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Abstract

The nullity of a graph is the multiplicity of the eigenvalue zero in the spectrum
of the graph. Using the nullity of the complement of a graph, we in this note
present sufficient conditions for some Hamiltonian properties of the graph.

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation
and terminology not defined here follow those in [1]. For a graph G = (V(G), E(G)), we
use n and e to denote its order |V(G)| and size |E(G)|, respectively. The complement of
G is denoted by G¢. We use sK; to denote a graph that consists of s isolated vertices.
A clique in a graph G is a subset S of V(G) such that G[S] is complete. The clique
number of a graph G, denoted w(G), is the number of vertices in a maximum clique of
G. For two disjoint graphs G and G4, we use G1UG5 and G1 VG5 to denote respectively
the union and join of G; and Ga. The eigenvalues A\ (G) > A (G) > -+ > A\ (G) of
the adjacency matrix A(G) of a graph G are called the eigenvalues of G. The nullity
of a graph G, denoted 7n(G), is defined as the multiplicity of the eigenvalue zero in
the spectrum of the graph G. A cycle C in a graph G is called a Hamiltonian cycle
of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a
Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P
contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian
path. It is known that if G is Hamiltonian (resp. traceable) then ¢(G[V — S]) < |9]
(resp. ¢(G[V =S]) < |S|+1) for any vertex cut S of G, where ¢(G[V —S]) is the number
of components of G[V — S]. The purpose of this note is to present the following nullity
conditions for Hamiltonian and traceable graphs. The main results are as follows.

THEOREM 1. Let G be a k - connected graph of order n with k£ > 2. If n(G¢) >
n —k — 1, then G is Hamiltonian or K3 V (K, UK, U---U K, ).

THEOREM 2. Let G be a k - connected graph of order n with k& > 1. If n(G®) >
n —k — 2, then G is traceable or K, V (K, UK, U--- UK,

Tk+2)'
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REMARK 1. Let G be a graph obtained by adding one edge to K, V (p + 1)K,
where p > 2. We can verify that G satisfies the conditions in Theorem 1 and therefore
we can use Theorem 1 to decide G is a Hamiltonian graph. When p > 3, G does
not satisfy Ore’s condition or Dirac’s condition (see [1]) . Thus we cannot use Ore’s
theorem or Dirac’s theorem to decide whether G is Hamiltonian when p > 3.

REMARK 2. Let G be a graph obtained by adding one edge to K, V (p + 2) K,
where p > 1. We can verify that G satisfies the conditions in Theorem 2 and therefore
we can use Theorem 2 to decide G is a traceable graph. When p > 2, G does not satisfy
Ore-type condition or Dirac-type condition for the traceability of a graph. Thus we
cannot use Ore-type theorem or Dirac-type theorem for the traceability of a graph to
decide whether G is traceable when p > 2.

2 Lemmas

In order to prove Theorems 1 and 2, we need the following results as our lemmas.
Lemma 1 below is Corollary 2.5 on Page 62 in [2].

LEMMA 1. Let G be graph on n vertices and G is not isomorphic to nK;. Then
0(G) +w(G) < n.

Lemma 2 below is the Interlacing Theorem which can be found in [3] (Theorem
0.10 on Page 19).

LEMMA 2. Let G be a graph of order n with eigenvalues A\1(G) > A\3(G) >
- > A(G), and let H be an induced subgraph of G of order p with eigenvalues
AL(H) > Ao(H) > -+ > Ay(H). Then

>\n—p+i(G) S )\,(H) S >\7(G)7 1 S 1 S D.

Lemma 3 below is Theorem 1 in [4, On page 403].

LEMMA 3. A graph has exactly one positive eigenvalue if and only if the non-
isolated vertices of the graph form a complete multipartite graph.

3 Proofs

In this section, we prove Theorems 1 and 2.

PROOF OF THEOREM 1. Let G be a graph satisfying the conditions in Theorem
1. If G is complete, then G is Hamiltonian. From now on, we assume that G is not
complete. Namely, G¢ is not isomorphic to nK;. Suppose that G is not Hamiltonian.
Since k > 2, G contains a cycle. Choose a longest cycle C' in G and give an orientation
on C. Since G is not Hamiltonian, there exists a vertex xo € V(G)\V(C). By Menger’s
theorem, we can find s (s > k) pairwise disjoint (except for zq) paths Py, P, ..., Ps
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between zg and V(C). Let u; be the end vertex of P; on C, where 1 < i < s. We
use uj‘ to denote the successor of u; along the orientation of C, where 1 < ¢ < s.
Notice that xou;r ¢ E for each i with 1 < i < s otherwise we can easily find a cycle
C1 which is longer than C. Notice also that uju; ¢ FE for each pair of j and k with
1 < j # k < s otherwise we can again find a cycle Cy which is longer than C. Thus
S := {wg,uf,ug,...,ut} is independent in G. Therefore w(G°) = a(G) > s+1 > k+1.
From Lemma 1, we have that n = n—k—1+k+1 <n—-k—14+s+1 <n—-k—14+a(G) <
N(G%) +w(G°) <n.Son(G°)=n—k—1and w(G°) =a(G)=s+1=k+1.

Let H be a subgraph induced by S in G¢. Then H is a complete graph of order
k + 1. Thus the eigenvalues of H are k and —1 with multiplicity of k. From Lemma 2,
we have A1 (G°) > A\ (H) =k and —1 > A\,_p_14; for each ¢ with 2 < i <k + 1. Since
n(G°) =n—k — 1, we must have that A\;(G°) = 0 for each j with 2 < j <n —k. Thus
G° is a graph with exactly one positive eigenvalue. From Lemma 3, we have that G¢
consists of a complete multipartite graph, denoted K., ,,,... r,, and a set, denoted X,
of isolated vertices. Notice that | X| > 1 otherwise G = (G°)¢ would be disconnected.

Now G = G[X|V (K, UK, U---UK,, ), where G[X] is complete in G. Choose
one vertex w; € V(K,,) for each ¢ with 1 <7 < a to form a set W := {wy,wa, ..., wq }.
Then W is independent in G. Thus a = |W| < «(G) = k+ 1. Since |S| =
Hxo,ui,ug,...,ut} = a(G), S is an independent set of G with the maximum car-
dinality. Since each vertex in X is adjacent to all the other vertices in G, SN X = 0.
Notice also that |[S NV (K,,)| <1 for each ¢ with 1 < ¢ < a. Therefore

E+1 = [S|=[SnV(G)|=[SN(XUV(K,,)UV(K,,)U---V(K.,))|
= [SNX|+[SNV (K, )| +[SNV(K,,)|+---+[SNV(K,,)| <a.
Hence a = k + 1. Since G is k - connected and G[V(G) — X] is disconnected, | X| > k.
If | X| > k4 1, then it is easy to see that G is Hamiltonian, leading to a contradiction.
Thus | X| =k and G[X] = K}. Notice that G is not Hamiltonian since G has a vertex
cut X such that ¢(G[V(G)—X]) = | X|+1. Therefore G is K}V (K,, UK,,U---UK,, ).
This completes the proof of Theorem 1.

PROOF OF THEOREM 2. Let G be a graph satisfying the conditions in Theorem
2. If G is complete, then G is traceable. From now on, we assume that G is not
complete. Namely, G¢ is not isomorphic to nK;. Suppose that G is not traceable.
Choose a longest path P in G and give an orientation on P. Let y and z be the two
end vertices of P. Since G is not traceable, there exists a vertex o € V(G)\V(P). By
Menger’s theorem, we can find s (s > k) pairwise disjoint (except for o) paths Py, P,
..., Ps between zy and V(P). Let u; be the end vertex of P; on P, where 1 < ¢ < s.
Since P is a longest path in G, y # u; and z # u;, for each ¢ with 1 <4 < s, otherwise
G would have paths which are longer than P. We use uj to denote the successor of
u; along the orientation of P, where 1 < i < s. Then similar proofs as the ones in the
proof of Theorem 1 show that S := {z¢,y,u],us,...,u}} is independent (otherwise G
would have paths which are longer than P). Thus w(G°) = a(G) > s+2 > k+2. From
Lemma 1, we have that n =n—k—24+k+2<n—-k—-2+s+2<n—-k-2+a(G) <
n(G) + w(G°) < n. Therefore n(G¢) =n —k — 2 and w(G°) = a(G) =s+2=k+2.

Let H be a subgraph induced by S in G°. Then H is a complete graph of order
k + 2. Thus the eigenvalues of H are k + 1 and —1 with multiplicity of k£ + 1. From
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Lemma 2, we have \{(G°) > A(H) = k+ 1 and —1 > A,_p_24; for each ¢ with
2 <i<Ek+2 Since n(G°) =n —k— 2, we must have that \;(G°) = 0 for each j
with 2 < j < n—k — 1. Thus G¢ is a graph with exactly one positive eigenvalue.
From Lemma 3, we have that G°¢ consists of a complete multipartite graph, denoted
Ky ry. ...y, and a set, denoted X, of isolated vertices. Notice that |X| > 1 otherwise
G = (G°)¢ would be disconnected.

Now G = G[X]V (K, UK,, U---UK,,), where G[X] is complete in G. Choose
one vertex w; € V(K,,) for each i with 1 <7 <b to form a set W := {wy,ws, ..., wp}.

i

Then W is independent in G. Thus b = |W| < «(G) = k + 2. Since
|S| = |{$anau;—au;7 7uj}| = OL(G),

S is an independent set of G with the maximum cardinality. Since each vertex in X is
adjacent to all the other vertices in G, SN X = (. Notice also that [SNV(K,,)| <1
for each 7 with 1 <4 <b. Therefore

E+2 = [S|=[SNV(Q)=[SN(XUV(K,)UV(K,,)U---V(K,,))
= [SNX|+|SNV(K )| +|SNV(K,,)|+--+|SNV(K,,)| <b.

Hence b = k + 2. Since G is k - connected and G[V(G) — X] is disconnected, |X| > k.

If | X| > k+ 1, then it is easy to see that G is traceable, leading to a contradiction.

Thus | X| = k and G[X] = Kj. Notice that G is not traceable since G has a vertex cut

X such that ¢(G[V(G) — X]) = |X|+2. Therefore G is K}, V (K, UK,,U---UK,, ,).
This completes the proof of Theorem 2.
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