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Abstract

The paper present a different semi-analytical solutions for the Stokes flow in
a rectangular cavity by using the biorthogonality condition of the eigenfunctions.
Firstly, the biorthogonality condition for rectangular cavity is applied on Stokes
Flow problem. Secondly, the biorthogonality condition and the new solution is
verified against results available in the literature. Further, it has been found that
this solution mechanism is effi cient and it can be successfully used to obtain flow
structures and bifurcations.

1 Introduction

Flow inside a rectangular cavity has been studied extensively far more than two decades
and is one of the most popular fluid problems in the fluid mechanics. In the available lit-
erature, it is possible to find numerous studies on lid-driven cavity flow [1, 2, 7, 8, 11, 15].
Joseph and Sturges [12] were the first to formulate and solve the Stokes flow problem
analytically by expressing the streamfunction, ψ, as an infinite series of eigenfunctions
and determining the associated series coeffi cients using Smith’s biorthogonality con-
dition [19]. Subsequently, Shankar [17] applied a least-squares method rather than
a biorthogonality condition to determine the coeffi cients in the infinite series for the
same problem. Gaskell et al. [4] compared the accuracy of the above least-squares
and biorthogonal approaches by examining the convergence of the streamfunction and
the horizontal velocity component to the upper boundary conditions. Their results for
the ψ = 0 condition are better via the biorthogonal method than via the least-squares
method, but for the velocity conditions the situation is reversed. They also compared
values of the streamfunction in the cavity interior and found that the streamfunction
values are extremely close and almost unaffected by the choice of either the Shankar
[17] or the Joseph and Sturges [12] coeffi cient determination methods.
A new eigenfunction expansion method for solving Stokes flow problems in cavities

that arise in fluid dynamics has been developed by Khuri [13]. The method leads to
the development of a set of eigenfunctions, adjoint eigenfunctions, biorthogonality con-
ditions, and an algorithm for the computation of the coeffi cients of the eigenfunction
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expansion. Subsequently, Khuri [14] introduced a biorthogonality condition for rectan-
gular regions. This biorhogonality conditions aims to solve the Stokes flow problem
more easily and apparent than above analytical solution methods.
This article has two aims: first, to find a new analytical solution of Stokes flow

problem in a rectangular cavity by using Khuri’s biorthogonality conditions; secondly,
to verify the accuracy and effi ciency of Khuri’s theorem to solve Stokes flow problems
in comparison to the previous solutions.

2 Biorthogonality Conditions

The fourth-order boundary value problem and the boundary conditions are given by,

(P0(r)y
′′(r))

′′
+ (P1(r;α)y

′(r))
′
+ P2(r;α)y(r) = 0, r ∈ [r1, r2], (1)

y(r1) = y(r2) = y′(r1) = y′(r2) = 0. (2)

The biorthogonality condition for the boundary value problem given in following Khuri’s
Theorem [1].

THEOREM 1. Consider the boundary value problem given in Eq.(1) and (2) where
P0(r), P ′′1 (r;α), P2(r;α) are continuous and P0(r) 6= 0 on r1 ≤ r ≤ r2. Pi in Eq.(1)
is a polynomial of degree at most i in the parameter α, in particular, let P1(r;α) =
p11(r)α+ p12(r), and we require

P 21 (r;α)− 4P0(r)P2(r;α) = p31(r)α+ p32(r),

p211(r) + p
2
31(r) 6≡ 0.

Then with P ∗n defined by

P ∗n =

∫ r2

r1

[
φ
(n)
2 (r), φ

(n)
1 (r)

]
B(r)

[
φ
(n)
1 (r)

φ
(n)
2 (r)

]
dr,

we have the following biorthogonality condition:∫ r2

r1

[
φ
(m)
2 (r), φ

(m)
1 (r)

]
B(r)

[
φ
(n)
1 (r)

φ
(n)
2 (r)

]
dr = P ∗nδmn,

where δmn is the Kronecker’s delta,

B(r) =

(
− p11(r)
2P0(r)

0
1
2p
′′
11(r) +

1
4
p31(r)
2P0(r)

− p11(r)
2P0(r)

)
with

φ
(n)
1 (r) = yn(r),

φ
(n)
2 (r) = P0(r)y

′′
n(r) +

1

2
P1(r;αn)yn(r).

Here yi is an eigenfunction of Eq.(1) corresponding to the eigenvalue αi.
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3 The Boundary Value Problem For Rectangular Cav-
ity and Biorthogonality Condition

3.1 The Formulation of Flow Problem

A two-dimensional rectangular cavity ν = {x, y : −1 ≤ x ≤ 1,−A ≤ y ≤ A} is filled
with incompressible fluid (Fig. 1). The boundaries x = ±1 are fixed walls, y = A and
y = −A are two moving lids which translate with speeds U1 and U2 in the horizontal
direction respectively, thus setting the fluid into motion.
Under Stokes’s approximation for the creeping flow the streamfunction ψ(x, y) sat-

isfies the two-dimensional biharmonic equation

∇4ψ(x, y) =
(
∂2

∂x2
+

∂2

∂y2

)2
ψ(x, y) = 0. (3)

The streamfunction is set equal to zero on the boundaries of the cavity, and the no-slip
conditions for the upper and lower lids and side walls are

ψ(±1, y) = 0, ∂ψ

∂x
(±1, y) = 0, (4)

ψ(x,±A) = 0, (5)

∂ψ

∂y
(x,A) = U1,

∂ψ

∂y
(x,−A) = U2. (6)

The boundary-value problem has a separation of variables solution for ψ of the form,

ψ(x, y) =

∞∑
−∞

[
Ane

λn(y−A) +Bne
−λn(y+A)

] φ(n)1 (x, λn)

λ2n
(7)

whereAn andBn are complex coeffi cients, the λn are complex eigenvalues and φ
(n)
1 (x, λn)

are even Papkovich-Fadle eigenfunctions [2-4]. The eigenfunctions are given by

φ
(n)
1 (x, λn) = λn sin(λn) cos(λnx)− λnx sin(λnx) cos(λn). (8)

The parameters λn are complex eigenvalues determined by the side wall conditions
Eq.(4), which yield the eigenvalue equation, sin 2λn = −2λn. The λn eigenvalues may
be determined by the simple Newton iteration procedure described by Robbins and
Smith [5]. Table of the eigenvalues can be seen in [10]. The flow is governed by two
physical control parameters: the cavity aspect ratio A and the ratio (S = U2

U1
) of the

lower to the upper lid speed.

3.2 The Biorthogonality Condition For Rectangular Cavities
and Solution

The following biorthogonality condition for rectangular cavities is given by Khuri [7],∫ 1

−1

[
φ
(m)
2 (x), φ

(m)
1 (x)

]
B(x)

[
φ
(n)
1 (x)

φ
(n)
2 (x)

]
dx = P ∗nδmn (9)
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Fig. 1: The boundary value problem for the lid-driven cavity.

where

B(x) =

(
−1 0
0 −1

)
and

φ
(n)
2 (x, λn) =

(
φ
(n)
1 (x)

)′′
+ λ2nφ

(n)
1 (x) = −2λ2n cos(λn) cos(λnx). (10)

Eq.(7) must satisfy the boundary conditions Eq.(5) and (6); that is,

U1 =

∞∑
−∞

[
An −Bne−2λnA

] φ(n)1 (x)

λn
, (11)

0 =

∞∑
−∞

[
An +Bne

−2λnA
] φ(n)1 (x)

λ2n
, (12)

U2 =

∞∑
−∞

[
Ane

−2λnA −Bn
] φ(n)1 (x)

λn
, (13)

0 =

∞∑
−∞

[
Ane

−2λnA +Bn
] φ(n)1 (x)

λ2n
, (14)

where U1 and U2 represent the velocities of the top and bottom lids. The other bound-
ary conditions are used to find the λn eigenvalues. The solution procedure up to here
is almost the same with previous studies [6, 7, 8].
The critical step in determining An and Bn is to apply the biorthogonality condition

Eq.(9) to equations (11)—(14). To prefare for this application of the biorthogonality
condition, equations (11)—(12) are combined to give

∞∑
−∞

1

λ2n

(
An +Bne

−2λnA
)(φ(n)1 (x)

φ
(n)
2 (x)

)
−
∞∑
−∞

1

λ2n

(
An +Bne

−2λnA
)( 0

φ
(n)
2 (x)

)
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+

∞∑
−∞

1

λn

(
An −Bne−2λnA

)( 0

φ
(n)
1 (x)

)
=

(
0

U1

)
. (15)

Similarly, by coupling equations (13)—(14), rearranging terms, we get

∞∑
−∞

1

λ2n

(
Ane

−2λnA +Bn
)(φ(n)1 (x)

φ
(n)
2 (x)

)
−
∞∑
−∞

1

λ2n

(
Ane

−2λnA +Bn
)( 0

φ
(n)
2 (x)

)

+

∞∑
−∞

1

λn

(
Ane

−2λnA −Bn
)( 0

φ
(n)
1 (x)

)
=

(
0

U2

)
. (16)

The operator ∫ 1

−1

[
φ
(m)
2 (x), φ

(m)
1 (x)

]( −1 0
0 −1

)[
·
·

]
dx = P ∗nδmn

is then applied to Eq.(15) and (16) to yield
∞∑
−∞

1

λ2n

(
An +Bne

−2λnA
)
Pm −

∞∑
−∞

1

λ2n

(
An +Bne

−2λnA
)
Vm

+

∞∑
−∞

1

λ2n

(
An −Bne−2λnA

)
= Gm,

∞∑
−∞

1

λ2n

(
Ane

−2λnA +Bn
)
Pm −
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−∞

1

λ2n

(
Ane

−2λnA +Bn
)
Vm

+

∞∑
−∞

1

λ2n

(
Ane

−2λnA −Bn
)
= gm,

where

Gm =

∫ 1

−1

[
φ
(m)
2 (x), φ

(m)
1 (x)

]( −1 0
0 −1

)[
0

U1

]
dx = −4U1,

gm =

∫ 1

−1

[
φ
(m)
2 (x), φ

(m)
1 (x)

]( −1 0
0 −1

)[
0

U2

]
dx = −4U2,

Pm =

∫ 1

−1

[
φ
(m)
2 (x), φ

(m)
1 (x)

]( −1 0
0 −1

)[
φ
(n)
1 (x)

φ
(n)
2 (x)

]
dx,

Vmn =

∫ 1

−1

[
φ
(m)
2 (x), φ

(m)
1 (x)

]( −1 0
0 −1

)[
0

φ
(n)
2 (x)

]
dx,

and

Wmn =

∫ 1

−1

[
φ
(m)
2 (x), φ

(m)
1 (x)

]( −1 0
0 −1

)[
0

φ
(n)
1 (x)

]
dx.

Equations (15) and (16) form an infinite set to be solved for the coeffi cients An, Bn for
n = ±1, ±2, .... They are determined as Eq.(15) and (16) are truncated after N terms.
In this case Eq.(15) and (16) yield 4N equations for the 4N unknowns.
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4 Results

Figure 2 shows examples of streamline plots for S = −1 at which the lids move in
opposite directions with equal speed ratio. It is seen that, the flow structure is sym-
metrical about x and y-axis for all values of A. A single eddy occupies the cavity for
A = 0.36 and A = 0.7, see Fig. 2a and 2b respectively. The single eddy has a center
stagnation point in the cavity center. As the aspect ratio is increased from 0.7 there are
four main stages in the development of the second and third eddies. In the first stage,
a bifurcation appears at a critical value of A and two additional stagnation points are
generated in the cavity, (see Fig. 2c where A = 1).

(a) (b) (c)

(d) (e) (f)

Fig. 2: Streamline for a double lid-driven cavity for S = −1. (a) A = 0.36 (b) A = 0.7
(c) A = 1 (d) A = 2.64 (e) A = 2.8 (f) A = 3.
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As A is increased further, two degenerate critical points appear on the two stationary
side walls. In the third stage, the heteroclinic connections coalesce with each other at
the interior saddle point to produce four heteroclinic connections between the saddle
point and the four separation points on the side walls, as shown in Fig. 2d. As the
aspect ratio is increased further, it is seen that there are two complete eddies within
the cavity and between them a third is about to be created. Indeed, as A is increased
more the heteroclinic connections from the four separation points separate from the
saddle point on the cavity center. There are now two heteroclinic connections crossing
the cavity, each connected to separation points on the side walls, and between these
two streamlines lies the saddle point on (x, y) = (0, 0) with its separatrix enclosing
two sub-eddies. As A increases, the sub-eddy center lying left of the saddle on y = 0
approach the saddle point on (x, y) = (0, 0) and coalesce, disappearing at a critical
value of A (Fig. 2e). This is a cusp (saddle-node) bifurcation. At this critical aspect
ratio the formation of a third eddy, between the other two, is complete so that three
eddies now occupy the cavity (Fig. 2f). This is a mechanism for eddy generation in
which one eddy becomes three.

Fig. 3: Typical flow structures. (a) S = 0, A = 1.4 (b) S = 0, A = 1.7
(c) S = 1, A = 2.

Figure 3 shows the some flow structures for S = 0 (where U2 = 0) and S = 1 at
which the lids move in opposite directions with equal speed ratio respectively. These
eddy genesis mechanisms are not new. They have been found before by several authors
[6, 8, 9, 17, 10]. For this reason, the more detailed representation of the flow structures
is not necessary.



H. Bilgil 463

Table 1: Satisfaction of horizontal wall boundary conditions for U1 = 2, U2 = 1,
A = 5.

Table 1 shows values of the streamfunction from the present study compared with
those of Shankar and Joseph-Sturges on the cavity boundary. Here, averages are shown
over 1000 equally spaced points in x ∈ [0, 1). All the tabulated results relate to a typical
case in which U1 = 2, U2 = 1 and A = 5. Remarkably good aggreement is seen between
the present computations and those of Shankar and Joseph-Sturges [17, 12, 6].
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