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Abstract

In this paper, we study the existence and stability results of Hyers-Ulam type
to a class of implicit nonlinear fractional differential equations (FDEs) corre-
sponding to implicit integral boundary condition. Using fixed point theory and
non-linear functional analysis, we investigate the mentioned aspects of qualita-
tive theory. At the end of our results, we provide an illustrative and interesting
example to justify our obtained results.

1 Introduction

Fractional derivative is used as a global operator for modeling of various processes and
physical systems which arise in subjects like physics, dynamics, fluid mechanics, control
theory, chemistry and mathematical biology, etc., see [1, 2, 3, 4, 5, 6, 7]. For its im-
portance and large number of applications, this area has been attracted the attention
of many mathematicians and researchers in the last few decades. The keen interest of
the researchers in the investigation of FDEs is due to the fact that these differential
equations describe the properties of hereditary materials and processes more accu-
rate and significantly. More specifically FDEs with integral boundary condition (IBC)
are applicable in different fields of applied sciences including population dynamics,
thermo-elasticity, problems concerning to blood flow, underground water flow, chem-
ical engineering and so on, see [8, 9]. Various aspects of qualitative theory for FDEs
including existence theory and approximate solutions have up-to-date investigated.

Now we want to discuss another aspect of qualitative theory which is stability anal-
ysis. In fields such as numerical analysis, optimization theory and nonlinear analysis,
mostly we deal with approximate solutions and hence we need to check how closed
are these solutions to the actual solution of the concerned system or systems. Many
approaches can be used for this purpose but Hyers-Ulam stability (HUS) approach is a
simple and easy one. Initially this concept was given by Ulam [10] in 1940, which was
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properly formulated by Hyers [11] in 1941 for problems of functional equations in Ba-
nach spaces, see [12, 13]. Later on this concept was extended by other mathematicians
to differential and integral equations, see [14, 15, 16].

Very recently in [17], Ali et al. investigated the existence and Hyers-Ulam stability
analysis to a class of implicit type integral BVP of FDEs. Similarly the aforesaid
aspects have been studied in many other recent papers, such as [18, 19, 20, 21]. In this
manuscript, we study the following class of implicit FDEs with implicit IBC

C
D
ωp(t) = G (t, p(t),C D

ωp(t)), 0 < ω ≤ 1,

p(0) = −
∫ T

0

(T − ξ)ω−1

Γ(ω)
F(ξ, p(ξ),C D

ωp(ξ))dξ,
(1)

where the notation CDω is used for Caputo fractional derivative of order 0 < ω ≤ 1,
X = [0, T ] and G ,F : X × R2 → R.

Using classical fixed point theory due to Banach and Schaefer, we derive necessary
conditions for the existence, uniqueness and stability analysis to the concerned class of
FDEs given in (1).

This paper is managed as: In section 2, we provide auxiliary results concerning to
fractional derivative, integration and Hyers-Ulam stability. In section 3, we establish
main results. In section 4, we provide a suitable example which illustrates the obtained
results.

2 Preliminaries

We represent the space of all continuous functions, C(X ,R) by A . We define A =
{p : X → R : p ∈ C(X )}. Clearly, A is Banach space with the norm defined by
‖p‖ := sup{|p(t)|, t ∈ X }.

DEFINITION 1 ([1, 2]). If ω > 0, the Riemann-Liouville integral of function
G ∈ L1(X ,R), is defined by

IωG (t) =
1

Γ(ω)

∫ t

0

(t− ξ)ω−1
G (ξ) dξ,

provided that integral on the right is point-wise defined on (0,∞).

DEFINITION 2 ([1, 2]). If ω > 0, then the Caputo fractional derivative of function
G on the interval X , is defined by

C
D
ω
G (t) =

1

Γ(n− ω)

∫ t

0

(t − ξ)n−ω−1
G

(n)(ξ) dξ,

provided that integral on the right is point wise defined on (0,∞), where n = [ω] + 1
in which [ω] represents the integer part of ω.

LEMMA 1 ([1, 2]). For ω > 0, the following result holds

C
D
ω
G (t) = G (t) + r0 + r1t + r2t

2 + · · ·+ ri−1t
i−1,
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where ri−1 ∈ R and i = 1, 2, . . . , n.

LEMMA 2 ([1, 2]). For ω > 0, n = [ω] + 1, the relation

Iω
C

D
ω
G (t) = G (t) −

n−1
∑

i=0

G i(0)

i!
ti holds.

Here we mention that in this paper the definitions concerning to stability have been
adopted from [22].

DEFINITION 3. Problem (1) is HUS if there is a real number CG > 0 such that
for each ε > 0 and each solution q ∈ A of the inequality

|CD
ωq(t) − G (t, q(t),C D

ωq(t))| ≤ ε, t ∈ X , (2)

there exists a unique solution p ∈ A of problem (1) with

|q(t) − p(t)| ≤ CG ε, t ∈ X .

DEFINITION 4. Problem (1) is GHUS if there is a function zG ∈ C(R+,R+),
zG (0) = 0 such that for each solution q ∈ A of the inequality (2) there exists a unique
solution p ∈ A of problem (1) with

|q(t) − p(t)| ≤ zG (ε), t ∈ X .

DEFINITION 5. Problem (1) is HURS with respect to a function ψ ∈ C(X ,R+)
if there is a real number CG ,ψ > 0 such that for each solution q ∈ A of the inequality

|CD
ωq(t) − G (t, q(t),C D

ωq(t))| ≤ εψ(t), t ∈ X , (3)

there exists a unique solution p ∈ A of problem (1) with

|q(t) − p(t)| ≤ CG εψ(t), t ∈ X .

DEFINITION 6. Problem (1) is GHURS with respect to ψ ∈ C(X ,R+) if there is
a real number CG ,ψ > 0 such that for each solution q ∈ A of the inequality

|CD
ωq(t) − G (t, q(t),C D

ωq(t))| ≤ ψ(t), t ∈ X , (4)

there exists a unique solution p ∈ A of problem (1) with

|q(t) − p(t)| ≤ CG ,ψψ(t), t ∈ X .

REMARK 1. It is clear that
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(i) Definition 3 implies Definition 4;

(ii) Definition 5 implies Definition 6.

REMARK 2. A function q ∈ A is a solution of the inequality (2) if and only if
there exists a function Ψ ∈ A (dependent on p) such that

(i) |Ψ(t)| ≤ ε, for all t ∈ X ;

(ii) CDωq(t) = G (t, q(t),C Dωq(t)) + Ψ(t), t ∈ X .

REMARK 3. A function q ∈ A is a solution of the inequality (4) if and only if
there exists a function Ψ ∈ A (dependent on p) such that

(i) |Ψ(t)| ≤ εψ(t), for all t ∈ X ;

(ii) CDωq(t) = G (t, q(t),C Dωq(t)) + Ψ(t), t ∈ X .

THEOREM 1. (Schaefer’s fixed point theorem [23]). Let A be a Banach space,
T : A → A is a completely continuous operator and the set E = {p ∈ A : p =
ξT p, 0 < ξ < 1} is bounded, then T has at least one fixed point in A .

3 Existence of at Least One Solution and Hyers-

Ulam Stability: Main Results

LEMMA 3. The antiperiodic integral boundary value problem

C
D
ωp(t) = G (t, p(t),C D

ωp(t)), 0 < ω ≤ 1,

p(0) = −
∫ T

0

(T − ξ)ω−1

Γ(ω)
F(ξ, p(ξ),C D

ωp(ξ))dξ,
(5)

has a solution p, given by

p(t) =
1

Γ(ω)

∫ t

0

(t − ξ)ω−1α(ξ)dξ − 1

Γ(ω)

∫ T

0

(T − ξ)ω−1F(ξ, p(ξ),C D
ωp(ξ))dξ, (6)

where α ∈ A is given as
α(t) = G (t, p(t),C D

ωp(t)).

PROOF. Let
C

D
ωp(t) = α(t).

By Lemma 1, we have

p(t) =
1

Γ(ω)

∫ t

0

(t− ξ)ω−1α(t)dξ + r0. (7)
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Applying the given condition, we obtain

r0 = − 1

Γ(ω)

∫ T

0

(T − ξ)ω−1F(ξ, p(ξ),C D
ωp(ξ))dξ. (8)

By putting this value in (7), we get (6).

Here we list some assumptions upon which our results are based.

(H1) G : X × R2 → R is continuous;

(H2) F : X × R2 → R is continuous;

(H3) there exist constants ℵ1 > 0 and 0 < ℵ2 < 1 such that for each t ∈ X and for all
σ, σ̄, θ, θ̄ ∈ R, the following relation holds

|G (t, σ, θ) − G (t, σ̄, θ̄)| ≤ ℵ1|σ − σ̄|+ ℵ2|θ− θ̄|;

(H4) there exist constants ℵ3 > 0 and 0 < ℵ4 < 1 such that for each t ∈ X and for all
σ, σ̄, θ, θ̄ ∈ R, the following relation holds

|F(t, σ, θ)− F(t, σ̄, θ̄)| ≤ ℵ3|σ− σ̄| + ℵ4|θ − θ̄|;

(H5) there exist constants l, m, n ∈ C(X ,R+), such that |G (t, σ(t), θ(t))| ≤ l(t) +
m(t)|σ| + n(t)|θ|, with n∗ = supt∈X n(t) < 1;

(H6) there exist constants b, c, e ∈ C(X ,R+), such that |F(t, σ(t), θ(t))| ≤ b(t) +
c(t)|σ| + e(t)|θ|, with e∗ = supt∈X e(t) < 1.

THEOREM 2. If the hypothesis (H1)–(H4) together with the inequality

Tω

Γ(ω + 1)

( ℵ1

1 − ℵ2
+

ℵ3

1 − ℵ4

)

< 1, (9)

are satisfied, then problem (5) has just one (unique) solution.

PROOF. We define an operator T : A → A by

T p(t) =
1

Γ(ω)

∫ t

0

(t− ξ)ω−1α(ξ)dξ − 1

Γ(ω)

∫ T

0

(T − ξ)ω−1β(ξ)dξ,

where α, β ∈ A :

α(t) = G (t, p(t), α(t)) and β(t) = F(t, p(t), β(t)).

We use Banach Contraction Mapping Principle. Consider for p, q ∈ A ,

|T p(t) − T q(t)| ≤ 1

Γ(ω)

∫ t

0

(t− ξ)ω−1|α(ξ) − ᾱ(ξ)|dξ

+
1

Γ(ω)

∫ T

0

(T − ξ)ω−1|β(ξ) − β̄(ξ)|dξ, (10)
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where ᾱ, β̄ ∈ A :

ᾱ(t) = G (t, q(t), ᾱ(t)) and β̄(t) = F(t, q(t), β̄(t)).

Hence by (H3) and (H4), we have

|α(t) − ᾱ(t)| = |G (t, p(t), α(t)) − G (t, q(t), ᾱ(t))|
≤ ℵ1|p(t) − q(t) + ℵ2|α(t)− ᾱ(t)|.

Thus

|α(t) − ᾱ(t)| ≤ ℵ1

1 − ℵ2
|p(t) − q(t)|. (11)

Similarly

|β(t) − β̄(t)| ≤ ℵ3

1 − ℵ4
|p(t) − q(t)|. (12)

Using (11) and (12) in (10), we have

|T p(t) − T q(t)| ≤ ℵ1

(1 − ℵ2)Γ(ω)

∫ t

0

(t − ξ)ω−1|p(ξ) − q(ξ)|dξ

+
ℵ3

(1 − ℵ4)(Γ(ω)

∫ T

0

(T − ξ)ω−1|p(ξ) − q(ξ)|dξ

≤ Tω

Γ(ω + 1)

( ℵ1

1 − ℵ2
+

ℵ3

1 − ℵ4

)

|p(t) − q(t)|.

Thus

‖T p− T q‖ ≤ Tω

Γ(ω + 1)

( ℵ1

1 − ℵ2
+

ℵ3

1 − ℵ4

)

‖p− q‖.

Since
Tω

Γ(ω + 1)

( ℵ1

1 − ℵ2
+

ℵ3

1 − ℵ4

)

< 1,

therefore, by Banach Contraction Mapping Principle, T has unique fixed point. Thus
problem (5) has just one (unique) solution.

THEOREM 3. Under the hypothesis (H1)–(H6), problem (5) has at least one
solution.

PROOF. In this result we recall the Schaefer’s fixed point theorem and consider
the predefined operator T . The proof accomplishes in four steps.

Step 1: We claim that T is continuous. Take a sequence {pn} in A such that
pn → p ∈ A . For t ∈ X , consider

|T pn(t) − T p(t)| ≤ 1

Γ(ω)

∫ t

0

(t− ξ)ω−1|αn(ξ) − α(ξ)|dξ

+
1

Γ(ω)

∫ T

0

(T − ξ)ω−1|βn(ξ) − β(ξ)|dξ,
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where αn, βn ∈ A :

αn(t) = G (t, pn(t), αn(t)) and βn(t) = F(t, pn(t), βn(t)).

Hence by (H3) and (H4), we have

|αn(t) − α(t)| = |G (t, pn(t), αn(t)) − G (t, p(t), α(t))|
≤ ℵ1|pn(t) − p(t)|+ ℵ2|αn(t) − α(t)|.

Thus

|αn(t) − α(t)| ≤ ℵ1

1 − ℵ2
|pn(t) − p(t)|.

Similarly

|βn(t) − β(t)| ≤ ℵ3

1 − ℵ4
|pn(t) − p(t)|.

Thus

|T pn(t) − T p(t)| ≤ ℵ1

(1 − ℵ2)Γ(ω)

∫ t

0

(t − ξ)ω−1|pn(ξ) − p(ξ)|dξ

+
ℵ3

(1 − ℵ4)Γ(ω)

∫ T

0

(T − ξ)ω−1|pn(ξ) − p(ξ)|dξ.

Since for each t ∈ X the sequence pn → p as n → ∞, hence Lebesgue dominated
convergent theorem yields that

|T pn(t) − T p(t)| → 0 as n→ ∞

or

‖T pn − T p‖ → 0 as n → ∞.

Thus T is continuous on X .

Step 2: In this step we claim that bounded sets are mapped into bounded sets by T

in A . Next for each p ∈ Ek = {p ∈ A : ‖p‖ ≤ k}, we have to prove ‖T (p)‖ ≤ N , with
N > 0.

Consider for t ∈ X such that

|T p(t)| =

∣

∣

∣

∣

1

Γ(ω)

∫ t

0

(t − ξ)ω−1α(ξ)dξ − 1

Γ(ω)

∫ T

0

(T − ξ)ω−1β(ξ)dξ

∣

∣

∣

∣

≤ 1

Γ(ω)

∫ t

0

(t− ξ)ω−1|α(ξ)|dξ +
1

Γ(ω)

∫ T

0

(T − ξ)ω−1|β(ξ)|dξ, (13)

where α, β ∈ A :

α(t) = G (t, p(t), α(t)) and β(t) = F(t, p(t), β(t)).
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By (H5), we have

α(t) = G (t, p(t), α(t))

≤ l(t) +m(t)‖p‖ + n(t)|α(t)|
≤ l(t) +m(t)k + n(t)|α(t)|
≤ l∗ +m∗‖p‖+ n∗|α(t)|,

where l∗ = supt∈X l(t), m∗ = supt∈X m(t) and n∗ = supt∈X n(t) < 1. Then

|α(t)| ≤ l∗ +m∗k

1 − n∗ =: ~.

Similarly by (H6), we obtain

|β(t)| ≤ b∗ + c∗k

1 − e∗
=: ~

∗,

where ~ and ~∗ are positive constants. Thus from (13), we have

‖T p‖ =
Tω

Γ(ω + 1)

(

~ + ~
∗
)

=: N.

Step 3: We claim that a bounded set is mapped into equi-continuous set of A by T .
We take t1, t2 ∈ X such that t1 < t2 and assume that Ek is a bounded set as in the
previous step. Then for p ∈ Ek, consider

|T p(t2) − T p(t1)| =

∣

∣

∣

∣

1

Γ(ω)

∫ t2

0

(t2 − ξ)ω−1α(ξ)dξ − 1

Γ(ω)

∫ t1

0

(t1 − ξ)ω−1α(ξ)dξ

∣

∣

∣

∣

.

In Step 2, we have obtained that

|α(t)| ≤ l∗ +m∗k

1 − n∗ =: ~.

Thus

|T p(t2) − T p(t1)| ≤ ~

∣

∣

∣

∣

1

Γ(ω)

∫ t2

0

(t2 − ξ)ω−1dξ − 1

Γ(ω)

∫ t1

0

(t1 − ξ)ω−1dξ

∣

∣

∣

∣

. (14)

We see that the right hand side of (14) tends to zero as t1 → t2. Therefore, as a
conclusion of Step 1–Step 3 and Arzela-Ascoli theorem, T : A → A is a completely
continuous mapping.

Step 4: A priori bound. Define a set

L = {p ∈ A : p = $(T p) for some 0 < $ < 1}.
We need to show that L is bounded. Let p ∈ L , then for some 0 < L < 1, p =
L (T p). Therefore, for t ∈ X , we have

|p(t)| =

∣

∣

∣

∣

$

Γ(ω)

∫ t

0

(t− ξ)ω−1α(ξ)dξ − $

Γ(ω)

∫ T

0

(T − ξ)ω−1β(ξ)dξ

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

Γ(ω)

∫ t

0

(t− ξ)ω−1α(ξ)dξ

∣

∣

∣

∣

+

∣

∣

∣

∣

1

Γ(ω)

∫ T

0

(T − ξ)ω−1β(ξ)dξ

∣

∣

∣

∣

(15)
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or

|p(t)| ≤ 1

Γ(ω)

∫ t

0

(t− ξ)ω−1|α(ξ)|dξ +
1

Γ(ω)

∫ T

0

(T − ξ)ω−1|β(ξ)|dξ.

By (H5) and (H6) we have obtained that

|α(t)| ≤ l∗ +m∗k

1 − n∗ =: ~ and |β(t)| ≤ b∗ + c∗k

1− e∗
=: ~

∗.

Hence we have

|p(t)| ≤ ~

Γ(ω)

∫ t

0

(t − ξ)ω−1dξ +
~∗

Γ(ω)

∫ T

0

(T − ξ)ω−1dξ

≤ Tω

Γ(ω + 1)

(

~ + ~
∗
)

=: N.

Or ‖p‖ ≤ N. This shows that the set L is bounded. Therefore, by Schaefer’s fixed
point theorem, T has at least one fixed point. Which confirms at least one exact
solution of problem (5).

THEOREM 4. If the hypothesis (H1)–(H4) along with the inequality (9) are satis-
fied, then problem (5) is HUS as well as GHUS stable.

PROOF. Let q be an approximate solution of the inequality (2) and let p be the
unique exact solution of the following problem

C
D
ωp(t) = G (t, p(t),C D

ωp(t)), 0 < ω ≤ 1,

p(0) = −
∫ T

0

(T − ξ)ω−1

Γ(ω)
F(ξ, p(ξ),C D

ωp(ξ))dξ.

By Lemma 3, we have

p(t) =
1

Γ(ω)

∫ t

0

(t− ξ)ω−1α(ξ)dξ − 1

Γ(ω)

∫ T

0

(T − ξ)ω−1β(ξ)dξ,

where α, β ∈ A is given as

α(t) = G (t, p(t), α(t)) and β(t) = F(t, p(t), β(t)).

Since we have assumed that q is a solution of (2), hence we have by Remark 2.

C
D
ωq(t) = G (t, q(t),C D

ωq(t)) + Ψ(t), 0 < ω ≤ 1,

q(0) = −
∫ T

0

(T − ξ)ω−1

Γ(ω)
F(ξ, q(ξ),C D

ωq(ξ))dξ.
(16)

Clearly the solution of (16) will be

q(t) =
1

Γ(ω)

∫ t

0

(t−ξ)ω−1ᾱ(ξ)dξ+
1

Γ(ω)

∫ t

0

(t−ξ)ω−1Ψ(ξ)dξ− 1

Γ(ω)

∫ T

0

(T−ξ)ω−1β̄(ξ)dξ,
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where ᾱ, β̄ ∈ A is given as

ᾱ(t) = G (t, q(t), ᾱ(t)) and β̄(t) = F(t, q(t), β̄(t)).

For each t ∈ X consider

|q(t) − p(t)| ≤ 1

Γ(ω)

∫ t

0

(t− ξ)ω−1|ᾱ(ξ) − α(ξ)|dξ +
1

Γ(ω)

∫ t

0

(t − ξ)ω−1|Ψ(ξ)|dξ

+
1

Γ(ω)

∫ T

0

(T − ξ)ω−1|β̄(ξ) − β(ξ)|dξ. (17)

By (H3) and (H4) we get

|ᾱ(t) − α(t)| ≤ ℵ1

1 − ℵ2
|q(t) − p(t)|

and

|β̄(t) − β(t)| ≤ ℵ3

1 − ℵ4
|q(t) − p(t)|.

Hence using part (i) of Remark 2, we have from (17)

|q(t) − p(t)| ≤ ℵ1

(1 − ℵ2)Γ(ω)

∫ t

0

(t− ξ)ω−1|q(ξ) − p(ξ)|dξ +
ε

Γ(ω)

∫ t

0

(t− ξ)ω−1dξ

+
ℵ3

(1 − ℵ4)Γ(ω)

∫ T

0

(T − ξ)ω−1|q(ξ) − p(ξ)|dξ

≤ Tω

Γ(ω + 1)

( ℵ1

1 − ℵ2
+

ℵ3

1 − ℵ4

)

|q(t) − p(t)| + εTω

Γ(ω + 1)
.

Thus

‖q − p‖ ≤
εTω

Γ(ω+1)

1 − Tω

Γ(ω+1)

(

ℵ1

1−ℵ2
+ ℵ3

1−ℵ4

)

or
‖q − p‖ ≤ εCG ,ω,

where

CG ,ω =

Tω

Γ(ω+1)

1 − Tω

Γ(ω+1)

(

ℵ1

1−ℵ2
+ ℵ3

1−ℵ4

) .

Therefore, problem (5) is HUS. Further if we manage zG (ε) = CG (ε); z(0) = 0, then
problem (5) is generalized HUS.

For the proof of our next result we assume that

(H7) There exist a nondecreasing function ψ ∈ C(X ,R+) and a constant £ψ > 0 such
that
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Iωψ(t) ≤ £ψψ(t), for all t ∈ X .

THEOREM 5. Assume that (H1)–(H7) along with the inequality (9) are satisfied,
then the problem (5) HURS stable and consequently the problem (5) is GHURS.

PROOF. Let q be an approximate solution of the inequality (4) and p be the unique
exact solution of the following problem

C
D
ωp(t) = G (t, p(t),C D

ωp(t)), 0 < ω ≤ 1,

p(0) = −
∫ T

0

(T − ξ)ω−1

Γ(ω)
F(ξ, p(ξ),C D

ωp(ξ))dξ.

By Lemma 3, we have

p(t) =
1

Γ(ω)

∫ t

0

(t− ξ)ω−1α(ξ)dξ − 1

Γ(ω)

∫ T

0

(T − ξ)ω−1β(ξ)dξ,

where α, β ∈ A is given as

α(t) = G (t, p(t), α(t)) and β(t) = F(t, p(t), β(t)).

From the proof of Theorem 4, for each t ∈ X , we have

|q(t) − p(t)| ≤ 1

Γ(ω)

∫ t

0

(t− ξ)ω−1|ᾱ(ξ) − α(ξ)|dξ +
1

Γ(ω)

∫ t

0

(t − ξ)ω−1|Ψ(ξ)|dξ

+
1

Γ(ω)

∫ T

0

(T − ξ)ω−1|β̄(ξ) − β(ξ)|dξ. (18)

By (H3) and (H4), we get

|ᾱ(t) − α(t)| ≤ ℵ1

1 − ℵ2
|q(t) − p(t)|

and

|β̄(t) − β(t)| ≤ ℵ3

1 − ℵ4
|q(t) − p(t)|.

Thus using the last two inequalities and part (i) of Remark 3, we have from (18)

|q(t) − p(t)| ≤ ℵ1

(1 − ℵ2)Γ(ω)

∫ t

0

(t− ξ)ω−1|q(ξ) − p(ξ)|dξ +
ε

Γ(ω)

∫ t

0

(t− ξ)ω−1ψ(t)dξ

+
ℵ3

(1 − ℵ4)Γ(ω)

∫ T

0

(T − ξ)ω−1|q(ξ) − p(ξ)|dξ

≤ Tω

Γ(ω + 1)

( ℵ1

1 − ℵ2
+

ℵ3

1 − ℵ4

)

|q(t) − p(t)| + ε£ψψ(t) (∵ using (H7)).
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Thus

‖q − p‖ ≤ ε£ψψ(t)

1 − Tω

Γ(ω+1)

(

ℵ1

1−ℵ2
+ ℵ3

1−ℵ4

) .

Or
‖q − p‖ ≤ CG ,ωε£ψψ(t),

where

CG ,ω =
£ψ

1 − Tω

Γ(ω+1)

(

ℵ1

1−ℵ2
+ ℵ3

1−ℵ4

) .

Therefore, problem (5) is HURS. In same line it is easy to check that the problem
under consideration is GHURS.

4 Example

To demonstrate the aforesaid established theory, we provide the following problem.

EXAMPLE 1.


























C
D

1

2 p(t) =
7 + |p(t)|+ |CD

1

2 p(t)|

105et+3

(

1 + |p(t)|+ |CD
1

2 p(t)|
) , t ∈ X = [0, 1],

p(0) =
1

Γ(1
2
)

∫ 1

0

(t− ξ)
1

2

(

ξ sin |p(ξ)|+ sin |CD 1

2 p(ξ)|
50

)

dξ, t ∈ X = [0, 1],

(19)

where ω = 1
2 , T = 1. Set

G (t, σ, θ) =
7 + |σ|+ |θ|

105et+3

(

1 + |σ| + |θ|
) , σ ∈ C(X ,R), θ ∈ R.

Clearly both the functions G and F are continuous. For each σ, σ̄ ∈ A , θ, θ̄ ∈ R and
t ∈ [0, 1], we have

|G (t, σ, θ) − G (t, σ̄, θ̄)| ≤ 1

105e3
(|σ − σ̄| + |θ − θ̄|).

Which satisfies condition (H3) with ℵ1 = ℵ2 = 1
105e3 .

Similarly by setting

F(t, σ, θ) =
1

Γ(1
2)

∫ 1

0

(t − ξ)
1

2

(

ξ sin |σ| + sin |θ|
50

)

dξ,

we have for each t ∈ [0, 1] and σ, σ̄ ∈ A and θ, θ̄ ∈ R

|F(t, σ, θ)− F(t, σ̄, θ̄)| ≤ 1

25
√
π

(

|σ − σ̄| + |θ − θ̄|
)

.
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Which satisfies (H4) with ℵ3 = ℵ4 = 1
25

√
π
. Also

Tω

Γ(ω + 1)

( ℵ1

1 − ℵ2
+

ℵ3

1 − ℵ4

)

=
Tω

Γ(ω + 1)

( 1
105e3

1 − 1
105e3

+

1
25

√
π

1 − 1
25

√
π

)

=
2√
π

(

1

105e3 − 1
+

1

25
√
π − 1

)

< 1.

We see, all the required conditions of Theorem 2, are fulfilled hence problem (19) has
unique solution. Similarly we can show that by Theorem 3, the problem (19) has at
least one solution. Also by letting ψ(t) = t ∈ X , we have

I
1

2ψ(t) =
1

Γ(1
2 )

∫ t

0

(t− ξ)
1

2
−1ξdξ ≤ 2t√

π
.

Hence (H7) satisfies with £ψ = 2√
π
. Therefore, by Theorem 5, the given problem is

HURS and consequently it is generalized HURS.

5 Conclusion

FDEs describe the properties of hereditary materials and processes more accurate and
significantly. Especially the nonlinear implicit type FDEs with integral boundary con-
ditions are very important because the differential equations with integral boundary
conditions have enormous number of applications in different fields of applied sciences.
In this paper, we have successfully obtained some appropriate and sufficient condi-
tions which guarantee the uniqueness, existence of at least one solution and its HU
stability analysis to a class of nonlinear implicit FDEs with implicit anti-periodic inte-
gral boundary conditions. The obtained results can be applied in fields like numerical
analysis and managerial sciences including business mathematics and economics etc.

Acknowledgments. We are thankful to the reviewers for their useful correc-
tions/suggestions.
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