants, x(t) is the density of the immature
species at time t, y(t) is the density of the mature species at time t, respectively.

The dynamic behaviors of the stage structured ecosystem has recently been studied
by many scholars, see [1]—[22] and the references cited therein. Also, topics such as the
extinction, persistent and stability of the ecosystem are extensively studied in [1]—[30].
Gao [30] proposed the stage structured system (1). Concerned with the stability

property of the nonnegative equilibrium of system (1), the author obtained the following
results (Theorem 1.2, 1.3, 2.1 and 2.2, respectively).
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THEOREM A. Assume that
α > β (2)

holds. Then the boundary equilibrium E1(0, 0) is unstable. Assume that

α < β (3)

holds. Then the boundary equilibrium E1(0, 0) is locally asymptotically stable.

THEOREM B. Assume that

αΩ− βγ − βΩ > 0 (4)

holds. Then the positive equilibrium E2(x
∗, y∗) is locally asymptotically stable, here

x∗ =
αΩ− βγ − βΩ

θΩ
, y∗ =

αΩ− βγ − βΩ

βθ
.

THEOREM C. Assume that

α > β, αΩ− βγ − βΩ > 0 (5)

hold. Then the positive equilibrium E2(x
∗, y∗) is globally asymptotically stable.

THEOREM D. Assume that

α < β, α < Ω + 2γ, α+ Ω < 2β (6)

hold. Then the boundary equilibrium E1(0, 0) is globally asymptotically stable.

Now let’s consider the following two examples.

EXAMPLE 1.1. Consider the following system

dx
dt = 2y − 2x− x− xy,
dy
dt = x− y. (7)

Here, we assume that α = 2, γ = 2, Ω = 1, θ = 1 and β = 1. Then α = 2 > 1 = β holds.
That is, the condition (2) of Theorem A holds, hence, E1(0, 0) should be unstable,
however, numeric simulation (Fig. 1) shows that in this case, E1(0, 0) is globally
asymptotically stable.
Above example shows that although the condition (2) of Theorem A holds, the

result of Theorem A may still not hold.

EXAMPLE 1.2. Consider the following system

dx
dt = y − x− x− xy,
dy
dt = x− 2y.

(8)
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Figure 1: Dynamic behaviors of the system (7) the initial condition (x(0), y(0)) = (2, 2),
(2, 1) and (0.5, 2), respectively.

Here, we assume that α = 1, γ = 1, Ω = 1, θ = 1 and β = 2. Then α = 1 < 2 = β and
α = 1 < 3 = Ω+2γ hold. That is, the first and second inequalities in (6) does not hold,
hence, one could only obtain the local stability property of E1(0, 0) from Theorem A,
and could not draw any conclusion about the global asymptotic stability property of
this equilibrium, however, numeric simulation (Fig.2) shows that in this case, E1(0, 0)
is globally asymptotically stable.
Above example shows that although the condition (6) of Theorem D does not hold,

the result of Theorem D may still hold.
Above two examples show that one needs to revisit the stability property of the

system (1).
The aim of this paper is to obtain a set of suffi cient condition which ensure the

local and global asymptotically stable of the nonnegative equilibrium E1(0, 0).

2 Main Results

For the stability property of the non-negative equilibrium E1(0, 0), we have the follow-
ing result.

THEOREM 2.1. Assume that

αΩ− βγ − βΩ < 0 (9)

holds. Then the nonnegative equilibrium E1(0, 0) of system (1) is locally asymptotically
stable and globally asymptotically stable.

PROOF. To end the proof of Theorem 2.1, it is enough to show that E1(0, 0) is
globally asymptotically stable under the assumption (9).
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Figure 2: Dynamic behaviors of the system (8) the initial condition (x(0), y(0)) = (2, 2),
(2, 1) and (0.5, 2), respectively.

We will prove this assertion by constructing the suitable Lyapunov function.

Now let’s consider the Lyapunov function

V (x, y) = K1x+K2y,

where K1 and K2 are some constants determined later. One could easily see that the
function V is zero at the boundary equilibrium E1(0, 0) and is positive for all other
positive values of x, y. The time derivative of V along the trajectories of (1) is

D+V (t)

= K1

(
αy − γx− Ωx− θxy

)
+K2

(
Ωx− βy

)
=

(
K1α−K2β

)
y +

(
K2Ω−K1(γ + Ω)

)
x−K1θxy.

Let’s take K1 = β,K2 = α. Then

D+V (t) =
(
αΩ− β(γ + Ω)

)
x− βθxy.

It then follows from (9) that D+V (t) < 0 strictly for all x, y > 0 except the boundary
equilibrium E1(0, 0), whereD+V (t) = 0. Thus, V (x, y) satisfies Lyapunov’s asymptotic
stability theorem ([22]), and the boundary equilibrium E1(0, 0) of system (1) is globally
asymptotically stable.
This ends the proof of Theorem 2.1.

REMARK 2.1. In Theorem C, to ensure the second inequality of (5) holds, it is
natural to require α > β. Hence, we need not write out this inequality.
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For the global asymptotically stability of the positive equilibrium E2(x
∗, y∗), from

Theorem C we have the following result.

THEOREM 2.2. Once system (1) admits a positive equilibrium E2(x
∗, y∗), it is

globally asymptotically stable.
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