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Abstract

In this paper, we introduce a new class of contraction mappings using the
family of R functions introduced by A. F. R. L. de Hierro and N. Shahzad [Fixed
Point Theory Appl. (2015) 2015:98] and proved an interesting result on the
existence of coincidence points using such class of mappings. Also, to illustrate
the usability of the result obtained, we provide an example which guarantees the
existence of a solution for a nonlinear equation.

1 Introduction and Preliminaries

To begin with, we have the following definitions, notations and results which will be
used in the sequel.

DEFINITION 1.1 ([3]). A mapping G : [0,+∞)2 → R is called a C-class function
if it is continuous and satisfies the following conditions:

(1) G (s, t) ≤ s;

(2) G (s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,+∞).

For C-class functions see also [4, 6, 12].

In [12], the authors generalized the simulation function introduced by Khojasteh et
al. ([11]) using the function of C-class as follows:

DEFINITION 1.2. A mapping G : [0,+∞)2 → R has the property CG, if there
exists an CG ≥ 0 such that

(3) G (s, t) > CG implies s > t;

(4) G (t, t) ≤ CG, for all t ∈ [0,+∞).

Some examples of C-class functions that have property CG are as follows:
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a) G (s, t) = s− t, CG = r, r ∈ [0,+∞);

b) G (s, t) = s− (2+t)t
1+t , CG = 0;

c) G (s, t) = s
1+kt , k ≥ 1, CG = r

1+k , r ≥ 2.

For more examples of C-class functions that have property CG see [5, 6, 12].

Recently, Khojasteh et al. ([11]) (also see [2, 7, 13]) introduced a new approach in
the fixed point theory by using the following:

DEFINITION 1.3. A simulation function is a mapping ζ : [0,∞)2 → R satisfying
the following:

(5) ζ (t, s) < s− t for all t, s > 0;

(6) if {tn} , {sn} are sequences in (0,+∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, and

tn < sn, then lim sup
n→∞

ζ (tn, sn) < 0.

DEFINITION 1.4. A CG-simulation function is a mapping ζ : [0,+∞)2 → R
satisfying the following:

(7) ζ (t, s) < G (s, t) for all t, s > 0, where G : [0,+∞)2 → R is a C-class function;

(8) if {tn} , {sn} are sequences in (0,+∞) such that limn→∞ tn = limn→∞ sn > 0,
and tn < sn, then lim sup

n→∞
ζ (tn, sn) < CG.

Some examples of simulation functions:

d) ζ (t, s) = s
s+1 − t for all t, s ≥ 0.

e) ζ (t, s) = s−ϕ (s)− t for all t, s ≥ 0, where ϕ : [0,+∞)→ [0,+∞) is a lower semi
continuous function and ϕ (t) = 0 if and only if t = 0.

For more examples of simulation functions and CG-simulation functions see [5, 7,
11, 12, 13].

Let ZG be the family of all CG-simulation functions ζ : [0,+∞)2 → R. Each
simulation function as in Definition 1.3 is also a CG-simulation function as in Definition
1.4, but the converse is not true. For this claim, see Example 3.3 of [7] using the C-class
function G (s, t) = s− t.

Let f and g be self maps of a set X. Recall that if w = fx = gx for some x ∈ X,
then x is called a coincidence point of f and g, and w is called a point of coincidence of
f and g. A pair of self maps (f, g) is called compatible if limn→∞ d(fgxn, gfxn) = 0,
whenever {xn} is a sequencs in X such that limn→∞ fxn = limn→∞ gxn = t, for some
t ∈ X. The pair (f, g) is weakly compatible if f and g commute at their coincidence
points.
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A sequence {xn}n∈N∪{0} ⊆ X is a Picard-Jungck sequence of the pair (f, g) (based
on x0) if yn = fxn = gxn+1 for all n ∈ N ∪ {0} (see also [7, Definition 4.4]).

Now, we recall the following result of Abbas and Jungck [1] used in the sequel.

PROPOSITION 1.1. Let f and g be weakly compatible self maps of a set X. If f
and g have a unique point of coincidence w = fx = gx, then w is a unique common
fixed point of f and g.

The following result will be used in the sequel.

LEMMA 1.1 (see [16, 17]). Let (X, d) be a metric space and let {xn} be a sequence
in X such that

lim
n→∞

d (xn, xn+1) = 0. (1.1)

If {xn} is not a Cauchy sequence in X, then there exist ε > 0 and two sequences
{m (k)} and {n (k)} of positive integers such that n (k) > m (k) > k and the following
sequences tend to ε+ when k → +∞:

d
(
xm(k), xn(k)

)
, d
(
xm(k), xn(k)+1

)
, d
(
xm(k)−1, xn(k)

)
, (1.2)

d
(
xm(k)−1, xn(k)+1

)
, d
(
xm(k)+1, xn(k)+1

)
.

2 Main Results

In this section, we establish some results on the existence and uniqueness of coincidence
point by using simulation functions in the framework of metric spaces. We begin with
the following definition.
We consider the family R of R-functions introduced by Roldán López de Hierro

and Shahzad in [8]. A function η : [0,+∞[×[0,+∞[→ R is called R-CG function if the
following conditions hold (where G : [0,∞)2 → R has property CG):

(η1) for each sequence {tn} ⊂ ]0,+∞[ such that η(tn, tn+1) > CG for all n ∈ N, we
have limn→+∞ tn = 0;

(η2) for every two sequences {tn}, {sn} ⊂ ]0,+∞[ such that limn→+∞ tn = limn→+∞ sn =
L ≥ 0, then L = 0 whenever L < tn and η(tn, sn) > CG for all n ∈ N;

(η3) η(t, s) < G(s, t) for all t, s > 0; here function G : [0,∞)2 → R is element of
C−class function which has property CG.

Now, we use R-functions to define a new class of contractions. Let (X, d) be a metric
space. Denote by Λ the family of lower semi-continuous functions λ : X → [0,+∞[. In
the sequel, we will use the following notation

D(u, v;λ) := d(u, v) + λ(u) + λ(v) for all u, v ∈ X and λ ∈ Λ.
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Now, we define the new family of contractions.

DEFINITION 2.1. Let (X, d) be a metric space and let h, g : X → X be self
mappings. A mapping h is a (RCG, g)−contraction if there exist a R-CG− function
η : [0,+∞[×[0,+∞[→ R and a function λ ∈ Λ such that

η(D(hu, hv;λ), D(gu, gv;λ)) ≥ CG (1)

for all u, v ∈ X with D(gu, gv;λ) > 0.

In the case, g = iX (identity mapping on X) and CG = 0 we get a contraction
mapping of Nastasi et al. [14].

Now, we state our result for the notion of (RCG, g)-contraction. It generalizes the
corresponding results of [5, 7, 11, 15] in several directions.

THEOREM 2.1. Let (X, d) be a metric space, f, g : X → X be self-mappings
and f be a (RCG, g)-contraction. Suppose that there exists a Picard-Jungck sequence
{xn}n∈N∪{0} of (f, g). Also assume that at least one of the following conditions hold:

(i) (f (X) , d) or (g (X) , d) is complete;

(ii) (X, d) is complete, g is continuous and (f, g) is compatible.

Then f and g have a unique point of coincidence.

PROOF. First of all we shall prove that the point of coincidence of f and g is unique
(if it exists). Suppose that z1 and z2 are distinct points of coincidence of f and g. From
this it follows that there exist two points v1 and v2 (v1 6= v2) such that fv1 = gv1 = z1
and fv2 = gv2 = z2. Then (1) implies that

CG ≤ η (D (fv1, fv2;λ) , D (gv1, gv2;λ))

= η (D (z1, z2;λ) , D (z1, z2;λ))

< G (D (z1, z2;λ) , D (z1, z2;λ)) ≤ CG,

which is a contradiction.
In order to prove that f and g have a point of coincidence, suppose that there is

a Picard-Jungck sequence {yn} such that yn = fxn = gxn+1 where n ∈ N ∪ {0}. If
yk = yk+1 for some k ∈ N ∪ {0}, then gxk+1 = yk = yk+1 = fxk+1 and f and g
have a point of coincidence. Therefore, suppose that yn 6= yn+1 for all n ∈ N ∪ {0}.
Substituting u = xn+1, v = xn+2 in (1) we obtain that

CG ≤ η (D (fxn+1, fxn+2;λ) , D (gxn+1, gxn+2;λ)) = η (D (yn+1, yn+2;λ) , D (yn, yn+1;λ))

< G (D (yn, yn+1;λ) , D (yn+1, yn+2;λ)) .

Using (3) of Definition 1.2, we have D (yn, yn+1;λ) > D (yn+1, yn+2;λ). Hence, for all
n ∈ N ∪ {0} we get that D (yn+1, yn+2;λ) < D (yn, yn+1;λ). Also, by using property
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(η1), we have limn→∞D (yn, yn+1;λ) = 0. Consequently, d(yn, yn+1)→ 0 and λ(yn)→
0.
Further we have to prove that yn 6= ym for n 6= m. Indeed, suppose that yn = ym

for some n > m. Then we choose xn+1 = xm+1 (which is obviously possible by
the definition of Picard-Jungck sequence {yn}) and hence also yn+1 = ym+1. Then
following the previous arguments, we have

D (yn, yn+1;λ) < D (yn−1, yn;λ) < · · · < D (ym, ym+1;λ) = D (yn, yn+1;λ) ,

which is a contradiction.
Now, we have to show that {yn} is a Cauchy sequence. Suppose, to the contrary,

that it is not true. Putting u = ym(k)+1, v = yn(k)+1 in (1), we obtain

CG ≤ η
(
D
(
ym(k)+1, yn(k)+1;λ

)
, D
(
ym(k), yn(k);λ

))
< G

(
D
(
ym(k), yn(k);λ

)
, D
(
ym(k)+1, yn(k)+1;λ

))
. (2)

Using (3) of Definition 1.2, it follows that D
(
ym(k), yn(k);λ

)
> D

(
ym(k)+1, yn(k)+1;λ

)
.

Now, since the sequence {yn} is not a Cauchy sequence, then by Lemma 1.1, we
have d

(
ym(k), yn(k)

)
and d

(
ym(k)+1, yn(k)+1

)
tend to ε > 0, as k →∞. Also, we have

d
(
ym(k), yn(k)

)
≤ D

(
ym(k), yn(k);λ

)
.

Therefore, using inequality (2) and (η2), we have L = ε = 0, which is a contradiction.
Therefore, the Picard-Jungck sequence {yn} is a Cauchy sequence.
Suppose that (i) holds, i.e., (g (X) , d) is complete. Then there exists v ∈ X such

that gxn → gv as n→∞. We shall prove that fv = gv. It is clear that we can suppose
yn 6= fv, gv for all n ∈ N ∪ {0}. Therefore, by (1), we have

CG ≤ η (D (fxn, fv;λ) , D (gxn, gv;λ)) < G (D (gxn, gv;λ) , D (fxn, fv;λ)) .

Using (3) of Definition 1.2, we get D (fxn, fv;λ) < D (gxn, gv;λ). It implies that
fxn → fv as n→∞. Hence, fv = gv is a (unique) point of coincidence of f and g.
Similarly, we can prove that fv = gv is a (unique) point of coincidence of f and g,

when (f (X) , d) is complete.
Finally, suppose that (ii) holds. Since (X, d) is complete, then there exists v ∈ X

such that fxn → v, when n → ∞. As g is continuous, g(fxn) → gv when n → ∞.
Consider

CG ≤ η (D (f (gxn) , fv;λ) , D (g (fxn) , gv;λ)) < G (D (g (fxn) , gv;λ) , D (f (gxn) , fv;λ)) .

Using (3) of Definition 1.2 and the continuity of g, we have

D (f (gxn) , fv;λ) < D (g (fxn) , gv;λ)→ 0, as n→∞.

It implies that d (f (gxn) , fv)→ 0, as n→∞. Further, as f and g are compatible, we
have

d (fv, gv) ≤ d (fv, f (gxn)) + d (f (gxn) , g (fxn)) + d (g (fxn) , gv)→ 0 + 0 + 0 = 0.
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Hence, the result is proved in both cases, i.e., the mappings f and g have a unique
point of coincidence. The proof is complete.

REMARK 2.1. (a) If (i) holds and the pair (f, g) is weakly compatible then by
Proposition 1.1, f and g have a unique common fixed point.

(b) Also, if (ii) holds then f and g have a unique common fixed point again by
Proposition 1.1, because each compatible pair (f, g) is a weakly compatible.

EXAMPLE 2.1. Let X = [0,+∞) be endowed with the usual metric d (x, y) =
|x− y| for all x, y ∈ [0,+∞), and consider the mappings f, g : [0,+∞) → [0,+∞)
given, for all x ∈ [0,+∞), by

fx = x+ 2, gx = 4x+ e2x.

In order to solve the nonlinear equation

x+ 2 = 4x+ e2x,

Theorem 2.1 can be applied using the function η (t, s) = 9
10

(
s− (2+t)t

1+t

)
for s, t ∈

[0,+∞) and CF = 0, F (s, t) = s − (2+t)t
1+t and the lower semi-continuous function

λ : X → [0,∞) defined by λ(u) = u for all u ∈ X. Now, we have that

η (D (fx, fy;λ) , D (gx, gy;λ))

=
9

10

(
D (gx, gy;λ)− (2 +D (fx, fy;λ))D (fx, fy;λ)

1 +D (fx, fy;λ)

)
=
9

10

(∣∣4 (x− y) + (e2x − e2y)∣∣+ x+ y − (2 + |x− y|+ x+ y) [|x− y|+ x+ y]

1 + |x− y|+ x+ y

)
≥ 0.

Since f (X) = [2,+∞), g (X) = [1,+∞), using Theorem 2.1 (i) the result follows.

CLAIM. Finally, we have an open question, Does the Theorem 2.1 hold, if we replace
D(u, v;λ) with P (u, v;λ) := p (u, v) + λ (u) + λ (v) where p is a partial metric on X?

Acknowledgements. The authors are thankful to the learned referee and editor for
their valuable remarks and suggestions to improve this work.

References

[1] M. Abbas and G. Jungck, Common fixed point results for non-commuting map-
pings without continuity in cone metric spaces, J. Math. Anal. Appl., 341(2008),
416—420.

[2] M. Abbas, A. Latif and Y. Suleiman, Fixed points for cyclic R-contractions and
solution of nonlinear Volterra integro-differential equations, Fixed Point Theory
Appl., (2016), 2016:61.



256 R Type Functions And Coincidence Points

[3] S. Chandok and A. H. Ansari, Some results on generalized nonlinear contractive
mappings, Comm. Opt. Theory, 2017(2017), Article ID 27.

[4] A. H. Ansari, S. Chandok and C. Ionescu, Fixed point theorems on b-metric
spaces for weak contractions with auxiliary functions, J. Inequalities Appl., 2014,
2014:429.

[5] A. H. Ansari, H. Isik and S. Radenovíc, Coupled fixed point theorems for contrac-
tive mappings involving new function classes and applications, Filomat 31:7(2017),
1893—1907.

[6] Z. M. Fadail, A. G. B. Ahmad, A. H. Ansari, S. Radenovíc and M. Rajovíc, Some
common fixed point results of mappings in 0-σ-complete metric-like spaces, Appl.
Math. Sci., 9(2015), 5009—5027.

[7] A.-F. R.-L.-de-Hierro , E. Karapınar, C. R.-L.-de-Hierro and J. M.-Morenoa, Co-
incidence point theorems on metric spaces via simulation functions, J. Comput.
Appl. Math., 275(2015), 345—355.

[8] A. F. R. L. de Hierro and N. Shahzad, New fixed point theorem under R-
contractions, Fixed Point Theory Appl., (2015), 2015:98.

[9] A.-F. R.-L.-de-Hierro and N. Shahzad, Common fixed point theorems under
(R,S)-contractivity conditions, Fixed Point Theory Appl., (2016), 2016:55.

[10] G. Jungck, Commuting maps and fixed points, Amer. Math. Monthly, 83(1976),
261—263.

[11] F. Khojasteh, S. Shukla and S. Radenovíc, A new approach to the study of fixed
point theorems via simulation functions, Filomat, 29(2015), 1189—1194.

[12] X. L. Liu, A. H. Ansari, S. Chandok and S. Radenovic, On some results in metric
spaces using auxiliary simulation functions via new functions, J. Comput. Anal.
Appl., 24(2018), 1103—1114.

[13] A. Nastasi and P. Vetro, Fixed point results on metric and partial metric spaces
via simulation functions, J. Nonlinear Sci. Appl., 8(2015), 1059—1069.

[14] A. Nastasi, P. Vetro and S. Radenovic, Some fixed point results via R-functions,
Fixed Point Theory Appl. 2016, 2016:81.

[15] M. Olgun, O. Bicer and T. Alyildiz, A new aspect to Picard operators with simu-
lation functions, Turk. J. Math., 40(2016), 832—837.

[16] S. Radenovíc and S. Chandok, Simulation functions and coincidence points, Filo-
mat, 32(2018), 141—147.

[17] S. Radenovíc, Z. Kadelburg, D. Jandrlíc and A. Jandrlíc, Some results on weakly
contractive maps, Bull. Iranian Math. Soc., 38(2012), 625—645.


