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Abstract
In this paper we study Carleman’s inequality over the values of Euler function,

sum of divisors function, and their reciprocals. We show that the constant of
Carleman’s inequality over the values of these functions is not the best possible.

1 Introduction

For positive real numbers a1, . . . , an, Carleman’s inequality [7] asserts that

n∑
k=1

(a1 · · · ak)
1
k 6 e

n∑
k=1

ak. (1)

The constant e is the best possible. Based on the results in [5], recently in [2] we have
studied Carleman’s inequality over prime numbers and over reciprocal of the prime
numbers, by proving∑n

k=1 (p1 · · · pk)
1
k∑n

k=1 pk
=
1

e
+O

(
1

log n

)
and

∑n
k=1(

1
p1
· · · 1pk )

1
k∑n

k=1
1
pk

= e +O

(
1

log log n

)
,

where pk denote the kth prime.
In this paper, we are motivated by studying Carleman’s inequality over the values

of arithmetical functions, more precisely, over the values of Euler function ϕ, sum of
divisors function σ, and their reciprocals. For each positive arithmetical function f let

Cf (n) =

∑n
k=1 (f(1) · · · f(k))

1
k∑n

k=1 f(k)
.

We prove the following results, providing non-trivial limit values limn→∞ Cf (n) for the
above mentioned arithmetical functions.

THEOREM 1. As n→∞ we have

Cϕ(n) = ηϕ+ηϕ
log n

n
+O

( (log n) 23 (log log n) 43
n

)
with ηϕ =

π2

6 e

∏
p

(
1− 1

p

) 1
p

, (2)
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and

C 1
ϕ
(n) = η 1

ϕ
+O

( 1

log n

)
with η 1

ϕ
=

2eπ4

315ζ(3)

∏
p

(
1− 1

p

)− 1
p

. (3)

THEOREM 2. As n→∞ we have

Cσ(n) = ησ +O
( 1

log n

)
with ησ =

6

eπ2

∏
p

(
1 +

1

p

) 1
p ∏
pα

α>2

(
pα+1 − 1
pα+1 − p

) 1
pα

, (4)

and

C 1
σ
(n) = η 1

σ
+O

( log log n
log n

)
with η 1

σ
=

e
∏
p

(
1 + 1

p

)− 1
p ∏
pα

α>2

(
pα+1−1
pα+1−p

)− 1
pα

∏
p

(
1− (p−1)2

p

∞∑
α=1

1
(pα−1)(pα+1−1)

) . (5)

The above theorems imply that the constant of Carleman’s inequality over the
values of ϕ, 1ϕ , σ and

1
σ is not the best possible. More precisely, computations running

on Maple, give

ηϕ u 0.3388, η 1
ϕ
u 2.2096, ησ u 0.3493, η 1

σ
u 2.2721.

2 Proofs

During the proofs, for given positive function f we let Gf (n) denote the geometric
mean of the numbers f(1), f(2), . . . , f(n). Hence

Gf (n) := (f(1)f(2) · · · f(n))
1
n ,

and

Cf (n) =

∑n
k=1Gf (k)∑n
k=1 f(k)

. (6)

Also, we note that

G 1
f
(n) :=

(
1

f(1)

1

f(2)
· · · 1

f(n)

) 1
n

=
1

Gf (n)
.

Therefore

C 1
f
(n) =

∑n
k=1

1
Gf (k)∑n

k=1
1

f(k)

. (7)

The asymptotic expansion

1

1 + x
= 1− x+ x2 − · · ·+ (−1)rxr +O(xr+1) (x→ 0), (8)
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which holds for any given integer r > 0, usually will be useful to obtain an asymptotic
expansion for G 1

f
(n) by using asymptotic expansion of Gf (n).

PROOF of THEOREM 1. Let

gϕ =
1

e

∏
p

(
1− 1

p

) 1
p

,

where the product runs over all primes. Corollary 2.5 of [8] asserts that

Gϕ(n) = gϕn+
gϕ
2
log n+O(log log n). (9)

Thus
n∑
k=1

Gϕ(k) = gϕ

n∑
k=1

k +
gϕ
2

n∑
k=1

log k +O

(
n∑
k=2

log log k

)

= gϕ

(
n2

2
+
n

2

)
+
gϕ
2
log n! +O

(∫ n

2

log log tdt

)
.

Stirling approximation asserts that

n! =
(n
e

)n√
2πn

(
1 +O

( 1
n

))
.

Taking logarithm and simplifying, we get

log n! = n log n− n+O(log n).

Also, since the function t 7→ log log t is strictly increasing on the interval [2, n] of length
n− 2 < n, we obtain ∫ n

2

log log tdt < n log log n.

Combining the above approximations, gives
n∑
k=1

Gϕ(k) =
gϕ
2

(
n2 + n log n+O(n log log n)

)
. (10)

Chapter IV of [9] provides a proof of the following best known approximation
n∑
k=1

ϕ(k) =
3

π2
n2 +O

(
n(log n)

2
3 (log log n)

4
3

)
.

We use the last approximation, (10), (6) and asymptotic expansion (8) with r = 0, to
write

Cϕ(n) =
gϕ
2

(
n2 + n log n+O(n log log n)

)
3
π2n

2
(
1 +O

(
(logn)

2
3 (log logn)

4
3

n

))
=
(
ηϕ + ηϕ

log n

n
+O

( log log n
n

))(
1 +O

( (log n) 23 (log log n) 43
n

))
,
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from which we obtain (2).

To prove (3) we use (9) and the approximation (8) with r = 1, to write

G 1
ϕ
(n) =

1

Gϕ(n)
=

1

gϕn
(
1 + logn

2n +O
(
log logn

n

)) = 1

gϕn
− 1

2gϕ

log n

n2
+O

( log log n
n2

)
.

Hence, by using the approximation
∑n
k=1

1
k = log n+O(1), we get

n∑
k=1

G 1
ϕ
(k) =

1

gϕ
log n+O(1).

Also, it is known [3] that

n∑
k=1

1

ϕ(k)
= A1 log n+A1(γ −B1) +O

( (log n) 23
n

)
,

where A1 =
ζ(2)ζ(3)
ζ(6) = 315ζ(3)

2π4 , B1 =
∑
p

log p
p2−p+1 , and γ is Euler’s constant. The relation

(7), the above approximations, and (8) with r = 1, give

C 1
ϕ
(n) =

1
gϕ
log n+O(1)

A1 log n+A1(γ −B1) +O
(
(logn)

2
3

n

)
=

1
gϕ
log n

(
1 +O

(
1

logn

))
A1 log n

(
1 + γ−B1

logn +O
(

1

n(logn)
1
3

))
=

1

A1gϕ

(
1 +O

( 1

log n

))(
1 +

B1 − γ
log n

+O
( 1

(log n)2

))
= η 1

ϕ
+O

( 1

log n

)
,

concluding the proof.

PROOF of THEOREM 2. Theorem 1.1 of [4] asserts that∑
k6n

log σ(k) = n log n+ (E + c1 + c2 + γ − 1)n+O
( n

log n

)
, (11)

where E is the constant in Mertens’approximation, defined by

E = lim
x→∞

∑
p6x

log p

p
− log x,

and c1 and c2 are absolute constants defined by

c1 =
∑
p

1

p
log
(
1 +

1

p

)
, and c2 =

∑
pα

α>2

1

pα
log

pα+1 − 1
pα − 1 . (12)
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It is known (see (2.8) of [1]) that

E = −γ −
∑
pα

α>2

log p

pα
. (13)

Note that n logGσ(n) =
∑
k6n log σ(k). Hence (11) implies that

Gσ(n) = gσn+O
( n

log n

)
, (14)

where gσ = eE+c1+c2+γ−1. By using (12) and (13) we get

gσ =
1

e

∏
p

(
1 +

1

p

) 1
p ∏
pα

α>2

(
pα+1 − 1
pα+1 − p

) 1
pα

.

Thus

n∑
k=1

Gσ(k) = gσ

n∑
k=1

k +O

(
n∑
k=2

k

log k

)

= gσ

(
n2

2
+
n

2

)
+O

(∫ n

2

t

log t
dt

)
.

Note that ∫ n

2

t

log t
dt 6 2

∫ n

2

( t

log t
− t

2 log2 t

)
dt =

t2

log t

∣∣∣n
2
<

n2

log n
.

Hence
n∑
k=1

Gσ(k) =
gσ
2
n2 +O

( n2

log n

)
. (15)

Chapter III, Section 2 of [9] provides a proof of the following best known approximation

n∑
k=1

σ(k) =
π2

12
n2 +O

(
n(log n)

2
3

)
.

Considering this approximation and (15), using (6) and asymptotic expansion (8) with
r = 0, we obtain (4).

Now, we prove (5). The approximation (14) and the asymptotic expansion (8) with
r = 0 give

G 1
σ
(n) =

1

Gσ(n)
=

1

gσn+O
(

n
logn

) = 1

gσn
+O

( 1

n log n

)
.



M. Hassani 329

Hence

n∑
k=1

G 1
σ
(k) =

1

gσ

n∑
k=1

1

k
+O

(
n∑
k=2

1

k log k

)

=
1

gσ
log n+O(1) +O

(∫ n

2

dt

t log t

)
=
1

gσ
log n+O(log log n).

Corollary 4.1 of [6] asserts that

n∑
k=1

1

σ(k)
= A2 log n+A2(γ +B2) +O

( (log n) 23 (log log n) 43
n

)
,

where

A2 =
∏
p

(
1− (p− 1)

2

p
S1(p)

)
and B2 =

∑
p

(p− 1)2 (log p)S2(p)
p− (p− 1)2S1(p)

,

with

S1(p) =

∞∑
α=1

1

(pα − 1)(pα+1 − 1) and S2(p) =

∞∑
α=1

α

(pα − 1)(pα+1 − 1) .

Therefore, the above approximations and asymptotic expansion (8) with r = 0 imply

C 1
σ
(n) =

1
gσ
log n+O(log log n)

A2 log n+A2(γ +B2) +O
( (logn) 23 (log logn) 43

n

)
=

1

gσA2

(
1 +O

( log log n
log n

))(
1− γ +B2

log n
+O

( 1

(log n)2

))
= η 1

σ
+O

( log log n
log n

)
.

This completes the proof.
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