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Abstract
Two functional equations exhibiting functions with a constant sum over points

lying in a hyperplane are solved. These functional equations are employed to
characterize the sine and cosine functions.

1 Introduction
In [2], Benz solved the functional equation

f@) W) f(z) = f(@) + fly) + f(2) (z,y,2 € (0,7/2))

with
rt+yt+z=m

obtaining a general solution f : (0,7/2) — (0, 00) of the form

f(z) = tan (km +(1- k)g) (z € (0,7/2)),

with an arbitrary constant k € [—1/2,1]. This confirmed a question posed by Davison
[1]. Such a result can be regarded as a functional equation characterizing the trigono-
metric tangent function over a triangle. In [3] and [4], Hengrawit et al extended this
result by solving a generalized functional equation over a convex polygon, which can
also be regarded as characterizing the tangent function. Analyzing the work in [3] and
[4], in a recent paper [5], the following two functional equations, with a constant pa-
rameter sum over a hyperplane, which can be used to characterize the sine and cosine
functions, respectively, are solved:

L2 2M+1f( )
_1\M Ty,
> (=D > (g pTEo

M=0 1<ii < <iapr41<n

)ng) =0,
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n L5] 2M £ (23,)
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j=1 M=1 L<ir<Dianrzn \ \ieot 9 (B

) [To)] | =0 @
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with n > 3. It is natural to ask whether there are other functional equations that can
be used to characterize the sine and cosine functions which are different from the above
equations (1) and (2). In this work, we affirmatively answer this question by solving
two other functional equations differing from (1) and (2), which also characterize the
sine and cosine functions. In the work of Benz the parameters involved are the three
(corresponding to n = 3) angles in a triangle, while those in [3] and [4] are the angles
of a convex polygon. The restriction n > 3 is still adopted in this work. In the final
section, the possibilities of n < 3 are investigated to ensure that this condition is
essential.

2 Preliminary Results

We start with a theorem and a lemma taken from [5] which are needed.

THEOREM 1 ([5, Theorem 1.2]). Let n be an integer > 3, and let I := (a,b), Iz :=
(¢,d) be two non-empty open intervals. Then the function ¢ : I; — I, satisfies the
constant sum functional equation

ZQb(l“z) = Ui,

i=1

where U is a real constant, subject to the hyperplane condition

n
E x; = Us,
i=1

where U, is a real constant, if and only if,

for some fixed k lying in the range

i nc—U; nd—U; <k < min nc—U; nd—U;
X i )
nb—Us’ na — Us na — Uy’ nb— Us

LEMMA 1 ([5, Lemma 4.2]). Let n be an integer > 2. If z1,...,x, € (0,7), then

sin(zy + -+ xp)

Rl AMAL n
= Z (-1)M Z ( H cosxii) Hcosxj ,
, =

M=0 1Si1<~--<i2]\4+1§n k=1
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and
cos(xy + -+ Tp)

n L) 2M . n
= jl;[lcosxj—i— Z(—l)M Z <1:I?OI:Z’Z> jl_[cos:vj

M=1 1<ig < <iapr <n k=1

3 Main Results

We now prove our main theorem.

THEOREM 2. Let n be an integer > 3 and let I; := (a,b), Iz := (¢,d) be two
non-empty open intervals.

A) Let F(Ny,...,Ny,, Ry, ..., Ry) be a function of 2n variables and let t € I, T € R.
Suppose that S,C : I; — I, are two bijections satisfying

F(S(z1),-..,8(xn), C(@1),-..,Clan)) = S (z1+ -+ zn). (3)

Suppose also that the functions U,V : I; — I satisfy

StoU=0C"1oV (4)
FU(ar)y...,Ulan),V(ar),...,V(an)) = S(¥) (5)
subject to the condition
ar+-tap =T (al,.-.,QHEIl).

Then

U(:c):S<k<x—z;>+i), V(m)ZC(k(w—:>+;> (z € Ih),

for some fixed k € R lying in the range

e nc—t nd—t <k < min nc—t nd—t
Vb —T na—T na—T nb—T|["

B) Let H(Y1,...,Yn-1,Z1,...,Zn—1) be a function of 2(n — 1) variables and let
W, w € R. Suppose that S,C : Iy — Iy are two bijections satisfying

H(S(z1),...,S(xp-1),C(z1),...,C(xp-1))=C(x1+ - +xp_1). (6)
Suppose also that the functions U,V : I} — I3 satisfy

StoU=0C"1oV (7)
H(U(),...,Ulon—1),V(),...,V(an-1)) =C (w— (S7'oU) (a)), (8)
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for some ay,...,a, € I} such that
wf(SfloU)(an)Ell and ay; + -+ a, = W.
Then
U(x)zs(z(x—w>+w), V(x)zc(e<x—w>+w) (zel),
n n n
for some fixed ¢ € R lying in the range
ne—w nd—w}

max ne—w nd—w < { < min
Vb — W na—w na—W' nb—W

PROOF. A) By (4), there exists ¢ : I; — I; such that
S(¢(x)) and V(z) =C((x))  (zeh).

U(z) =
Thus, (5) becomes
F(5(8(r)), .-, S(d(am)), C(p(ar)), ..., C(d(am))) = S(b).
By (3), we have
S(¢lar) +--- + ¢lan)) = S(b).

Then
¢(a1)+...+¢)(an) =1t subjectto a1 +---4+a, =T

By Theorem 1 [5, Theorem 1.2], we have
T t

=k|lz—— — € 1),

o) =k(o-7)+r  @en)

where k£ € R lying in the range
e nc—t nd—t <k < min nc—t nd-—t
N b—T na—T na—T nb—T |

B) By (7), there exists ¢ : Iy — I such that
(1’ S Il)

Uz) = S(¢(2)) and V(z)=C((x))

Thus, (8) becomes
H (S(¢(a1))7 ) S((b(anfl))a C(¢(a1))7 c

+ ¢(an-1)) = C(w = ¢ (an)).

,C(d(an-1))) = C(w = é(am)).

By (6), we have
C(p(ar) + -

Then
Plar) + -+ dlan) =w
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subject to
ar+ -t a, =W

By Theorem 1 [5, Theorem 1.2], we have

¢<x>=z(m—W)+jj (v € 1),

n

where ¢ € R lying in the range

e nc—w nd—w <0 < min nc—w nd—w
Vb — W na—w na—W'nb—W [~

The proof is complete.

EXAMPLE 1. Let n > 3, I := (0,7/2), I := (0,1),u € I;. The trigonometric
sine and cosine functions sin, cos : I; — Iy are two bijections satisfying

F(sinzq,...,sinz,,cosxy,...,CoST,)
= L i
= E (-1)M E H —k Hcos x;
, - COS T,
M=0 1<ip < <iap41<n k=1

= sin(zy+ -+ xp).
Suppose the functions U,V : I} — I, satisfy
FU(ar)y...,Ulan),V(ar),...,V(ay)) = sin(u)
subject to the two conditions

—2
sin~tolU =cos™toV and ag +---+a, = w (a1,...,0q € I1).

Then
U(z) = sin <m (x - (T‘;j)“) + Z) , V(z) = cos (m (:c = (71;3%) + Z) (@ €1y,

for some fixed m € R lying in the range

O 1) S I TS

7 (n—2)m n—2r o«

EXAMPLE 2. Let n > 3, I; := (0,7/2), Iz := (0,1),v € I;. The trigonometric
sine and cosine functions sin, cos : Iy — Is are two bijections satisfying

G (cosxy,...,CO8%y,sinxy,...,sinx,)
n L%J 2M sin 2
K3
= H cosz; + E (-H)M g I | e H COS T
; ‘ , COS X,
j=1 M=1 1<i1 < <iam <n k=1

=cos(xz1 + -+ xp).
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Suppose the functions U,V : I; — I3 satisfy
G(V(an),...,.V(an),U(ag),...,U(ay)) = cos(v)

subject to the two conditions

Then

U(z) = sin (c <x - (”2;)W> + Z) \V(z) = cos <c (m - (”25)”) + Z) (zel),

for some fixed ¢ € R lying in the range

S UESL1 W i LY

' (n—2)7 n—2r o«

EXAMPLE 3. Let n > 3, I := (0,7/2), Iy := (0,1),s € R. The trigonometric
sine and cosine functions sin, cos : I; — Iy are two bijections satisfying

H (sinzq,...,sinx,_1,C0821,...,CO08Tp_1)

Lnfl

n—1 5 2M sin 2 n—1

H cosz; + E (-1)M E H —k H cosT;
cos z;

j=1 M=1 = k

1<ii<--<igp<n—1 k=1

cos(z1 4+ + Tp_1).
Suppose the functions U,V : I; — I3 satisfy
sin~tolU = cos™!oV,

H (U(al)a ceey U(an—l)a V(a1)7 LR V(an—l)) = COs (3 - (Sin_l OU) (Oén)) )

for some ay,...,a, € I} such that

s— (sin 'oU) (an) €1 and oy + -+, = @
Then
U(z) = sin <y <x - (”2n2)ﬂ> + Z) . V(z) = cos <y (g; - m;”) + Z) (zel),

for some fixed y € R lying in the range

e LEE N I CEL!

7 (n—2)m n—2r w
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EXAMPLE 4. Let n > 3, I := (0,7/2), Iz := (0,1),r € R. The trigonometric
sine and cosine functions sin, cos : Iy — I» are two bijections satisfying

E(cosxy,...,C08Tp_1,8I021,...,8I0Tp_1)
[252] ML n—1
in
= Y Y I o) | I eoses
, : COS X, .
M=0 1< < <iap41<n—1 k=1 Jj=1

= sin(z1+ -+ Tp_1).
Suppose the functions U,V : I; — I3 satisfy
sin~! oU = cos™! oV,
EWV(n),....V(an-1),U(e1),...,U(an-1)) =sin (r — (cos™ oV) (av,))
for some a4, ...,a, € Iy such that

(n—2)7r'

r— (c0571 OV) ()€l and a3+ +a, = 5

Then

U(z) = sin (z (a: - W) + ;) . V() = cos (z <33 - (n;j)w) + ;) (@el),

for some fixed z € R lying in the range

maX{T 2(””}<z<mm{( 2 (””}.

T (n—2)m n—2)r w

4 The casesn=1,2

In this section, we investigate the results of Theorem 2 when n = 1,2. We illustrate
by examples that the (implicit) uniqueness of solution is lost in the case n = 2, while
the existence of solution is lost in the case n = 1.

PROPOSITION 1. Let F (N1, N2, R, R2) be a function of 4 variables, let I; :=
(a,b), I := (c¢,d) be two non-empty open intervals and let ¢t € I;,T € R. Suppose that
S,C : I; — Iy are two bijections satisfying

F (S(x1),S(x2),C(21),C(z2)) = S (21 + 22) . (9)
Suppose the functions U,V : I} — I satisfy
F(U(an),Ulaz), V(en), V(az)) = S(t) (10)
subject to the two conditions

SloU=C"1oV (11)
air+as =T (041,0426.[1). (12)
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Then one pair of solutions to (10) is given by

U(x)-S(A(z—€)+;), V(x)_c<A<x—§>+;> (eI,

where A : J — (¢ —1t/2,d —t/2) is an odd function on J := (a — T/2,b — T/2).
Moreover, another pair of solutions to (10) is given by

U(x):s<k(x_§)+§), v<x>=c(/~e(m—§>+§) (v € 1),

for some fixed k € R lying in the range

2ce—t 2d—t <k < mi 20—t 2d—t
My =T 2 — T M =T T [

PROOF. By (11), there exists ¢ : Iy — I; such that

By (9), we have
S(d(a1) + dlaz)) = S(t).

Then,
d(a1) + d(az) =t subject to ay + as =T. (13)

From the condition (12), we have 2a < T' < 2b. Let J := (a — T'/2,b — T'/2) and define
¥ :J — Is by

T
P(y) = ¢ <y+ 2) (y € J).
Thus, the relation (13) becomes
¥(y1) +¥(y2) =t subject to yi +y2=0 (y; €J).

Let A:J — (c—1t/2,d —t/2) be an odd function. We claim that ¥(y) = A(y) +t/2 is
a solution of (13). Since

v+ o0 = (40 + 5) + (a0 + 5 ) =

From the definition of ¥, we get
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We show that another pair solutions to (10) is given

U(x):5<k(x—€)+;), V(m)zC(k(m—€>+;> (€.

Since

F(U(an),U(az),V(a), V(ez))
=.7:<S (ko?l—F;) ,S(kdg—!-;) ,C<k071 + ;) ,C <k072+;>>
where @; = a; — T/2 (i = 1,2), using (9) and (12), we have
.7:(5 (koq +;) , S <ka2+t> ,C(kal—F;) ,C(kaz-l- ;))
=S ((kal + ;) + (k:aQ + t)) = S(t).

EXAMPLE 5. Let I := (0,7/2), I := (0,1); p € I;,T € R. The trigonometric
sine and cosine functions sin, cos : Iy — I are bijections satisfying

[\

[\

F (sin(z1), sin(zz), cos(x1 ), cos(ze)) := sin(x1) cos(xa)+cos(x1) sin(ze) = sin (z1 + x32) .
Suppose the functions U,V : I; — I3 satisfy
F(U(en), Ulaz), V(an), V(az)) = sin(p) (14)
subject to the two conditions
sin™! oU = cos ™! oV

a1 +ay =T (O[l,OlQEIl).

Then one pair of solutions to (14) is given

U —sin(4(s-)+5). v —cos(a(e-F)+5)  @en

where A : J — (—p/2,1—p/2) is an odd function on J := (=1'/2,7/2—T/2). Moreover,
another pair of solutions to (14) is given by

U(z) = sin (m (:c - g) 4 g) . V(@) = cos (m (:c - Z) + g) (x e L),

for some fixed m € R lying in the range

-» —(2-p) . [p 2-p
maX{T_T, T }<m<mm{T,7T_ .

~
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EXAMPLE 6. Let I := (0,7/2), I := (0,1); ¢ € I;,T € R. The trigonometric
sine and cosine functions sin, cos : I; — I are bijections satisfying

F (cos(xy), cos(zg),sin(xy ), sin(zq)) := cos(xy) cos(xe)—sin(z1) sin(zs) = cos (z1 + x2) .
Suppose the functions U,V : I; — I3 satisfy
F (V(a),V(az),Ular),Ulaz)) = cos(q) (15)
subject to the two conditions
sin'olU =cos toV and aj +ay=T (1,0 € I1).

Then one pair of solutions to (15) is given by

Ulz) = sin <A (mg) +g) V(z) = cos (A <x€> +g> (xel),

where A : J — (—q/2,1—¢/2) is an odd function on J := (=T'/2,7/2—T/2). Moreover,
another pair of solutions to (15) is given by

U(z) = sin (m (:c = g) + ;’) . V(w) = cos (m <9c = z) + g) (@el),

for some fixed m € R lying in the range
—¢ —(2-4q) - fa 2—q¢
max{W_T, T }<m<m1n{T,7T_T .
Regarding the case n = 1, we make the following two remarks.
I) If n = 1, then the equation (3) in Theorem 2 becomes
F(8(x1),C(a1)) = 5 (21)

showing C' is constant function, contradicting the fact that C' is a bijection.

IT) If n = 1, then there is no valid equation (6) in Theorem 2, while if n = 2, then
the equation (6) in Theorem 2 becomes

H(S(21), C(21)) = C (21),,

yielding C to be a constant function, which again contradicts its being bijective.
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