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Abstract

In this paper, we use the properties of sesquilinear forms to introduce a new
class of frames, called p-frames. The notion of continuous ¢-frames, its various
properties and characterizations in normed spaces are established. Also, some
fundamental identities and certain inequalities related to ¢-frames are obtained.

1 Notations and Preliminaries

The concept of frame in Hilbert spaces was introduced by Duffin and Schaeffer [14]
to study some problems in non-harmonic Fourier series in 1952, reintroduced in 1986
by Daubechies, Grossmann, and Meyer [12] and popularized from then on. Now the
theory of frames is widely studied by several authors and they have established a
series of results (see [1, 4, 8, 9, 10]). A frame, which is redundant set of vectors in a
Hilbert space H with the property that provides non unique representations of vectors
in terms of the frame elements, has been applied in filter bank theory [6], sigma-delta
quantization [5], signal and image processing [7] and many other fields. A frame for
a complex Hilbert space H is a family of vectors {f;},.; in H so that there are two
positive constants A and B satisfying

AIIFIP <KL P < BIFIE, (f €H). (1.1)

icl

The constants A and B are called the lower and upper frame bounds, respectively. A
frame is said to be tight whenever A = B and if we can take A = B = 1 it is called

a Parseval frame. If the right-hand inequality of (1.1) holds, then we say that {f;},.;
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420 Properties and Related Inequalities Of ¢-frames in Normed Spaces

is a Bessel sequence for H with bound B. The analytic operator associated to the

frame {fi},c; is defined as T : L? — H by T{a;} = Y a;f;. It is easy to see that
iel

T* : H — L? such that T* (f) = {(f, fi)},c;- The frame operator for the frame is the

positive, self adjoint invertible operator S = TT™ : H — 'H satisfying

Sf=> (f.fi)fi, (FEN).

icl

This provides the frame decomposition

F=ST1SE =S T =S (LT

icl el

where fl = S~ f;. The family {fl} is also a frame for H, called the canonical dual
iel
frame of {fi},c;. If {fi},c; is a Bessel sequence in H, for every J C I we define the
operator Sy by
Sif=>_(f. fi) fi
=

We refer to [9, 11, 18] for an introduction to the frame theory and its applications.
In this section, we recall fundamental definitions, basic properties and notations of
sesquilinear forms which are needed for a comprehensive reading of this paper. This
background can be found in [13]. Let & be a vector space then ¢ : & x & — C is a
sesquilinear form on & if the following two conditions holds:

(a) ¢ (ax1 + Bra,y) = ap (r1,y) + By (r2,9),
(b) @ (z, a1 + By2) = ap (z,y1) + B (x,y2)

for any scalars a and (§ and any x,z1,22,y,y1,y2 € &. Two typical examples of
sesquilinear forms are as follows:

(I) Let A and B be operators on an inner product space &. Then ¢ (z,y) = (Azx,y),
w2 (z,y) = (z, By), and @3 (x,y) = (Ax, By) are sesquilinear forms on &.

(IT) Let f and g be linear functionals on a vector space &. Then ¢ (x,y) = f (x) g (y)
is a sesquilinear form on &.

Let ¢ be a sesquilinear form on vector space &, then ¢ is called symmetric if
p(x,y) = p(y,x) for all z,y € & A sesquilinear form ¢ on vector space & is said
to be positive if ¢ (z,2) > 0 for allz € &. Moreover, ¢ is called Cauchy-Schwarz
if (¢ (x,9))* < ¢(z,2)¢(y,y) for cach x,y € & The corresponding quadratic form
associated to ¢ is defined as:

D (z)=p(z,x).

We remark that, if & be a normed space and ¢ is a positive bounded sesquilinear form,
then /@ () defines a semi norm on & (see [16, p. 52]). Let B (&) denote the algebra
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of all bounded linear operators on a complex vector space &. For operator A € B (&)
there exist B € B (&) such that for each x and y in &

¢ (Az,y) = ¢ (v, By).

In this case, B is ¢-adjoint of A and it is denoted by A*. For more information on
related ideas and concepts we refer [17, p. 88-90]. The operator A in B (&) is called
p-positive if for all z € &, ¢ (Az,x) > 0. We note that, A > Bif A— B > 0.

In this paper, we develop the existing notions of frames on Hilbert spaces by using
the definition of sesquilinear form on a normed space &. Section 2 is devoted to
some elementary considerations concerning the p-frames. Some properties and results
of such frames are investigated. In Section 3, we derive some characterizations of
continuous @-frames. Finally, in the last section, we give new Parseval type identities
and inequalities for p-frames in normed spaces (see Corollary 4.1 and Proposition 4.1).
Our results generalize the remarkable results obtained recently by Gavruta.

2  p-frames

The following basic results are essentially known as in [9], but our expression is a
little bit different from those in [9]. In fact Hilbert space H and inner product (,-)
are replaced with vector space & and sesqulinear form ¢ respectively. Recall that a
sequence {ey},-, in a vector space & is a basis, if the following conditions are satisfied:

(a) & = span{er}t;_;;
(b) {er},—, is linearly independent.

As a consequence of above definition, every f € & has a unique representation in
terms of the elements in the basis, i.e., there exists unique scalar coefficients {cj};-,

such that
m
f = Z CL€f.
k=1

If {ex };, is a p-orthonormal basis, i.e., a basis for which

1 ifk=j,
‘P(e’“’eﬂ')_‘s’“vi_{ 0 ifk;éj‘

then the coefficients {cj},., are easy to find

w(fa ej) =@ (chek;€j> = ch<ﬂ(€k,€j) =Cj.

k=1 =1
So .
= ¢(fer)en

=1



422 Properties and Related Inequalities Of ¢-frames in Normed Spaces

A sequence {fi},-, in a vector space & is called p-frame if there exist A, B > 0 such
that

Ao (£, 1) <D le (f )P < Bo (£, f), (2.1)

k=1

for all f € &. The constants A and B are called ¢-frame bounds. If A = B, this is a
tight p-frame and if A = B = 1 this is a Parseval p-frame. Consider a vector space &
equipped with a frame {fx},", and define a linear mapping

m

T:C"— &, T{ex}—y = chfk.
k=1

T is called the ¢-pre-frame operator. The adjoint operator is given by
T°: 8- C" T°f ={o(f fu) iz

in fact by the usual inner product on C™ as the sesquilinear form <p/ we have

o (Tz,y) =¢ (chfk,y> > e (frry)

k=1 k=1

and
m

¢ (@, T*y) = ¢' (e iy Ao (0, S i) = D ene (o)

k=1

In this case, T* is called the analytic operator and by composing T" with its adjoint
T*, we obtain the p-frame operator

S:6—& Sf=TT"f=> ¢(f fi)fx

Note that in terms of the ¢-frame operator,

¢)Crf’f)::j£:|¢(jzjk)Fa f €é.
k=1

REMARK 2.1. Let ¢ be a Cauchy-Schwarz bounded sesquilinear form, then

m

Do le(f fo)l? Z (2.2)
k=1

PROPOSITION 2.1. Let {fx};—, be a sequence in &. Then {fi},-, is a ¢-frame
for span {fi} ;.
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PROOF. Assume that none of the fi’s are zeros. From, Remark 2.1, the upper
o-frame condition is satisfied with B = > ® (f). Now let
k=1

W = span {fk}zlzl

and consider the continuous mapping

VW SR ()= le(f o)l
k=1

The unit ball in W is compact since, W is finite dimensional. So the function 1 takes
its infimum on the unit ball W. We can find g € W with \/® (¢g) = 1 such that

A= Z| (9. fu)l® mf{le FRP: few, \/fb(f)—l}.
k=1

k=1

It is clear that A > 0. Now for f € W, f # 0, we have

m m

> e (f )l Z <¢_,fk> @ () = Al2(f)].

COROLLARY 2.1. A family of elements {f;};—, in & is a ¢-frame for & if and
only if span {fi}i—, = &.

THEOREM 2.1. Let {fx},-, be a ¢-frame for & with p-frame operator S. Then

(a) S is invertible and self adjoint.

(b) Every f € & can be represented as

m

F=Y 0 (£87 ) fe=> 0 (fi fr)S™ fi- (2.3)
k=1

k=1

PROOF. Since S =TT, it is clear that S is a self adjoint. We have to prove that
S is injective. Let f € & and assume that Sf = 0. Then

m

¢ (St f) Z (f. f)l%,

by the p-frame condition f = 0. S is injective implies that S is surjective, but let us give
direct proof. By Corollary 2.1, the ¢-frame condition implies that span {fi},—, = &,
so the ¢-pre frame operator T is surjective. For f € & we can find g € & such that
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Tg = f. We can choose g € N+ = Ry~ so it follows that Rg = Ryp- = &. Thus S is
surjective. Each f € & has the representation

=SS =TT"S f =3 "0 (ST, i) fi

k=1
Since S is self adjoint, we get
=057 f
k=1

The second representation in (2.3) is obtained in the same way, hence f = S~1Sf.

THEOREM 2.2. Let {fx},—, be a ¢-frame for & with o-frame operator 7. Then
If f € & also has the representation f = > ¢ fx for some scalar coefficients {cx}p-;,

k=1
then

m

Z lex|? = Z le (f, Tﬁlfk)’2 + Z lek + o (f, T fr) ’2- (2.4)

k=1 k=1 k=1
PROOF. Suppose that f = > cpfr. We can write
k=1

{atita = {edita —{e (LT +H{e (BT ) B -
By the choice of {¢;};-, we have

S (ev—o (LT ) fe =

k=1
ie.
{atiy —{e (£, T fi)},_, € Ns = R&.,
since
{e(nT bl = {e (T L)L, € Bse
we obtain (2.4).

REMARK 2.2. If {fi};", is a o-frame but not a basis, there exist non zero se-
quences {dj},—, such that > difx = 0. Therefore f € & can be written
k=1

F=Y "0 (FT7 ) fo+ > dife
k=1

k=1

and

M-

(o (£, T f) + di) fr

>
Il

1
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showing that f has many representations as superpositions of the ¢-frame elements.

PROPOSITION 2.2. Let {fi},—, be a basis for &. Then there exists a unique
family {gx},—, in & such that

F=Y"o(frgr) fr, (Vf€E). (2.5)

=1

PROOF. The existence of a family {gx},., satisfying (2.5) follows from Theorem
2.1, also the uniqueness part is direct.

REMARK 2.3. Applying (2.5) on a fixed element f; and since {fi},-, is a basis,
we get ¢ (fj,gx) =0, forall k=1,2,...,m.

THEOREM 2.3. Let {fx},—, be a ¢-frame for subspace F of the vector space &.
Then the p-orthogonal projection of & onto F' is given by

m

PF=>> (£, T f) fi- (2.6)
k=1
PROOF. It is enough to prove that if we define P by (2.6), then
Pf=ffor fe Fand Pf=0for f € F*.

The first equation follows by Theorem 2.1, and the second by the fact that the range
of T~! equals F because T is a bijection on F.

3 Continuous p-frames

In this section, we introduce the concept of continuous ¢-frames, which is a partial
extension of continuous frames. To prove our main result related to continuous -
frames, we need the following essential definitions. Let I be a locally compact group,
and & be a vector space, and ¢ be a sesquilinear form on &. A function

fiI—=&

is called a continuous ¢-frame in &, if there are positive numbers A, B, such that for
all zin &

Ap (z, 1) §/1|<p(x,fi)|2di < By (z, ), (3.1)

where di is a Haar measure on I. The constants A and B are called the frame bounds.
In this case, we define the corresponding frame operator as S : I — I such that

S (z) = /I<p(x, fi) di. (3.2)
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Moreover, we can define the analysis operator as this 7' : & — L2 (I) such that

The notation (¢ (z, f;));c; in (3.3) denotes the function in L* (1)

T — (‘P (33, fl))1€I
It easy to prove that T* : L? (I) — & which

g—>/f¢gidi,
I

S =TT

and it implies that

THEOREM 3.1. Let I be a locally compact group, ¢ be a symmetric sesquilinear
form on a vector space &, and let f : I — & be a p-frame in &, with frame bounds
A and B. Then the operator S is a positive, self adjoint, invertible operator on &,
moreover

Algp < S < Blg.

PROOQOF. By definition, we can write

o (Se,2) = / o (e f) fudivx | = [ (o (@, f;) froz)di

I

o (x, fi) o (fi,r)di

o (z, fi) o (, fi)di

N — S S S

o (x, f;)|*di.

Therefore from definition of frame bounds, we conclude that
Ag (2,3) < ¢ (Sz,2) < By (x,2)
which is equivalent to

Al < S < Blg.

EXAMPLE 3.1. Let I be the positive real number, and & be L?(R). Define
f:R" — L?(R) which

a — fa
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where _
fa (.I) _ 6277104&0'

Then it easy to show that the frame operator corresponding to the inner product of
L? (R) is the identity on &. In other words, for any function f

+oo
f= [ ¢ 0o) fuda
0
or equivalently
+oo [/ +oo
fo= [ | [ 10w )t @) da
0 — 00
or e e
f (:E) — / / f (:E) 672’”"”6150 e27riaacda'
0 — 00

This is the Fourier integral for the function f.

EXAMPLE 3.2. In the previous, let I be the set of all positive integers, then we
have

F=Y_0(f,fa) In
0

or

[eS) oo
f (:E) _ Z / f (:E) 672’”"”6150 e27riaacda'
0 — 0O

which is the Fourier series for the function f.
Example 3.2 shows that the Fourier system is a continuous ¢-frame, which has a
discrete sub frame, but not in a same measure.

REMARK 3.1. In general, it is not necessary for I to be a group, it is enough that
I is a subset of a locally compact group with a suitable measure. As we see in the
examples, it is important to define an integral or summation on I.

4 Applications

As an application of previous sections, we prove the following inequalities and by using
the model technique of Balan et al. [2, 3] and Gavruta [15], we obtain an analogue,
called Parseval’s identity of ¢-frames in normed spaces.

THEOREM 4.1. Let {fi}iel
A,B. Let J C I, so that {fi},c;
p-frame for &.

be a p-frame for a vector space & with frame bounds
has Bessel bound B (J) < A. Then {fi};,c;. is a
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PROOF. Since {f;},. ;o has B as a Bessel bound, we only need to check its lower
frame bound. For this just compute for any f € &

Dl =" le(f =D le (£ )1

i€Je i€l i€J
2 A®(f) =B(J)®(f) =(A=B(J))®(f).
Since A — B (J) > 0, we deduce the desired result.

COROLLARY 4.1. Let {fi},c; be a Parseval ¢-frame for & and J C I. In order
for {fi};c, to be a p-frame for & is necessary and sufficient that B (J¢) < 1. In this
case, the optimal lower frame bound for {f;},.; is 1 — B (J°).

PROOQOF. For any f € & we have

Sle (=D le (P =D e ()l

icJ icl icJe
2®(f)=BJ)2(f)=0-B(J))2(f).

It is easy to see that the inequality above is optimal, hence the proof.
The following result can be stated as well.

THEOREM 4.2. Assume that ¢ is a bounded positive sesquilinear form. If U,V €
L (&) are ¢-self adjoint operators satisfying U + V' = 1, then for all f € & we have

P UL+ (V) =0V + (V) 2 0 ()).

PROOF. We have

CULN+VE) =o U, f)+¢(VIVS)
= (e =V, )+ (V3£ )
zw((Vz’ Vt1s) f.f)
= (VIN +eULUN +¢ (s = V)1 f)
zw((VQf V+Is) £, f)
=¢ (V——Ig’ + Ig’)ﬁf)
3
ZZ(I)

This completes the proof of Theorem 4.2.

REMARK 4.1. We consider now { f;},.;,
and {ﬁ} , its canonical dual frame and J C I. We have
i€

a p-frame for & with S its frame operator

Sr+4 85 =85,
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hence ) ) ) )
S5725;572 457255572 = 1g.

PROOF. If in the Theorem 4.2 we take U = S~25;872, V = §-25;.57 % and
S%f instead of f, we get
o (S8 1.85F) + @ (573850 f) = o (5781, 5% F) + @ (57180 7)

@(S%f),

>

~lw 6

or

0 (Ssf )+ 0 (STESsef, STHS e f) = 9 (Suef, )+ 0 (571801, 5 )

3
The following result also holds (see [15, Theorem 3.2] for the case of Hilbert space).

N——

THEOREM 4.3. Let {f;},o; be a p-frame for & and {g;},.; be an alternative dual
of {fi};,c;- Then for all J C I and all f € &, we have

Re) " o(f,9:)e(f, fi) + @ (Z e(f, gi)ﬂ)

icJ icJe

= Re) o(f,9)9(f fi) + @ (Z e(f, gz-)ﬂ)

i€J i€J
3
> -0 .
> e ()

PROOQOF. For every J C I we define the operator L; by
Lif =) ¢ (f.9) [
icJ
By the Cauchy-Schwarz inequality it follows that this series converges unconditionally
and Ly € E(é()) Since Ly + Ljc = Ig,

PULILI) F: )+ o (E3eLoe) £, ) =

or

ieJ
ieJe

>

®(f).

W] W
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To prove Theorem 4.4, we need the following lemma.
LEMMA 4.1. If S, T are operators on & satisfying S+7 = I, then S—T = §% —T2.

PROOF. Easy computation and simplification yield

S-T=8-(I-8)=25-1=8-(1-25+5*)=8*-(1-5)"=8*-T"%

THEOREM 4.4. Let {fi},c;
Then for all J C I and for all f € & we have

Sleth ol = e (S 7)| = S le sl = e (5504, 7)

i€J i€l i€Je i€l

be a ¢-frame for & with canonical frame {ﬁ} .
i€

2

PROOF. Let S denote the frame operator for {f;},.;. Since S = Sy + Sy, it
follows that I = S~1S; + S~1S.. Applying Lemma 4.1 to the two operators S~1.S;
and S~15;. yields

S™1S; —S518;871S; =518 — S8 S S . (4.1)
Further, for every f,g € & we obtain

©(S7'Ssf.9) =0 (ST'SsSTIS f9) =0 (Saf, 87 g) — e (SIS f,5,57 ) . (4.2)

Now, we choose g to be ¢ = Sf. Then we can continue the equality (4.2) in the
following as

o (S11.0) 0 (57 551.5:) = S le (1 FF = e (S51.7)[

i€J icl

Setting equality (4.2) equal to the corresponding equality for J¢ and using (4.1), we
finally get

Sl =S |e (505 7)] = X le o = X Je (S0-5. )

i€J i€l i€Je i€l

2

PROPOSITION 4.1. Let {fi};,.; be a Parseval o-frame for &. For every subset
J C I and every f € &, we have

SNl P =@ (f i) i) =D lelf. f)f -2 <Z ¢ (f, i) ﬂ-) .

icJ icJe icJe
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Since {fi},c; is a Parseval

PROOF. Let {;} _ denote the dual frame of {fi},¢,.

ic
p-frame, its frame operator equal identity operator and hence f; = f; for all ¢ € I.
Employing Theorem 4.4 and the fact that {f;},.; is a Parseval o-frame yields

Slef )P - <Z<p (f. f2) fz-) =" le(f. £)? =@ (Ssf)

i€J i€J i€J

=S e (f P =D e (Saf )

i€J icl

=Yl P =2 |e (80£.7)
ieJ icl
=Y e F)f = 2| (801, )

2

2

1eJe el

=Y " le(f. fi)l? = @ (Ssef)
1eJe

=> le(f.f)f —@ (Z e (f, f»fi) :
ieJe ieJe
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