A Note On Domination In Intersecting Linear Systems^{*}

Adrián Vázquez-Ávila[†]

Received 12 June 2018

Abstract

A linear system is a pair (P, \mathcal{L}) where \mathcal{L} is a family of subsets on a ground finite set P such that $|l \cap l'| \leq 1$, for every $l, l' \in \mathcal{L}$. The elements of P and \mathcal{L} are called points and lines, respectively, and the linear system is called intersecting if any pair of lines intersect in exactly one point. A subset D of points of a linear system (P, \mathcal{L}) is a dominating set of (P, \mathcal{L}) if for every $u \in P \setminus D$ there exists $v \in D$ such that $u, v \in l$, for some $l \in \mathcal{L}$. The cardinality of a minimum dominating set of a linear system (P, \mathcal{L}) is called domination number of (P, \mathcal{L}) , denoted by $\gamma(P, \mathcal{L})$. On the other hand, a subset R of lines of a linear system (P, \mathcal{L}) is a 2-packing if any three elements of R do not have a common point (are triplewise disjoint). The cardinality of a maximum 2-packing of a linear system (P, \mathcal{L}) is called 2-packing number of (P, \mathcal{L}) , denoted by $\nu_2(P, \mathcal{L})$.

It is known that for intersecting linear systems (P, \mathcal{L}) of rank r it satisfies $\gamma(P, \mathcal{L}) \leq r - 1$. In this note, we prove if q is an even prime power and (P, \mathcal{L}) is an intersecting linear system of rank q + 2 satisfying $\gamma(P, \mathcal{L}) = q + 1$, then this linear system can be constructed from a spanning (q + 1)-uniform intersecting linear subsystem (P', \mathcal{L}') of the projective plane of order q satisfying $\tau(P', \mathcal{L}') = \nu_2(P', \mathcal{L}') - 1 = q + 1$.

1 Introduction

A set system is a pair (X, \mathcal{F}) where \mathcal{F} is a finite family of subsets on a ground set X. A set system can be also thought of as a hypergraph, where the elements of X and \mathcal{F} are called *vertices* and *hyperedges*, respectively. The set system (X, \mathcal{F}) is *intersecting* if $E \cap F \neq \emptyset$, for for every pair of distinct subsets $E, F \in \mathcal{F}$. On the other hand, the set system (X, \mathcal{F}) is a *linear system* if it satisfies $|E \cap F| \leq 1$, for every pair of distinct subsets $E, F \in \mathcal{F}$; and it is denoted by (P, \mathcal{L}) . The elements of P and \mathcal{L} are called *points* and *lines* respectively. For the remainder of this work we will only consider linear systems, and most of the following definitions can be generalized for set systems.

The rank of a linear system is the maximum size of a line. An r-uniform linear system is a linear system such that all lines contains exactly r points. In this context, a

^{*}Mathematics Subject Classifications: 05C65, 05C69.

[†]Subdirección de Ingeniería y Posgrado, Universidad Aeronáutica en Querétaro, Parque Aeroespacial de Querétaro, 76278, Querétaro, México

simple graph is a 2-uniform linear system. Throughout this paper, we will only consider linear systems of rank $r \ge 2$.

Let (P, \mathcal{L}) be a linear system and $p \in P$ be a point. The *degree* of p is the number of lines containing p, denoted by deg(p), the maximum degree overall points of the linear systems is denoted by $\Delta(P, \mathcal{L})$. A point of degrees 2 and 3 is called *double point* and *triple point* respectively. A point of degree zero is called an *isolated point*. Two points $p, q \in P$ are *adjacent* if there is a line $l \in \mathcal{L}$ such that $p, q \in l$.

A linear subsystem (P', \mathcal{L}') of a linear system (P, \mathcal{L}) satisfies that for any line $l' \in \mathcal{L}'$ there exists a line $l \in \mathcal{L}$ such that $l' = l \cap P'$. The linear subsystem induced by a set of lines $\mathcal{L}' \subseteq \mathcal{L}$ is the linear subsystem (P', \mathcal{L}') where $P' = \bigcup_{l \in \mathcal{L}'} l$. The linear subsystem (P', \mathcal{L}') of (P, \mathcal{L}) is called spanning linear subsystem if P' = P. Given a linear system (P, \mathcal{L}) , and a point $p \in P$, the linear system obtained from (P, \mathcal{L}) by deleting point pis the linear system (P', \mathcal{L}') induced by $\mathcal{L}' = \{l \setminus \{p\} : l \in \mathcal{L}\}$. Given a linear system (P, \mathcal{L}) and a line $l \in \mathcal{L}$, the linear system obtained from (P, \mathcal{L}) by deleting the line lis the linear system (P', \mathcal{L}') induced by $\mathcal{L}' = \mathcal{L} \setminus \{l\}$. Let (P', \mathcal{L}') and (P, \mathcal{L}) be two linear systems. (P', \mathcal{L}') and (P, \mathcal{L}) are isomorphic, denoted by $(P', \mathcal{L}') \simeq (P, \mathcal{L})$, if after deleting points of degree 1 or 0 from both, the systems (P', \mathcal{L}') and (P, \mathcal{L}) are isomorphic as hypergraphs, see [4].

A subset D of points of a linear system (P, \mathcal{L}) is a dominating set of (P, \mathcal{L}) if for every $u \in P \setminus D$ there exists $v \in D$ such that u and v are adjacent. The minimum cardinality of a dominating set of a linear system (P, \mathcal{L}) is called *domination number*, and it is denoted by $\gamma(P, \mathcal{L})$. Domination in set systems was introduced by Acharya [1] and studied further in [2, 5, 8, 9, 10]. A subset T of points of a linear system (P, \mathcal{L}) is a transversal of (P, \mathcal{L}) (also called vertex cover or hitting set) if $T \cap l \neq \emptyset$, for every line $l \in \mathcal{L}$. The minimum cardinality of a transversal of a linear system (P, \mathcal{L}) is called transversal number, and it is denoted by $\tau(P, \mathcal{L})$. On the other hand, a subset R of lines of a linear system (P, \mathcal{L}) is a 2-packing of (P, \mathcal{L}) if the elements of R are triplewise disjoint, that is, if three elements are chosen in R then they are not incidents in a common point. The 2-packing number of (P, \mathcal{L}) is the maximum cardinality of a 2-packing of (P, \mathcal{L}) and it is denoted by $\nu_2(P, \mathcal{L})$. Transversals and 2-packings in linear systems was studied in [3, 4], while domination and 2-packing in linear systems was studied in [13].

In [11] it was proved that, if (P, \mathcal{L}) is an intersecting linear system of rank $r \geq 2$, then $\gamma(P, \mathcal{L}) \leq r - 1$. In [12] a characterization of set systems (X, \mathcal{F}) holding the equality when r = 3 was given. On the other hand, in [9] it was shown that all intersecting linear systems (P, \mathcal{L}) of rank 4 satisfying $\gamma(P, \mathcal{L}) = 3$ can be constructed by the Fano plane. In this note, we prove if q is an even prime power and (P, \mathcal{L}) is an intersecting linear system of rank (q+2) satisfying $\gamma(P, \mathcal{L}) = q + 1$, then this linear system can be constructed from a spanning (q + 1)-uniform intersecting linear subsystem (P', \mathcal{L}') of the projective plane of order q satisfying $\tau(P', \mathcal{L}') = \nu_2(P', \mathcal{L}') - 1 = q + 1$. This result generalizes the main result given in [9].

2 Previous Results

Let \mathcal{I}_r be the family of linear systems (P, \mathcal{L}) of rank r with $\gamma(P, \mathcal{L}) = r - 1$. To better understand the main result, we need the following:

LEMMA 1 ([9]). For every linear system $(P, \mathcal{L}) \in \mathcal{I}_r$, there exists an *r*-uniform spanning linear subsystem (P^*, \mathcal{L}^*) of (P, \mathcal{L}) such that every line in \mathcal{L}^* contains one point of degree one.

It is denoted by (P^*, \mathcal{L}^*) to be the *r*-uniform intersecting spanning linear subsystem of a linear system of $(P, \mathcal{L}) \in \mathcal{I}_r$ obtained from the Lemma 2. Further, let (P', \mathcal{L}') be the (r-1)-uniform intersecting linear subsystem obtained from (P^*, \mathcal{L}^*) by deleting the point of degree one of each line of \mathcal{L}^* , see [9].

LEMMA 2 ([9]). For every linear system $(P, \mathcal{L}) \in \mathcal{I}_r$ it satisfies

$$\gamma(P, \mathcal{L}) = \gamma(P^*, \mathcal{L}^*) = \tau(P^*, \mathcal{L}^*) = \tau(P', \mathcal{L}') = r - 1.$$

LEMMA 3 ([9]). Let $(P, \mathcal{L}) \in \mathcal{I}_r$ $(r \geq 3)$ then every line of (P', \mathcal{L}') has at most one point of degree 2 and $\Delta(P', \mathcal{L}') = r - 1$.

LEMMA 4 ([9]). Let $(P, \mathcal{L}) \in \mathcal{I}_r$ $(r \geq 3)$ then

$$3(r-2) \le |\mathcal{L}'| \le (r-1)^2 - (r-1) + 1$$
 and $|P'| = (r-1)^2 - (r-1) + 1$,

and so $\gamma(P', \mathcal{L}') = 1$.

THEOREM 1 ([3]). Let (P, \mathcal{L}) be a linear system and $p, q \in P$ be two points such that $deg(p) = \Delta(P, \mathcal{L})$ and $deg(q) = \max\{deg(x) : x \in P \setminus \{p\}\}$. If $|\mathcal{L}| \leq deg(p) + deg(q) + \nu_2(P, \mathcal{L}) - 3$, then $\tau(P, \mathcal{L}) \leq \nu_2(P, \mathcal{L}) - 1$.

3 Main Result

In this section we prove, if q is an even prime power and (P, \mathcal{L}) is an intersecting linear system of rank (q+2) satisfying $\gamma(P, \mathcal{L}) = q+1$, then this linear system can be constructed from a spanning (q+1)-uniform intersecting linear subsystem (P', \mathcal{L}') of the projective plane of order q satisfying $\tau(P', \mathcal{L}') = \nu_2(P', \mathcal{L}') - 1 = q+1$.

Recall that, a finite projective plane (or merely projective plane) is an uniform linear system satisfying that any pair of points have a common line, any pair of lines have a common point and there exist four points in general position (there are not three collinear points). It is well known that if (P, \mathcal{L}) is a projective plane then there exists a number $q \in \mathbb{N}$, called order of projective plane, such that every point (line, respectively) of (P, \mathcal{L}) is incident to exactly q + 1 lines (points, respectively), and (P, \mathcal{L}) contains exactly $q^2 + q + 1$ points (lines, respectively). In addition to this, it is well known that projective planes of order q, denoted by Π_q , exist when q is a prime power. For more information about the existence and the unicity of projective planes see, for instance, [6, 7]. In [4] it was proved, if q is an even prime power then $\tau(\Pi_q) = \nu_2(\Pi_q) - 1 = q + 1$, however, if q is an odd prime power then $\tau(\Pi_q) = \nu_2(\Pi_q) = q + 1$.

To prove the following lemma (Lemma 3), we need a result shown in [13].

LEMMA 5 ([13]). Let (P, \mathcal{L}) be an *r*-uniform intersecting linear system with $r \ge 2$ be an even integer. If $\nu_2(P, \mathcal{L}) = r + 1$ then $\tau(P, \mathcal{L}) = \frac{r+2}{2}$.

LEMMA 6. Let $r \geq 2$ be an even integer. For every $(P, \mathcal{L}) \in \mathcal{I}_{r+2}$ it satisfies $\nu_2(P', \mathcal{L}') = r+2$. Hence $\tau(P', \mathcal{L}') = \nu_2(P', \mathcal{L}') - 1$.

PROOF. Since (P', \mathcal{L}') is an intersecting (r+1)-uniform linear system, then $|l'| \ge \nu_2(P', \mathcal{L}') - 1$, for any line $l' \in \mathcal{L}'$. Hence, $\nu_2(P', \mathcal{L}') \le r+2$. If r+2 is odd integer, then by Lemma 3 it satisfies $\tau(P', \mathcal{L}') = \frac{r+3}{2}$, which is a contradiction, since $\tau(P', \mathcal{L}') = r+1$.

Let $p \in P'$ such that $deg(p) = \Delta(P', \mathcal{L}')$, and let $\Delta'(P', \mathcal{L}') = \max\{deg(x) : x \in P' \setminus \{p\}\}$. By Theorem 2 if $|\mathcal{L}'| \leq \Delta(P', \mathcal{L}') + \Delta'(P', \mathcal{L}') + \nu_2(P, \mathcal{L}) - 3 \leq 3r + 1$ (see Lemma 2) then $\tau(P', \mathcal{L}') \leq \nu_2(P', \mathcal{L}') - 1$, which implies $\nu_2(P', \mathcal{L}') \geq r + 2$, and the equality $\nu_2(P', \mathcal{L}') = r + 2$ holds. Hence, by Lemma 2, if $|\mathcal{L}'| = 3r$ then $\nu_2(P', \mathcal{L}') = r + 2$, which implies if $(P, \mathcal{L}) \in \mathcal{I}_{r+2}$ then $\nu_2(P', \mathcal{L}') = r + 2$, since if $(\hat{P}, \hat{\mathcal{L}})$ is a spanning linear subsystem of (P', \mathcal{L}') then $\nu_2(\hat{P}, \hat{\mathcal{L}}) \leq \nu_2(P', \mathcal{L}')$.

THEOREM 2. Let q be an even prime power. For every $(P, \mathcal{L}) \in \mathcal{I}_{q+2}$ the linear system (P', \mathcal{L}') is a spanning (q + 1)-uniform linear subsystem of Π_q such that $\tau(P', \mathcal{L}') = \nu_2(P', \mathcal{L}') - 1 = q + 1$ with $|\mathcal{L}'| \geq 3q$.

PROOF. Let $(P, \mathcal{L}) \in \mathcal{I}_{q+2}$. Then (P', \mathcal{L}') is an (q+1)-uniform intersecting linear system with $|P'| = q^2 + q + 1$ (by Lemma 2). Furthermore, if $|\mathcal{L}'| = q^2 + q + 1$ then all points of (P', \mathcal{L}') have degree q + 1 (it is a consequence of Lemma 2, see [9]). Since projective planes are dual systems, the 2-packing number coincides with the cardinality of an oval, which is the maximum number of points in general position (no three of them collinear), and it is equal to $q + 2 = \nu_2(P', \mathcal{L}')$ (Lemma 3), when q is even, see for example [7]. Hence, the linear system (P', \mathcal{L}') is a projective plane of order q, Π_q . Therefore, if $(P, \mathcal{L}) \in \mathcal{I}_{q+2}$ then (P', \mathcal{L}') is a spanning linear subsystem of Π_q satisfying $\tau(P', \mathcal{L}') = \nu_2(P', \mathcal{L}') - 1 = q + 1$, with $|\mathcal{L}'| \geq 3q$ (see Lemma 2).

The following is a straightforward consequence of Theorem 3 which is the main result given in [9].

COROLLARY 1. If $(P, \mathcal{L}) \in \mathcal{I}_4$ then either (P', \mathcal{L}') is the Fano plane, Π_2 , or (P', \mathcal{L}') is obtained from Π_2 by deleting any line.

Acknowledgment. The author would like to thank the referees for many constructive suggestions to improve this paper.

Research was partially supported by SNI and CONACyT.

References

- [1] B. D. Acharya, Domination in hypergraphs, AKCE J. Comb., 4(2007), 117–126.
- [2] B. D. Acharya, Domination in hypergraphs II. New directions, Proc. Int. Conf.-ICDM 2008, Mysore, India, pp. 1–16.
- [3] C. Alfaro, G. Araujo-Pardo, C. Rubio-Montiel and A. Vázquez-Ávila, On transversal and 2-packing number in uniform linear systems, AKCE Int. J. Graphs Comb., (2019). In press. https://doi.org/10.1016/j.akcej.2019.03.014.
- [4] G. Araujo-Pardo, A. Montejano, L. Montejano and A. Vázquez-Ávila, On transversal and 2-packing numbers in straight line systems on R², Util. Math., 105(2017), 317–336.
- [5] S. Arumugam, B. Jose, Cs. Bujts and Zs. Tuza, Equality of domination and transversal numbers in hypergraphs, Discrete Appl. Math. 161 (2013), 1859–1867.
- [6] L. M. Batten, Combinatorics of Finite Geometries, Cambridge Univ Press, Cambridge, 1986.
- [7] F. Buekenhout, Handbook of Incidence Geometry: Buildings and Foundations, Elsevier, 1995.
- [8] Cs. Bujts, M. A. Henning and Zs. Tuza, Transversals of domination in uniform hypergraphs, Discrete Appl. Math., 161(2013), 1859–1867.
- [9] Y. Dong, E. Shan, S. Li and L. Kang, Domination in intersecting hypergraphs, Discrete Appl. Math., 251(2018), 155–159.
- [10] B. K. Jose and Zs. Tuza, Hypergraph domination and strong independence, Appl. Anal. Discrete Math., 3(2009), 237–358.
- [11] L. Kang, S. Li, Y. Dong and E. Shan, Matching and domination numbers in r-uniform hypergraphs, J. Comb. Optim., 34(2017), 656–659.
- [12] E. Shan, Y. Dong, L. Kang and S. Li, Extremal hypergraphs for matching number and domination number, Discrete Appl. Math., 236(2018), 415–421.
- [13] A. Vázquez-Ávila, On domination and 2-packing numbers in intersecting linear systems, Ars. Comb., Accepted.