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Abstract

The nullity of a graph is the multiplicity of the eigenvalue zero in the spectrum
of the graph. Using the nullity of the complement of a graph, we in this note
present suffi cient conditions for some Hamiltonian properties of the graph.

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation
and terminology not defined here follow those in [1]. For a graphG = (V (G), E(G)), we
use n and e to denote its order |V (G)| and size |E(G)|, respectively. The complement of
G is denoted by Gc. We use sK1 to denote a graph that consists of s isolated vertices.
A clique in a graph G is a subset S of V (G) such that G[S] is complete. The clique
number of a graph G, denoted ω(G), is the number of vertices in a maximum clique of
G. For two disjoint graphsG1 andG2, we useG1∪G2 andG1∨G2 to denote respectively
the union and join of G1 and G2. The eigenvalues λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) of
the adjacency matrix A(G) of a graph G are called the eigenvalues of G. The nullity
of a graph G, denoted η(G), is defined as the multiplicity of the eigenvalue zero in
the spectrum of the graph G. A cycle C in a graph G is called a Hamiltonian cycle
of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a
Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P
contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian
path. It is known that if G is Hamiltonian (resp. traceable) then c(G[V − S]) ≤ |S|
(resp. c(G[V −S]) ≤ |S|+1) for any vertex cut S of G, where c(G[V −S]) is the number
of components of G[V −S]. The purpose of this note is to present the following nullity
conditions for Hamiltonian and traceable graphs. The main results are as follows.

THEOREM 1. Let G be a k - connected graph of order n with k ≥ 2. If η(Gc) ≥
n− k − 1, then G is Hamiltonian or Kk ∨ (Kr1 ∪Kr2 ∪ · · · ∪Krk+1).

THEOREM 2. Let G be a k - connected graph of order n with k ≥ 1. If η(Gc) ≥
n− k − 2, then G is traceable or Kk ∨ (Kr1 ∪Kr2 ∪ · · · ∪Krk+2).
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REMARK 1. Let G be a graph obtained by adding one edge to Kp ∨ (p + 1)K1,
where p ≥ 2. We can verify that G satisfies the conditions in Theorem 1 and therefore
we can use Theorem 1 to decide G is a Hamiltonian graph. When p ≥ 3, G does
not satisfy Ore’s condition or Dirac’s condition (see [1]) . Thus we cannot use Ore’s
theorem or Dirac’s theorem to decide whether G is Hamiltonian when p ≥ 3.

REMARK 2. Let G be a graph obtained by adding one edge to Kp ∨ (p + 2)K1,
where p ≥ 1. We can verify that G satisfies the conditions in Theorem 2 and therefore
we can use Theorem 2 to decide G is a traceable graph. When p ≥ 2, G does not satisfy
Ore-type condition or Dirac-type condition for the traceability of a graph. Thus we
cannot use Ore-type theorem or Dirac-type theorem for the traceability of a graph to
decide whether G is traceable when p ≥ 2.

2 Lemmas

In order to prove Theorems 1 and 2, we need the following results as our lemmas.
Lemma 1 below is Corollary 2.5 on Page 62 in [2].

LEMMA 1. Let G be graph on n vertices and G is not isomorphic to nK1. Then
η(G) + ω(G) ≤ n.

Lemma 2 below is the Interlacing Theorem which can be found in [3] (Theorem
0.10 on Page 19).

LEMMA 2. Let G be a graph of order n with eigenvalues λ1(G) ≥ λ2(G) ≥
· · · ≥ λn(G), and let H be an induced subgraph of G of order p with eigenvalues
λ1(H) ≥ λ2(H) ≥ · · · ≥ λp(H). Then

λn−p+i(G) ≤ λi(H) ≤ λi(G), 1 ≤ i ≤ p.

Lemma 3 below is Theorem 1 in [4, On page 403].

LEMMA 3. A graph has exactly one positive eigenvalue if and only if the non-
isolated vertices of the graph form a complete multipartite graph.

3 Proofs

In this section, we prove Theorems 1 and 2.

PROOF OF THEOREM 1. Let G be a graph satisfying the conditions in Theorem
1. If G is complete, then G is Hamiltonian. From now on, we assume that G is not
complete. Namely, Gc is not isomorphic to nK1. Suppose that G is not Hamiltonian.
Since k ≥ 2, G contains a cycle. Choose a longest cycle C in G and give an orientation
on C. Since G is not Hamiltonian, there exists a vertex x0 ∈ V (G)\V (C). By Menger’s
theorem, we can find s (s ≥ k) pairwise disjoint (except for x0) paths P1, P2, ..., Ps
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between x0 and V (C). Let ui be the end vertex of Pi on C, where 1 ≤ i ≤ s. We
use u+i to denote the successor of ui along the orientation of C, where 1 ≤ i ≤ s.
Notice that x0u

+
i 6∈ E for each i with 1 ≤ i ≤ s otherwise we can easily find a cycle

C1 which is longer than C. Notice also that u
+
j u

+
k 6∈ E for each pair of j and k with

1 ≤ j 6= k ≤ s otherwise we can again find a cycle C2 which is longer than C. Thus
S := {x0, u+1 , u+2 , ..., u+s } is independent in G. Therefore ω(Gc) = α(G) ≥ s+1 ≥ k+1.
From Lemma 1, we have that n = n−k−1+k+1 ≤ n−k−1+s+1 ≤ n−k−1+α(G) ≤
η(Gc) + ω(Gc) ≤ n. So η(Gc) = n− k − 1 and ω(Gc) = α(G) = s+ 1 = k + 1.
Let H be a subgraph induced by S in Gc. Then H is a complete graph of order

k+1. Thus the eigenvalues of H are k and −1 with multiplicity of k. From Lemma 2,
we have λ1(Gc) ≥ λ1(H) = k and −1 ≥ λn−k−1+i for each i with 2 ≤ i ≤ k + 1. Since
η(Gc) = n− k− 1, we must have that λj(Gc) = 0 for each j with 2 ≤ j ≤ n− k. Thus
Gc is a graph with exactly one positive eigenvalue. From Lemma 3, we have that Gc

consists of a complete multipartite graph, denoted Kr1, r2, ..., ra , and a set, denoted X,
of isolated vertices. Notice that |X| ≥ 1 otherwise G = (Gc)c would be disconnected.

Now G = G[X] ∨ (Kr1 ∪Kr2 ∪ · · · ∪Kra), where G[X] is complete in G. Choose
one vertex wi ∈ V (Kri) for each i with 1 ≤ i ≤ a to form a set W := {w1, w2, ... , wa}.
Then W is independent in G. Thus a = |W | ≤ α(G) = k + 1. Since |S| =
|{x0, u+1 , u+2 , ..., u+s }| = α(G), S is an independent set of G with the maximum car-
dinality. Since each vertex in X is adjacent to all the other vertices in G, S ∩X = ∅.
Notice also that |S ∩ V (Kri)| ≤ 1 for each i with 1 ≤ i ≤ a. Therefore

k + 1 = |S| = |S ∩ V (G)| = |S ∩ (X ∪ V (Kr1) ∪ V (Kr2) ∪ · · ·V (Kra))|
= |S ∩X|+ |S ∩ V (Kr1)|+ |S ∩ V (Kr2)|+ · · ·+ |S ∩ V (Kra)| ≤ a.

Hence a = k + 1. Since G is k - connected and G[V (G)−X] is disconnected, |X| ≥ k.
If |X| ≥ k+ 1, then it is easy to see that G is Hamiltonian, leading to a contradiction.
Thus |X| = k and G[X] = Kk. Notice that G is not Hamiltonian since G has a vertex
cut X such that c(G[V (G)−X]) = |X|+1. Therefore G isKk∨(Kr1∪Kr2∪· · ·∪Krk+1).
This completes the proof of Theorem 1.

PROOF OF THEOREM 2. Let G be a graph satisfying the conditions in Theorem
2. If G is complete, then G is traceable. From now on, we assume that G is not
complete. Namely, Gc is not isomorphic to nK1. Suppose that G is not traceable.
Choose a longest path P in G and give an orientation on P . Let y and z be the two
end vertices of P . Since G is not traceable, there exists a vertex x0 ∈ V (G)\V (P ). By
Menger’s theorem, we can find s (s ≥ k) pairwise disjoint (except for x0) paths P1, P2,
..., Ps between x0 and V (P ). Let ui be the end vertex of Pi on P , where 1 ≤ i ≤ s.
Since P is a longest path in G, y 6= ui and z 6= ui, for each i with 1 ≤ i ≤ s, otherwise
G would have paths which are longer than P . We use u+i to denote the successor of
ui along the orientation of P , where 1 ≤ i ≤ s. Then similar proofs as the ones in the
proof of Theorem 1 show that S := {x0, y, u+1 , u+2 , ..., u+s } is independent (otherwise G
would have paths which are longer than P ). Thus ω(Gc) = α(G) ≥ s+2 ≥ k+2. From
Lemma 1, we have that n = n− k− 2+ k+2 ≤ n− k− 2+ s+2 ≤ n− k− 2+α(G) ≤
η(Gc) + ω(Gc) ≤ n. Therefore η(Gc) = n− k − 2 and ω(Gc) = α(G) = s+ 2 = k + 2.

Let H be a subgraph induced by S in Gc. Then H is a complete graph of order
k + 2. Thus the eigenvalues of H are k + 1 and −1 with multiplicity of k + 1. From
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Lemma 2, we have λ1(Gc) ≥ λ1(H) = k + 1 and −1 ≥ λn−k−2+i for each i with
2 ≤ i ≤ k + 2. Since η(Gc) = n − k − 2, we must have that λj(Gc) = 0 for each j
with 2 ≤ j ≤ n − k − 1. Thus Gc is a graph with exactly one positive eigenvalue.
From Lemma 3, we have that Gc consists of a complete multipartite graph, denoted
Kr1, r2, ..., rb , and a set, denoted X, of isolated vertices. Notice that |X| ≥ 1 otherwise
G = (Gc)c would be disconnected.
Now G = G[X] ∨ (Kr1 ∪ Kr2 ∪ · · · ∪ Krb), where G[X] is complete in G. Choose

one vertex wi ∈ V (Kri) for each i with 1 ≤ i ≤ b to form a set W := {w1, w2, ... , wb}.
Then W is independent in G. Thus b = |W | ≤ α(G) = k + 2. Since

|S| =
∣∣{x0, y, u+1 , u+2 , ..., u+s }∣∣ = α(G),

S is an independent set of G with the maximum cardinality. Since each vertex in X is
adjacent to all the other vertices in G, S ∩X = ∅. Notice also that |S ∩ V (Kri)| ≤ 1
for each i with 1 ≤ i ≤ b. Therefore

k + 2 = |S| = |S ∩ V (G)| = |S ∩ (X ∪ V (Kr1) ∪ V (Kr2) ∪ · · ·V (Krb))|
= |S ∩X|+ |S ∩ V (Kr1)|+ |S ∩ V (Kr2)|+ · · ·+ |S ∩ V (Krb)| ≤ b.

Hence b = k + 2. Since G is k - connected and G[V (G)−X] is disconnected, |X| ≥ k.
If |X| ≥ k + 1, then it is easy to see that G is traceable, leading to a contradiction.
Thus |X| = k and G[X] = Kk. Notice that G is not traceable since G has a vertex cut
X such that c(G[V (G)−X]) = |X|+2. Therefore G is Kk ∨ (Kr1 ∪Kr2 ∪ · · · ∪Krk+2).
This completes the proof of Theorem 2.
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