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Abstract
This article is devoted to the study of interval oscillation criteria, for impulsive

conformable fractional differential equations. Some new suffi cient conditions are
established, using the Riccati technique. The conditions obtained, extend some
well known results, in the literature, on differential equations without impulses
and generalize those on the classical integer order impulsive differential equations.
Moreover, our results depart from the majority of results on this subject, since
they are based on information on a sequence of subintervals of [0,∞), rather than
on the whole linear interval. An example is given to illustrate our main results.

1 Introduction

The theory of fractional differential equations is considered as an important tool in
modeling real life phenomena. The notion of fractional differential derivative first ap-
peared in the late 17th century. It is well known that fractional differential equations
are a more general form of the integer order differential equations, extending those equa-
tions to an arbitrary (non-integer) order. Many important mathematical models use
fractional order derivatives. But the most frequently used definitions involve integra-
tion which is nonlocal: Riemann-Liouville derivative & Caputo derivative [3, 14, 21].
Those fractional derivatives in the fractional calculus have seemed complicated and
lacked some basic properties, like the product rule and the chain rule. But in 2014,
Khalil [6] et. al introduced a new fractional derivative called the conformable derivative
which closely resembles the classical derivative. In recent years, many researchers have
found that the fractional differential equations constitute a more accurate description
of real world phenomena. Nowadays, they are extensively being used in physics, electro
chemistry, control theory and electromagnetic fields [2, 7, 20].
The study of the qualitative behavior of the solutions of impulsive differential equa-

tions has rapidly expanded in the last few decades [1, 9, 12]. In particular the problem
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of the oscillation and non oscillation of integer order impulsive differential equations
has extensively been studied by several authors, see [4, 5, 15, 16] and reference cited
there in. However interval oscillation criteria for integer order impulsive differential
equations have been investigated by few authors [8, 10, 11, 17, 18, 19].
To the best of our knowledge there seems that no work has been done on the interval

oscillation of impulsive conformable fractional differential equations. Motivated by the
above observation, we propose to initiate the following model of the form

Tα (r(t)g (Tα(x(t)) + µ(t)x(t))) + q(t)f(x(t− τ)) = e(t), t ≥ t0 t 6= tk,
x(t+k ) = akx(tk),
Tα(x(t+k )) = bkTα(x(tk)), k = 1, 2, · · · ,

(1)

where Tα denotes the conformable fractional derivative of order α, 0 < α ≤ 1. Next,
we assume the following hypotheses (H) hold:

(H1) r(t) ∈ Cα([t0,∞), (0,+∞)), µ(t) ∈ Cα([t0,∞),R), q(t), e(t) ∈ PC([t0,∞),R),
where PC represents the class of functions which are piecewise continuous in t
with discontinuities of first kind, only at t = tk, k = 1, 2, · · · and left continuous
at t = tk, while ak, bk are real constants satisfying ak > −1, ak ≤ bk, k = 1, 2, · · · ,
t− τ < t, lim

t→∞
t− τ =∞, 0 < t0 < t1 < · · · < tk < · · · , lim

k→∞
tk =∞.

(H2) f, g ∈ C(R,R) are convex in [0,∞) with xf(x) > 0 and f(x)
x ≥ ε > 0, for x 6= 0,

xg(x) > 0, g(x) ≤ γx for x 6= 0, g−1 ∈ C(R,R) is a continuous functions with
xg−1(x) > 0 for x 6= 0 and there exist positive constant η such that g−1(xy) ≤
ηg−1(x)g−1(y) for xy 6= 0 and

∫∞
t0
sα−1g−1

(
1
r(s)

)
ds =∞.

(H3) For any T ≥ 0 there exists intervals [c1, d1] and [c2, d2] contained in [T,∞) such
that c1 < d1 ≤ d1 + τ ≤ c2 < d2, cj , dj /∈ {tk}, j = 1, 2, k = 1, 2, · · · , r(t) > 0,
q(t) ≥ 0, for t ∈ [c1− τ , d1]∪ [c2− τ , d2] and e(t) has different signs in [c1− τ , d1]
and [c2 − τ , d2], for instance, let

e(t) ≤ 0 for t ∈ [c1 − τ , d1] and e(t) ≥ 0 for t ∈ [c2 − τ , d2].

Denote

I(s) := max {j : t0 < tj < s} , rj := max {r(t) : t ∈ [cj , dj ]} , j = 1, 2,

Ep(cj , dj) = {p ∈ Cα[cj , dj ], p(t) 6≡ 0, p(cj) = p(dj) = 0, j = 1, 2} .
For two constants c, d /∈ {tk} with c < d and a function ϕ ∈ C([c, d],R), we define the
operator Π : C([c, d],R)→ R by

Πd
c [ϕ] =

 0, I(c) = I(d),

ϕ(tI(c)+1)θ(c) +
∑I(d)
i=I(c)+2 ϕ(ti)ε(ti), I(c) < I(d),

where

θ(c) =
aI(c)+1 − bI(c)+1

aI(c)+1(t
α
I(c)+1 − cα)

and ε(ti) =
ai − bi

ai(tαi − tαi−1)
.
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This paper is organized as follows: In Section 2, we present some definitions and
results that will be needed later. In Section 3, we discuss the interval oscillation
criteria for the problem in (1). In Section 4, we present an example to illustrate our
main results.

2 Preliminaries

In this section, we give Definitions 2.1—2.3 and Theorem 2.1.

DEFINITION 2.1. A solution of equation (1) is called oscillatory if it has arbitrarily
large zeros, otherwise it is called nonoscillatory. Equation (1) is called oscillatory if all
its solutions are oscillatory.

We use the following definition introduced by R. Khalil et al. [6].

DEFINITION 2.2. Given f : [0,∞)→ R. Then the conformable fractional deriva-
tive of f of order α is defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all t > 0, α ∈ (0, 1]. If f is α-differentiable in some (0, a), a > 0 and lim
t→0+

f (α)(t)

exists, then we define
f (α)(0) = lim

t→0+
f (α)(t).

DEFINITION 2.3. Iaα(f)(t) = Ia1 (tα−1f) =
∫ t
a

f(x)

x1−α
dx, where the integral is the

usual Riemann improper integral and α ∈ (0, 1).

Conformable fractional derivatives have the following properties:

THEOREM 2.1. Let α ∈ (0, 1] and f, g be α-differentiable at some point t > 0.
Then

(i) Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.

(ii) Tα(tp) = ptp−α for all p ∈ R.

(iii) Tα(λ) = 0 for all constant functions f(t) = λ.

(iv) Tα(fg) = fTα(g) + gTα(f).

(v) Tα
(
f
g

)
= gTα(f)−fTα(g)

g2 .

(vi) If f is differentiable, then Tα(f)(t) = t1−α dfdt (t).
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3 Main Results

In this section, we established some new interval oscillation criteria for equation (1),
using the Riccati transformation and integral average method.

THEOREM 3.1. Assume that conditions (H1)—(H3) hold. Furthermore, for any
T ≥ 0 there exist cj , dj satisfying T ≤ c1 < d1, T ≤ c2 < d2 and p(t) ∈ Ep(cj , dj) such
that ∫ tI(cj)+1

cj

[
γ(p′(t))2t2−2αr(t)−Q(t)p2(t)N j

I(cj)
(t)
]
dt

+

I(dj)−1∑
k=I(cj)+1

∫ tk+1

tk

[
γ(p′(t))2t2−2αr(t)−Q(t)p2(t)N j

k(t)
]
dt

+

∫ dj

tI(dj)

[
γ(p′(t))2t2−2αr(t)−Q(t)p2(t)N j

I(dj)
(t)
]
dt

+

∫ dj

cj

w(t)p2(t)(1− α)t−αdt ≤ rjΠdj
cj [p2(t)] (2)

for I(cj) < I(dj), j = 1, 2, where Q(t) = εq(t) and

N j
k(t) =


τα

ταak + bk(tα − tαk )

(t− τ)α − (tk − τ)α

tαk − (tk − τ)α
, t ∈ (tk, tk + τ),

(t− τ)α − tαk
tα − tαk

, t ∈ [tk + τ , tk+1),

then every solution of the problem (1) is oscillatory.

PROOF. Assume to the contrary that x(t) is a nonoscillatory solution of (1). With-
out loss of generality we may assume that x(t) is an eventually positive solution of (1).
Then there exists t1 ≥ t0 such that x(t) > 0 for t ≥ t1. Therefore, from (1), it follows
that

Tα (r(t)g (Tαx(t) + µ(t)x(t))) = e(t)− q(t)f(x(t− τ)) for t ∈ [t1,∞).

Thus Tα (r(t)g (Tαx(t) + µ(t)x(t))) ≥ 0 or Tα (r(t)g (Tαx(t) + µ(t)x(t))) < 0, t ≥ t1 for
some t1 ≥ t0. We now claim that

Tα (r(t)g (Tαx(t) + µ(t)x(t))) ≥ 0 for t ≥ t1. (3)

Suppose the opposite of (3), namely, Tα (r(t)g (Tαx(t) + µ(t)x(t))) < 0. Since this
expression is strictly decreasing in [t1,∞), there exists t2 ∈ [t1,∞) such that

Tα (r(t2)g (Tαx(t2) + µ(t2)x(t2))) < 0.

It is clear that

r(t)g (Tαx(t) + µ(t)x(t)) < r(t2)g (Tαx(t2) + µ(t2)x(t2)) := −k,
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where k > 0 is a constant. For t ∈ [t2,∞), we have

r(t)g (Tαx(t) + µ(t)x(t)) < −k,

Tα(x(t)) < g−1
(
−k
r(t)

)
− µ(t)x(t),

Tα(x(t)) ≤ −γ1g−1
(

1

r(t)

)
, where γ1 = ηg−1(k) for t ∈ [t2,∞).

Integrating the above inequality from t2 to t, we have

x(t) ≤ x(t2)− γ1
∫ t

t2

sα−1g−1
(

1

r(s)

)
ds.

Letting t→∞, we get lim
t→+∞

x(t) = −∞ which by contradiction shows that (3) holds.

We define the Riccati transformation

w(t) :=
r(t)g(Tα(eIαµ(t)x(t)))

eIαµ(t)x(t)
.

It follows from (1) that w(t) satisfies

Tα(w(t)) ≤ e(t)

x(t)
− q(t)εx(t− τ)

x(t)
− w2(t)

γr(t)
.

By assumption (H3), we can choose c1, d1 ≥ t0 such that r(t) > 0, q(t) ≥ 0 for
t ∈ [c1 − τ , d1] and e(t) ≤ 0 for t ∈ [c1 − τ , d1]. From (1), we can easily see that

t1−αw′(t) ≤ −Q(t)
x(t− τ)

x(t)
− w2(t)

γr(t)
. (4)

For t = tk, k = 1, 2, · · · , we have

w(t+k ) :=
r(t+k )g(Tα(eIαµ(t

+
k )x(t+k )))

eIαµ(t
+
k )x(t+k )

≤ bk
ak
w(tk).

First, we consider the case that I(c1) < I(d1). In this case, all the impulsive moments
in [c1, d1] are tI(c1)+1, tI(c1)+2, · · · , tI(d1). Choose a p(t) ∈ Ep(c1, d1). Multiplying
both sides of (4) by p2(t) and integrating the resulting inequality, from c1 to d1, we
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obtain∫ tI(c1)+1

c1

p2(t)t1−αw′(t)dt+

∫ tI(c1)+2

tI(c1)+1

p2(t)t1−αw′(t)dt+ · · ·+
∫ d1

tI(d1)

p2(t)t1−αw′(t)dt

≤ −
∫ tI(c1)+1

c1

p2(t)
w2(t)

γr(t)
dt−

∫ tI(c1)+2

tI(c1)+1

p2(t)
w2(t)

γr(t)
dt− · · · −

∫ d1

tI(d1)

p2(t)
w2(t)

γr(t)
dt

−
∫ tI(c1)+1

c1

p2(t)Q(t)
x(t− τ)

x(t)
dt−

∫ tI(c1)+1+τ

tI(c1)+1

p2(t)Q(t)
x(t− τ)

x(t)
dt

−
∫ tI(c1)+2

tI(c1)+1+τ

p2(t)Q(t)
x(t− τ)

x(t)
dt− · · · −

∫ tI(d1)

tI(d1)−1+τ

p2(t)Q(t)
x(t− τ)

x(t)
dt

−
∫ d1

tI(d1)

p2(t)Q(t)
x(t− τ)

x(t)
dt.

Using integration by parts on the left-hand side, and noting that p(c1) = p(d1) = 0, we
get

I(d1)∑
k=I(c1)+1

p2(tk)t1−αk

[
w(tk)− w(t+k )

]

≤ −
∫ d1

c1

[
p(t)w(t)√
γr(t)

− p′(t)t1−α
√
γr(t)

]2
dt

−
∫ tI(c1)+1

c1

p2(t)Q(t)
x(t− τ)

x(t)
dt−

I(d1)−1∑
k=I(c1)+1

[∫ tk+τ

tk

p2(t)Q(t)
x(t− τ)

x(t)
dt

+

∫ tk+1

tk+τ

p2(t)Q(t)
x(t− τ)

x(t)
dt

]
−
∫ d1

tI(d1)

p2(t)Q(t)
x(t− τ)

x(t)
dt

+

∫ d1

c1

t2−2αγr(t)(p′(t))2dt+

∫ d1

c1

(1− α)t−αp2(t)w(t)dt. (5)

We consider several cases to estimate x(t−τ)
x(t) .

Case 1: For t ∈ (tk, tk+1] ⊂ [c1, d1]. If t ∈ (tk, tk+1] ⊂ [c1, d1], since tk+1 − tk > τ , we
consider two subcases:
Case 1.1: If t ∈ [tk + τ , tk+1], then t− τ ∈ [tk, tk+1− τ ] and there are no impulsive

moments in (t− τ , t). Then, for any t ∈ [tk + τ , tk+1], we have

x(t)− x(t+k ) = Tα(x(ξ))

(
tα − tαk
α

)
, ξ ∈ (tk, t).

From this,

x(t) ≥ Tα(x(ξ))

(
tα − tαk
α

)
.
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We obtain
Tα(x(t))

x(t)
<

α

tα − tαk
.

Integrating it from t− τ to t, we have

x(t− τ)

x(t)
>

(t− τ)α − tαk
tα − tαk

.

Case 1.2: If t ∈ (tk, tk + τ), then t − τ ∈ (tk − τ , tk) and there is an impulsive
moment tk in (t− τ , t). Similarly to Case 1.1, we obtain

x(t)− x(tk − τ) = Tα(x(ξ1))

(
tα − (tk − τ)α

α

)
, ξ1 ∈ (tk − τ , tk]

or
Tα(x(t))

x(t)
<
α

γ

1

tα − (tk − τ)α
.

Integrating it from t− τ to t and by using Definition 3, we get

x(t− τ)

x(tk)
>

(t− τ)α − (tk − τ)α

tαk − (tk − τ)α
> 0, t ∈ (tk, tk + τ). (6)

For any t ∈ (tk, tk + τ), we have

x(t)− x(t+k ) ≤ Tα(x(t+k ))

(
tα − tαk
α

)
.

Using the impulsive conditions in equation (1), we get

x(t)− akx(tk) < bkTα(x(tk))

(
tα − tαk
α

)
x(t)

x(tk)
< bk

Tα(x(tk))

x(tk)

(
tα − tαk
α

)
+ ak.

Using Tα(x(tk))
x(tk)

< 1
τ , we obtain

x(t)

x(tk)
< ak +

bk
τ

(
tα − tαk
α

)
.

That is,
x(tk)

x(t)
>

τα

ταak + bk(tα − tαk )
. (7)

From (6) and (7), we get

x(t− τ)

x(t)
>

τα

ταak + bk(tα − tαk )

(t− τ)α − (tk − τ)α

tαk − (tk − τ)α
≥ 0.
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Case 2: If t ∈ [c1, tI(c1)+1], we consider three subcases:
Case 2.1: If tI(c1) > c1−τ and t ∈ [tI(c1)+τ , tI(c1)+1], then t−τ ∈ [tI(c1), tI(c1)+1−

τ ] and there are no impulsive moments in (t − τ , t). Proceeding as in Case 1.1 and
using the Mean-value Theorem on (tI(c1), tI(c1)+1], we get

x(t− τ)

x(t)
>

(t− τ)α − tαI(c1)
tα − tαI(c1)

> 0, t ∈ [tI(c1) + τ , tI(c1)+1].

Case 2.2: If tI(c1) > c1 − τ and t ∈ [c1, tI(c1) + τ), then t− τ ∈ [c1 − τ , tI(c1)) and
there is an impulsive moment tI(c1) in (t− τ , t). Making a similar analysis as in Case
1.2, we have

x(t− τ)

x(t)
>

τα

ταaI(c1) + bI(c1)(t
α − tαI(c1))

(t− τ)α − (tI(c1) − τ)α

tαI(c1) − (tI(c1) − τ)α
≥ 0, t ∈ (c1, tI(c1)+τ).

Case 2.3: If tI(c1) < c1−τ , then for any t ∈ [c1, tI(c1)+1], t−τ ∈ [c1−τ , tI(c1)+1−τ ]
and there are no impulsive moments in (t− τ , t). Working as in Case 1.1, we get

x(t− τ)

x(t)
>

(t− τ)α − tαI(c1)
tα − tαI(c1)

> 0, t ∈ [c1, tI(c1)+1].

Case 3: For t ∈ (tI(d1), d1], we consider three subcases:
Case 3.1: If tI(d1) + τ < d1 and t ∈ [tI(d1) + τ , d1],then t− τ ∈ [tI(d1), d1 − τ ] and

there are no impulsive moments in (t − τ , t). Using a similar analysis as in Case 2.1,
we have

x(t− τ)

x(t)
>

(t− τ)α − tαI(d1)
tα − tαI(d1)

> 0, t ∈ [tI(d1) + τ , d1].

Case 3.2: If tI(d1)+τ < d1 and t ∈ [tI(d1), tI(d1)+τ), then t−τ ∈ [tI(d1)−τ , tI(d1))
and there is an impulsive moment tI(d1) in (t−τ , t). Using a similar analysis as in Case
2.2, we obtain

x(t− τ)

x(t)
>

τα

ταaI(d1) + bI(d1)(t
α − tαI(d1))

(t− τ)α − (tI(d1) − τ)α

tαI(d1) − (tI(d1) − τ)α
≥ 0.

Case 3.3: If tI(d1) + τ ≥ d1, then for any t ∈ (tI(d1), d1], we get t − τ ∈ (tI(d1) −
τ , d1 − τ ] and there is an impulsive moment tI(d1) in (t− τ , t). Proceeding as in Case
3.2, we get

x(t− τ)

x(t)
>

τα

ταaI(d1) + bI(d1)(t
α − tαI(d1))

(t− τ)α − (tI(d1) − τ)α

tαI(d1) − (tI(d1) − τ)α
≥ 0.

Combining all these cases, we have

x(t− τ)

x(t)
>


N1
I(c1)

(t) for t ∈ [c1, tI(c1)+1],

N1
k (t) for t ∈ (tk, tk+1], k = I(c1) + 1, · · · , I(d1)− 1,

N1
I(d1)

(t) for t ∈ (tI(d1)+1, d1].
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Hence, by (5) and from r(t)g(Tα(x(t)) +µ(t)x(t)) being non-increasing in (c1, tI(c1)+1],
we have

I(d1)∑
k=I(c1)+1

p2(tk)t1−αk

[
w(tk)− w(t+k )

]
≤

∫ tI(c1)+1

c1

[
(p′(t))2t2−2αγr(t)− p2(t)Q(t)N1

I(c1)
(t)
]
dt

+

I(d1)−1∑
k=I(c1)+1

∫ tk+1

tk

[
(p′(t))2t2−2αγr(t)− p2(t)Q(t)N1

k (t)
]
dt

+

∫ d1

tI(d1)

[
(p′(t))2t2−2αγr(t)− p2(t)Q(t)N1

I(d1)
(t)
]
dt

+

∫ d1

c1

(1− α)t−αp2(t)w(t)dt. (8)

Thus

x(t) > x(t)− x(c1) = Tα(x(ξ2))

(
tα − cα1
α

)
≥ r(t)(Tα(x(t)) + µ(t)x(t))

r(ξ2)

(
tα − cα1
α

)
, ξ2 ∈ (c1, t).

Letting t→ t−I(c1)+1, it follows that

w(tI(c1)+1) <
r1

tαI(c1)+1 − c
α
1

. (9)

Similarly we can prove that on (tk−1, tk], k = I(c1) + 2, · · · , I(d1),

w(tk) <
r1

tαk − tαk−1
. (10)

Hence, from (9) and (10), we have

I(d1)∑
k=I(c1)+1

p2(tk)t1−αk w(tk)

[
ak − bk
ak

]

≥ r1

[
p2(tI(c1)+1)t

1−α
I(c1)+1

aI(c1)+1 − bI(c1)+1
aI(c1)+1

1

tαI(c1)+1 − c
α
1

+

I(d1)∑
k=I(c1)+1

p2(tk)t1−αk

ak − bk
ak

1

tαk − tαk−1

]
≥ r1Π

d1
c1 [p2(t)]. (11)



Chatzarakis et al. 363

Thus we have
I(d1)∑

k=I(c1)+1

p2(tk)t1−αk w(tk)

[
ak − bk
ak

]
≥ r1Πd1

c1 [p2(t)].

Therefore, using (8), we get∫ tI(c1)+1

c1

[
γ(p′(t))2t2−2αr(t)− p2(t)Q(t)N1

I(c1)
(t)
]
dt

+

I(d1)−1∑
k=I(c1)+1

∫ tk+1

tk

[
γ(p′(t))2t2−2αr(t)− p2(t)Q(t)N1

k (t)
]
dt

+

∫ d1

tI(d1)

[
γ(p′(t))2t2−2αr(t)− p2(t)Q(t)N1

I(d1)
(t)
]
dt

+

∫ d1

c1

(1− α)t−αp2(t)w(t)dt > r1Π
d1
c1 [p2(t)],

which contradicts (2).
If I(c1) = I(d1), then r1Π

d1
c1 [p2(t)] = 0 and there are no impulsive moments in

[c1, d1]. Similarly to the proof of (8), we obtain∫ d1

c1

[
γ(p′(t))2t2−2αr(t)− p2(t)Q(t)N1

I(c1)
(t) + p2(t)(1− α)t−αw(t)

]
dt > 0.

This again contradicts our assumption. Finally, if x(t) is eventually negative, we can
consider [c2, d2] and reach a similar contradiction. The proof of the theorem is complete.

Next, we establish new oscillation criteria for (1), using the integral average method
[13]. Let D = {(t, s) : t0 ≤ s ≤ t}, then the functions H1, H2 ∈ C(D,R) are said to
belong to the class H if
(H4) H1(t, t) = H2(t, t) = 0, H1(t, s) > 0, H2(t, s) > 0 for t > s and

(H5) H1 and H2 have partial derivatives ∂H1

∂t and ∂H2

∂s on D such that

∂H1

∂t
= h1(t, s)H1(t, s),

∂H2

∂s
= −h2(t, s)H2(t, s)

where h1, h2 ∈ Lloc(D,R).

Γ1,j =

∫ tI(cj)+1

cj

H1(t, cj)Q(t)N j
I(cj)

(t)dt

+

I(λj)−1∑
k=I(cj)+1

∫ tk+1

tk

H1(t, cj)Q(t)N j
k(t)dt

+

∫ λj

tI(λj)

H1(t, cj)Q(t)N j
I(dj)

(t)dt

+

∫ λj

cj

H1(t, cj)

[
w(t)

γr(t)
− t1−αh1(t, cj)− (1− α)t−α

]
w(t)dt



364 Interval Oscillation Criteria

and

Γ2,j =

∫ tI(λj)+1

λj

H2(dj , t)Q(t)N j
I(λj)

(t)dt

+

I(dj)−1∑
k=I(λj)+1

∫ tk+1

tk

H2(dj , t)Q(t)N j
k(t)dt

+

∫ dj

tI(dj)

H2(dj , t)Q(t)N j
I(dj)

(t)dt

+

∫ dj

λj

H2(dj , t)

[
w(t)

γr(t)
+ t1−αh2(dj , t)− (1− α)t−α

]
w(t)dt.

THEOREM 3.2. Assume that conditions (H1) − (H3) hold. Furthermore, for any
T ≥ 0 there exist cj , dj satisfying (H4), (H5) with c1 < λ1 < d1 ≤ c2 < λ2 < d2. If
there exist H1, H2 ∈ H such that

1

H1(λ1, c1)
Γ1,1 +

1

H2(d1, λ1)
Γ2,1 > Λ(H1, H2; cj , dj), (12)

where

Λ(H1, H2; cj , dj) = −
{

rj
H1(λj , cj)

Πλj
cj [H1(., cj)] +

rj
H2(dj , λj)

Π
dj
λj

[H2(dj , .)]

}
,

then every solution of (1) is oscillatory.

PROOF. Suppose to the contrary that there is a nonoscillatory solution x(t) of the
problem (1). Notice whether or not there are impulsive moments in [c1, λ1] and [λ1, d1],
we should consider the following cases I(c1) < I(λ1) < I(d1), I(c1) = I(λ1) < I(d1),
I(c1) < I(λ1) = I(d1) and I(c1) = I(λ1) = I(d1). Moreover, the impulsive moments of
x(t−τ) involve the following two cases tI(λj)+τ > λj and tI(λj)+τ ≤ λj . Consider the
case I(c1) < I(λ1) < I(d1), with tI(λj) + τ > λj . For this case, the impulsive moments
are tI(λ1)+1, tI(λ1)+2, · · · , tI(d1) in [λ1, d1]. Multiplying both sides of (4) by H1(t, c1)
and integrating from c1 to λ1, we obtain∫ λ1

c1

H1(t, c1)t
1−αw′(t)dt ≤ −

∫ λ1

c1

H1(t, c1)Q(t)
x(t− τ)

x(t)
dt−

∫ λ1

c1

H1(t, c1)
w2(t)

γr(t)
dt.

Applying integration by parts on the R.H.S of first integral, we get∫ λ1

c1

H1(t, c1)Q(t)
x(t− τ)

x(t)
dt

+

∫ λ1

c1

(
w(t)

γr(t)
− t1−αh1(t, c1)− (1− α)t−α

)
w(t)H1(t, c1)dt

≤ −
I(λ1)∑

k=I(c1)+1

H1(tk, c1)t
1−α
k

[
w(tk)− w(t+k )

]
−H1(λ1, c1)λ

1−α
1 w(λ1). (13)
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By Theorem 3.1, we divide the interval [c1, λ1] into several and calculating the function
x(t− τ)

x(t)
, we obtain

∫ λ1

c1

H1(t, c1)Q(t)
x(t− τ)

x(t)
dt ≥

∫ tI(c1)+1

c1

H1(t, c1)Q(t)N1
I(c1)

(t)dt

+

I(λ1)−1∑
k=I(c1)+1

∫ tk+1

tk

H1(t, c1)Q(t)N1
k (t)dt

+

∫ λ1

tI(λ1)

H1(t, c1)Q(t)N1
I(λ1)

(t)dt. (14)

From (13) and (14), we obtain

∫ tI(c1)+1

c1

H1(t, c1)Q(t)N1
I(c1)

(t)dt+

I(λ1)−1∑
k=I(c1)+1

∫ tk+1

tk

H1(tk, c1)Q(t)N1
k (t)dt

+

∫ λ1

tI(λ1)

H1(t, c1)Q(t)N1
I(λ1)

(t)dt

+

∫ λ1

c1

[
w(t)

γr(t)
− t1−αh1(t, c1)− (1− α)t−α

]
w(t)H1(t, c1)dt

≤ −
I(λ1)∑

k=I(c1)+1

H1(tk, c1)t
1−α
k

[
ak − bk
ak

]
w(tk)−H1(λ1, c1)λ

1−α
1 w(λ1). (15)

On the other hand multiplying both sides of (4) by H2(d1, t), integrating from λ1 to
d1 and following a similar procedure as above, we get

∫ tI(λ1)+1

λ1

H2(d1, t)Q(t)N1
I(λ1)

(t)dt+

I(d1)−1∑
k=I(λ1)+1

∫ tk+1

tk

H2(d1, tk)Q(t)N1
k (t)dt

+

∫ d1

tI(d1)

H2(d1, t)Q(t)N1
I(d1)

(t)dt

+

∫ d1

λ1

[
w(t)

γr(t)
+ t1−αh2(d1, t)− (1− α)t−α

]
w(t)H2(d1, t)dt

≤ −
I(d1)∑

k=I(λ1)+1

H2(d1, tk)

[
ak − bk
ak

]
w(tk) +H2(d1, λ1)λ

1−α
1 w(λ1). (16)

Dividing (15) and (16) by H1(λ1, c1) and H2(d1, λ1) respectively and summing the
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resulting inequalities, we get

1

H1(λ1, c1)
Γ1,1 +

1

H2(d1, λ1)
Γ2,1

≤ −

 1

H1(λ1, c1)

I(λ1)∑
k=I(c1)+1

H1(tk, c1)

[
ak − bk
ak

]
w(tk)

+
1

H2(d1, λ1)

I(d1)∑
k=I(λ1)+1

H2(d1, tk)

[
ak − bk
ak

]
w(tk)

 . (17)

Using a similar method as in (10), we obtain
−

I(λ1)∑
k=I(c1)+1

H1(tk, c1)

[
ak − bk
ak

]
w(tk) ≤ −r1Πλ1

c1 [H1(., c1)],

−
I(d1)∑

k=I(λ1)+1

H2(d1, tk)

[
ak − bk
ak

]
w(tk) ≤ −r2Πd1

λ1
[H2(d1, .)].

(18)

From (17) and (18), we obtain

1

H1(λ1, c1)
Γ1,1 +

1

H2(d1, λ1)
Γ2,1 ≤ −

{
r1Π

λ1
c1 [H1(., c1)] + r2Π

d1
λ1

[H2(d1, .)]
}

≤ Λ(H1, H2; cj , dj) (19)

which is a contradiction to condition (12). Suppose x(t) < 0, we take the interval
[c2, d2] for equation (1). The proof is similar and hence omitted.

4 Example

In this section, we present an example to illustrate the results established in Section 3.

EXAMPLE 4.1. Consider the following impulsive partial differential equation
T 1
2

(
t
(
T 1
2
(sin(t)) +mt

1
2 cos π8 sin(t)

))
− 3

2mt sin(t− π
8 ) = e(t), t 6= 2kπ ± π

4 ,

x(t+k ) = 1
2x(tk),

T 1
2
(x(t+k )) = 3

2T 1
2
(x(tk)), k = 1, 2, · · · .

(20)
Here α = 1

2 , r(t) = t, µ(t) = mt
1
2 cos(π/8), q(t) = −3/2mt, f(u) = 2u, e(t) = t(cos t−

t sin t) +mt cos t(t cos π8 + 3
2 sin π

8 ), ak = 1/2, bk = 3/2. Let τ = π
8 , tk+1 − tk = π

2 >
π
8 .

Also for any T > 0, we choose k large enough such that T < c1 = 4kπ− π
2 < d1 = 4kπ

and c2 = 4kπ+ π
8 < d2 = 4kπ+ π

2 , k = 1, 2, 3, · · · . Then there is an impulsive movement
tk = 4kπ − π

4 in [c1, d1] and an impulsive moment tk+1 = 4kπ + π
4 in [c2, d2].

For ε = 1, we have Q(t) = −3/4mt, and we take p(t) = sin 4t, tI(c1) = 4kπ − 7π
4 ,

tI(d1) = 4kπ − π
4 , then by using simple calculation, the left side of Equation (2) is the
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following:∫ tI(cj)+1

cj

[
(p′(t))2t2−2αγr(t)−Q(t)p2(t)N j

I(cj)
(t)
]
dt

+

I(dj)−1∑
k=I(cj)+1

∫ tk+1

tk

[
(p′(t))2t2−2αγr(t)−Q(t)p2(t)N j

I(cj)
(t)
]
dt

+

∫ dj

tI(dj)

[
(p′(t))2t2−2αγr(t)−Q(t)p2(t)N j

I(dj)
(t)
]
dt+

∫ dj

cj

w(t)p2(t)(1− α)t−αdt

≤
∫ 4kπ−π4

4kπ−π2

32t2 cos2 4t+
3

4
mt sin2 4t


(
t− π

8

) 1
2 −

(
4kπ − 7π

4

) 1
2

t
1
2 −

(
4kπ − 7π

4

) 1
2


 dt

+

∫ 4kπ−π8

4kπ−π4

[
32t2 cos2 4t+

3

4
mt sin2 4t

 π

16
π

32
+

3

2

[
t
1
2 −

(
4kπ − π

4

) 1
2

]


×


(
t− π

8

) 1
2 −

(
4kπ − 3π

8

) 1
2(

4kπ − π
4

) 1
2 −

(
4kπ − 3π

8

) 1
2

]dt
+

∫ 4kπ

4kπ−π8

[
32t2 cos2 4t+

3

4
mt sin2 4t

(t− π
8

) 1
2 −

(
4kπ − π

4

) 1
2

t
1
2 −

(
4kπ − 7π

4

) 1
2

]dt
+

1

2

∫ 4kπ

4kπ−π2
t sin2 4t

(
cos t+m cos π8 sin t

sin t

)
dt

' 3486.0599 +m 8.9095.

Since I(c1) = k − 1, I(d1) = k, r1 = 2, we have

r1Π
d1
c1 [p2(t)] = 2

[
aI(c)+1 − bI(c)+1

aI(c)+1(t
α
I(c1)+1

− cα)
sin2(4tI(c1)+1)

]
= 0.

Note that condition (2) is satisfied in [c1, d1] if

3486.0599 < −m 8.9095, (21)

we can choose the constant m very small enough so that (21) holds. Therefore, condition
(6) is satisfied in [c1, d1]. We can work similarly, for t ∈ [c2, d2]. Hence by Theorem
3.1, every solution of (20) is oscillatory. In fact x(t) = sin t is one such solution.

Conclusion: In this article, we have presented new suffi cient conditions to check
for the interval oscillation of equation (1). To establish those conditions we have used
the Riccati transformation and an integral averaging method. Our results are original,
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complementing and generalizing on already existing results in the literature of integer
order equations. We have provided an example to illustrate the use of our results.

Acknowledgment: The authors would like to thank the referees for the construc-
tive remarks which greatly improved the paper.
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