The Nullity Conditions For Some Hamiltonian Properties Of Graphs*

Rao Li^{\dagger}

Received 27 May 2018

Abstract

The nullity of a graph is the multiplicity of the eigenvalue zero in the spectrum of the graph. Using the nullity of the complement of a graph, we in this note present sufficient conditions for some Hamiltonian properties of the graph.

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [1]. For a graph $G=(V(G), E(G))$, we use n and e to denote its order $|V(G)|$ and size $|E(G)|$, respectively. The complement of G is denoted by G^{c}. We use $s K_{1}$ to denote a graph that consists of s isolated vertices. A clique in a graph G is a subset S of $V(G)$ such that $G[S]$ is complete. The clique number of a graph G, denoted $\omega(G)$, is the number of vertices in a maximum clique of G. For two disjoint graphs G_{1} and G_{2}, we use $G_{1} \cup G_{2}$ and $G_{1} \vee G_{2}$ to denote respectively the union and join of G_{1} and G_{2}. The eigenvalues $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{n}(G)$ of the adjacency matrix $A(G)$ of a graph G are called the eigenvalues of G. The nullity of a graph G, denoted $\eta(G)$, is defined as the multiplicity of the eigenvalue zero in the spectrum of the graph G. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path. It is known that if G is Hamiltonian (resp. traceable) then $c(G[V-S]) \leq|S|$ (resp. $c(G[V-S]) \leq|S|+1)$ for any vertex cut S of G, where $c(G[V-S])$ is the number of components of $G[V-S]$. The purpose of this note is to present the following nullity conditions for Hamiltonian and traceable graphs. The main results are as follows.

THEOREM 1. Let G be a k - connected graph of order n with $k \geq 2$. If $\eta\left(G^{c}\right) \geq$ $n-k-1$, then G is Hamiltonian or $K_{k} \vee\left(K_{r_{1}} \cup K_{r_{2}} \cup \cdots \cup K_{r_{k+1}}\right)$.

THEOREM 2. Let G be a k - connected graph of order n with $k \geq 1$. If $\eta\left(G^{c}\right) \geq$ $n-k-2$, then G is traceable or $K_{k} \vee\left(K_{r_{1}} \cup K_{r_{2}} \cup \cdots \cup K_{r_{k+2}}\right)$.

[^0]REMARK 1. Let G be a graph obtained by adding one edge to $K_{p} \vee(p+1) K_{1}$, where $p \geq 2$. We can verify that G satisfies the conditions in Theorem 1 and therefore we can use Theorem 1 to decide G is a Hamiltonian graph. When $p \geq 3, G$ does not satisfy Ore's condition or Dirac's condition (see [1]). Thus we cannot use Ore's theorem or Dirac's theorem to decide whether G is Hamiltonian when $p \geq 3$.

REMARK 2. Let G be a graph obtained by adding one edge to $K_{p} \vee(p+2) K_{1}$, where $p \geq 1$. We can verify that G satisfies the conditions in Theorem 2 and therefore we can use Theorem 2 to decide G is a traceable graph. When $p \geq 2, G$ does not satisfy Ore-type condition or Dirac-type condition for the traceability of a graph. Thus we cannot use Ore-type theorem or Dirac-type theorem for the traceability of a graph to decide whether G is traceable when $p \geq 2$.

2 Lemmas

In order to prove Theorems 1 and 2, we need the following results as our lemmas. Lemma 1 below is Corollary 2.5 on Page 62 in [2].

LEMMA 1. Let G be graph on n vertices and G is not isomorphic to $n K_{1}$. Then $\eta(G)+\omega(G) \leq n$.

Lemma 2 below is the Interlacing Theorem which can be found in [3] (Theorem 0.10 on Page 19).

LEMMA 2. Let G be a graph of order n with eigenvalues $\lambda_{1}(G) \geq \lambda_{2}(G) \geq$ $\cdots \geq \lambda_{n}(G)$, and let H be an induced subgraph of G of order p with eigenvalues $\lambda_{1}(H) \geq \lambda_{2}(H) \geq \cdots \geq \lambda_{p}(H)$. Then

$$
\lambda_{n-p+i}(G) \leq \lambda_{i}(H) \leq \lambda_{i}(G), 1 \leq i \leq p
$$

Lemma 3 below is Theorem 1 in [4, On page 403].
LEMMA 3. A graph has exactly one positive eigenvalue if and only if the nonisolated vertices of the graph form a complete multipartite graph.

3 Proofs

In this section, we prove Theorems 1 and 2.
PROOF OF THEOREM 1. Let G be a graph satisfying the conditions in Theorem 1. If G is complete, then G is Hamiltonian. From now on, we assume that G is not complete. Namely, G^{c} is not isomorphic to $n K_{1}$. Suppose that G is not Hamiltonian. Since $k \geq 2, G$ contains a cycle. Choose a longest cycle C in G and give an orientation on C. Since G is not Hamiltonian, there exists a vertex $x_{0} \in V(G) \backslash V(C)$. By Menger's theorem, we can find $s(s \geq k)$ pairwise disjoint (except for x_{0}) paths $P_{1}, P_{2}, \ldots, P_{s}$
between x_{0} and $V(C)$. Let u_{i} be the end vertex of P_{i} on C, where $1 \leq i \leq s$. We use u_{i}^{+}to denote the successor of u_{i} along the orientation of C, where $1 \leq i \leq s$. Notice that $x_{0} u_{i}^{+} \notin E$ for each i with $1 \leq i \leq s$ otherwise we can easily find a cycle C_{1} which is longer than C. Notice also that $u_{j}^{+} u_{k}^{+} \notin E$ for each pair of j and k with $1 \leq j \neq k \leq s$ otherwise we can again find a cycle C_{2} which is longer than C. Thus $S:=\left\{x_{0}, u_{1}^{+}, u_{2}^{+}, \ldots, u_{s}^{+}\right\}$is independent in G. Therefore $\omega\left(G^{c}\right)=\alpha(G) \geq s+1 \geq k+1$. From Lemma 1, we have that $n=n-k-1+k+1 \leq n-k-1+s+1 \leq n-k-1+\alpha(G) \leq$ $\eta\left(G^{c}\right)+\omega\left(G^{c}\right) \leq n$. So $\eta\left(G^{c}\right)=n-k-1$ and $\omega\left(G^{c}\right)=\alpha(G)=s+1=k+1$.

Let H be a subgraph induced by S in G^{c}. Then H is a complete graph of order $k+1$. Thus the eigenvalues of H are k and -1 with multiplicity of k. From Lemma 2, we have $\lambda_{1}\left(G^{c}\right) \geq \lambda_{1}(H)=k$ and $-1 \geq \lambda_{n-k-1+i}$ for each i with $2 \leq i \leq k+1$. Since $\eta\left(G^{c}\right)=n-k-1$, we must have that $\lambda_{j}\left(G^{c}\right)=0$ for each j with $2 \leq j \leq n-k$. Thus G^{c} is a graph with exactly one positive eigenvalue. From Lemma 3, we have that G^{c} consists of a complete multipartite graph, denoted $K_{r_{1}, r_{2}, \ldots, r_{a}}$, and a set, denoted X, of isolated vertices. Notice that $|X| \geq 1$ otherwise $G=\left(G^{c}\right)^{c}$ would be disconnected.

Now $G=G[X] \vee\left(K_{r_{1}} \cup K_{r_{2}} \cup \cdots \cup K_{r_{a}}\right)$, where $G[X]$ is complete in G. Choose one vertex $w_{i} \in V\left(K_{r_{i}}\right)$ for each i with $1 \leq i \leq a$ to form a set $W:=\left\{w_{1}, w_{2}, \ldots, w_{a}\right\}$. Then W is independent in G. Thus $a=|W| \leq \alpha(G)=k+1$. Since $|S|=$ $\left|\left\{x_{0}, u_{1}^{+}, u_{2}^{+}, \ldots, u_{s}^{+}\right\}\right|=\alpha(G), S$ is an independent set of G with the maximum cardinality. Since each vertex in X is adjacent to all the other vertices in $G, S \cap X=\emptyset$. Notice also that $\left|S \cap V\left(K_{r_{i}}\right)\right| \leq 1$ for each i with $1 \leq i \leq a$. Therefore

$$
\begin{aligned}
k+1 & =|S|=|S \cap V(G)|=\left|S \cap\left(X \cup V\left(K_{r_{1}}\right) \cup V\left(K_{r_{2}}\right) \cup \cdots V\left(K_{r_{a}}\right)\right)\right| \\
& =|S \cap X|+\left|S \cap V\left(K_{r_{1}}\right)\right|+\left|S \cap V\left(K_{r_{2}}\right)\right|+\cdots+\left|S \cap V\left(K_{r_{a}}\right)\right| \leq a .
\end{aligned}
$$

Hence $a=k+1$. Since G is k - connected and $G[V(G)-X]$ is disconnected, $|X| \geq k$. If $|X| \geq k+1$, then it is easy to see that G is Hamiltonian, leading to a contradiction. Thus $|X|=k$ and $G[X]=K_{k}$. Notice that G is not Hamiltonian since G has a vertex cut X such that $c(G[V(G)-X])=|X|+1$. Therefore G is $K_{k} \vee\left(K_{r_{1}} \cup K_{r_{2}} \cup \cdots \cup K_{r_{k+1}}\right)$.

This completes the proof of Theorem 1.
PROOF OF THEOREM 2. Let G be a graph satisfying the conditions in Theorem 2. If G is complete, then G is traceable. From now on, we assume that G is not complete. Namely, G^{c} is not isomorphic to $n K_{1}$. Suppose that G is not traceable. Choose a longest path P in G and give an orientation on P. Let y and z be the two end vertices of P. Since G is not traceable, there exists a vertex $x_{0} \in V(G) \backslash V(P)$. By Menger's theorem, we can find $s(s \geq k)$ pairwise disjoint (except for x_{0}) paths P_{1}, P_{2}, \ldots, P_{s} between x_{0} and $V(P)$. Let u_{i} be the end vertex of P_{i} on P, where $1 \leq i \leq s$. Since P is a longest path in $G, y \neq u_{i}$ and $z \neq u_{i}$, for each i with $1 \leq i \leq s$, otherwise G would have paths which are longer than P. We use u_{i}^{+}to denote the successor of u_{i} along the orientation of P, where $1 \leq i \leq s$. Then similar proofs as the ones in the proof of Theorem 1 show that $S:=\left\{x_{0}, y, u_{1}^{+}, u_{2}^{+}, \ldots, u_{s}^{+}\right\}$is independent (otherwise G would have paths which are longer than P). Thus $\omega\left(G^{c}\right)=\alpha(G) \geq s+2 \geq k+2$. From Lemma 1, we have that $n=n-k-2+k+2 \leq n-k-2+s+2 \leq n-k-2+\alpha(G) \leq$ $\eta\left(G^{c}\right)+\omega\left(G^{c}\right) \leq n$. Therefore $\eta\left(G^{c}\right)=n-k-2$ and $\omega\left(G^{c}\right)=\alpha(G)=s+2=k+2$.

Let H be a subgraph induced by S in G^{c}. Then H is a complete graph of order $k+2$. Thus the eigenvalues of H are $k+1$ and -1 with multiplicity of $k+1$. From

Lemma 2, we have $\lambda_{1}\left(G^{c}\right) \geq \lambda_{1}(H)=k+1$ and $-1 \geq \lambda_{n-k-2+i}$ for each i with $2 \leq i \leq k+2$. Since $\eta\left(G^{c}\right)=n-k-2$, we must have that $\lambda_{j}\left(G^{c}\right)=0$ for each j with $2 \leq j \leq n-k-1$. Thus G^{c} is a graph with exactly one positive eigenvalue. From Lemma 3, we have that G^{c} consists of a complete multipartite graph, denoted $K_{r_{1}, r_{2}}, \ldots, r_{b}$, and a set, denoted X, of isolated vertices. Notice that $|X| \geq 1$ otherwise $G=\left(G^{c}\right)^{c}$ would be disconnected.

Now $G=G[X] \vee\left(K_{r_{1}} \cup K_{r_{2}} \cup \cdots \cup K_{r_{b}}\right)$, where $G[X]$ is complete in G. Choose one vertex $w_{i} \in V\left(K_{r_{i}}\right)$ for each i with $1 \leq i \leq b$ to form a set $W:=\left\{w_{1}, w_{2}, \ldots, w_{b}\right\}$. Then W is independent in G. Thus $b=|W| \leq \alpha(G)=k+2$. Since

$$
|S|=\left|\left\{x_{0}, y, u_{1}^{+}, u_{2}^{+}, \ldots, u_{s}^{+}\right\}\right|=\alpha(G)
$$

S is an independent set of G with the maximum cardinality. Since each vertex in X is adjacent to all the other vertices in $G, S \cap X=\emptyset$. Notice also that $\left|S \cap V\left(K_{r_{i}}\right)\right| \leq 1$ for each i with $1 \leq i \leq b$. Therefore

$$
\begin{aligned}
k+2 & =|S|=|S \cap V(G)|=\left|S \cap\left(X \cup V\left(K_{r_{1}}\right) \cup V\left(K_{r_{2}}\right) \cup \cdots V\left(K_{r_{b}}\right)\right)\right| \\
& =|S \cap X|+\left|S \cap V\left(K_{r_{1}}\right)\right|+\left|S \cap V\left(K_{r_{2}}\right)\right|+\cdots+\left|S \cap V\left(K_{r_{b}}\right)\right| \leq b .
\end{aligned}
$$

Hence $b=k+2$. Since G is k - connected and $G[V(G)-X]$ is disconnected, $|X| \geq k$. If $|X| \geq k+1$, then it is easy to see that G is traceable, leading to a contradiction. Thus $|X|=k$ and $G[X]=K_{k}$. Notice that G is not traceable since G has a vertex cut X such that $c(G[V(G)-X])=|X|+2$. Therefore G is $K_{k} \vee\left(K_{r_{1}} \cup K_{r_{2}} \cup \cdots \cup K_{r_{k+2}}\right)$.

This completes the proof of Theorem 2.
Acknowledgment. The author would like to thank the referee for his or her suggestions which improve the paper.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1947.
[2] B. Cheng and B. Liu, On the nullity of graphs, Electron. J. Linear Algebra, 16(2007), 60-67.
[3] D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs - Theory and Application, 3rd Edition, Johann Ambrosius Barth, 1995.
[4] J. Smith, Some properties of the spectrum of a graph, in: Combinatorial Structures and Their Applications, Gordan and Breach, New York, 1970, pp. 403-406.

[^0]: ${ }^{*}$ Mathematics Subject Classifications: $05 \mathrm{C} 50,05 \mathrm{C} 45$.
 ${ }^{\dagger}$ Department of Mathematical Sciences, University of South Carolina Aiken, Aiken, SC 29801, U.S.A

