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Abstract

In this study, we study special two-parameter homothetic motions obtained
by the frame of a regular surface with non-umbilical points. This frame has been
constructed by taking the unit principal directions and the unit normal vector
of the surface. By using the homothetic motion of this frame, we project the
orbit surface of a fixed point onto an arbitrary plane and compute its oriented
projection area depending on the geodesic curvatures of parameter curves and the
principal curvatures of the surface. Also, we reobtain a Holditch-type result for
the projection areas.

1 Introduction

Kinematic describes the motion of a point or a point system depending on time. If a
point moves with respect to one parameter, then it traces its one-dimensional path,
orbit curve. If a point moves with respect to two parameters, then it traces its two-
dimensional path, orbit surface. H.R. Müller obtained the area of the region enclosed by
the closed orbit curve in planar kinematics [5] and the area of the planar region enclosed
by the projection of the closed orbit curve and orbit surface in spatial kinematics [7].
By using a special metric, Müller has shown that the classical Holditch theorem1 can
also be transferred to projection areas in Euclidean 3-space [7, 9] (see also [3, 10] for the
generalizations in spatial homothetic motions). The volumes of the trajectory surfaces
of points have been studied under three-parameter motions [6, 8] and three-parameter
homothetic motions in Euclidean 3-space [4]. Furthermore, by considering a special
two-parameter motion (the motion of the orthonormal frame along a regular surface
whose parameter curves are lines of curvature), Urban obtained the volume of the
region traced by a line segment [11].
In this study, we study special two-parameter homothetic motions obtained by the

frame of a regular surface with non-umbilical points. This frame has been constructed
by taking the unit principal directions and the unit normal vector of the surface as
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Turkey
1 If a chord of a closed curve, of constant length a + b, be divided into two parts of lengths a, b,

respectively, the difference between the areas of the closed curve, and of the locus of the dividing point,
will be πab [1, 2].
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in [11]. By using the homothetic motion of this special frame, we project the orbit
surface of a fixed point onto an arbitrary plane and compute its oriented projection area
depending on the geodesic curvatures of parameter curves and the principal curvatures
of the surface. Also, we reobtain the Holditch-type result for the projection areas.

2 Preliminaries

Let D ⊂ E2 be an open set and M be a regular surface given by its parametric
equation X (u, v). We assume that M does not have any umbilical and flat points. We
also suppose that the parameter curves of M are lines of curvature. Let Xu and Xv

be the tangent vectors of the parameter curves and n be the unit normal vector of the
surface. Then n is obtained by

n =
Xu ×Xv

‖Xu ×Xv‖
.

The coeffi cients of the first and second fundamental forms are given by

E = 〈Xu, Xu〉, F = 〈Xu,Xv〉, G = 〈Xv,Xv〉,

L = 〈Xuu,n〉, M = 〈Xuv,n〉, N = 〈Xvv,n〉. (1)

Since the parameter curves of the surface are lines of curvature, we have

F =M = 0, (2)

and the principal curvatures are obtained as

κ1 =
L

E
, κ2 =

N

G
. (3)

Let

r1 =
Xu

‖ Xu ‖
, r2 =

Xv

‖ Xv ‖
.

Then {r1, r2,n} constitutes an orthonormal frame along the surface M. Thus, if we
take the partial derivatives of

Xu =
√
E r1, Xv =

√
G r2 (4)

with respect to u and v, respectively, then we get, [11]

Xuu =
Eu
2
√
E
r1 +

√
E ∂r1

∂u ,

Xuv =
Ev
2
√
E
r1 +

√
E ∂r1

∂v =
Gu

2
√
G
r2 +

√
G∂r2

∂u ,

Xvv =
Gv
2
√
G
r2 +

√
G∂r2

∂v .

(5)
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With (1), (2) and (3) it follows from (5):〈
∂r1
∂u

,n

〉
=

L√
E
= κ1

√
E,

〈
∂r2
∂v

,n

〉
=

N√
G
= κ2

√
G, (6)〈

∂r1
∂v

,n

〉
= −

〈
r1,

∂n

∂v

〉
= 0,

〈
∂r2
∂u

,n

〉
= −

〈
r2,

∂n

∂u

〉
= 0.

Let κig be the oriented geodesic curvature of the i-th parameter curve of M (i = 1, 2),
and let dsi be the arc element of the i-th parameter curve. Then we may write, [11]

ṡ1 =
ds1
du

=
√
〈Xu,Xu〉 =

√
E, ṡ2 =

ds2
dv

=
√
〈Xv,Xv〉 =

√
G, (7)

κ1g =
1

(ṡ1)
3 det{Xu,Xuu,n}, κ2g =

1

(ṡ2)
3 det{Xv, Xvv, n}. (8)

If we use (4), (5) and (7), the representations of κig are obtained as, [11]
κ1g =

1√
E
det
{
r1,

∂r1
∂u ,n

}
= 1√

E

〈
∂r1
∂u , r2

〉
= − 1√

E

〈
∂r2
∂u , r1

〉
,

κ2g =
1√
G
det
{
r2,

∂r2
∂v ,n

}
= − 1√

G

〈
∂r2
∂v , r1

〉
= 1√

G

〈
∂r1
∂v , r2

〉
.

From (5), (6) and (8) the derivation equations are finally obtained as, [11]

∂r1
∂u = (κ1gr2 + κ1n)

√
E,

∂r2
∂u = −κ1g

√
Er1,

∂n
∂u = −κ1

√
Er1,

,



∂r1
∂v = κ2g

√
Gr2,

∂r2
∂v = (−κ2gr1 + κ2n)

√
G,

∂n
∂v = −κ2

√
Gr2.

(9)

DEFINITION. Let M be a regular surface and D be the region of the parameters
of this surface.

dFM = ‖Xu ×Xv‖ dudv (10)

is called the scalar surface element of M and

dFM = n dFM (11)

is called the vectorial surface element of M.

FM =

∫∫
D

dFM

is called the area vector, [9].

Using (10) and (11), the vectorial surface element of X(u, v) is [9]

dFM = Xu ×Xvdudv

and the area vector is

FM =

∫∫
D

Xu ×Xvdudv.



M. Düldül and G. Işıtan 213

3 Associated Surfaces Obtained Kinematically

Let us consider the above orthonormal frame {r1, r2,n} constructed along a surface M
given by the parametric equation X(u, v) with non-umbilical points. Let h(u, v) be a
differentiable function on D.

Let us consider the two-parameter homothetic motion in which the frame {r1, r2,n}
is considered as the moving frame along the surface. Thus, the fixed point ϕ(u, v) =
α1r1 + α2r2 + α3n with respect to this frame traces its orbit surface under such ho-
mothetic motions. For its orbit surface ψ(u, v), we may then write

ψ(u, v) = X(u, v) + h(u, v)ϕ(u, v), (12)

where h is the homothetic scale.

If we take partial derivatives of (12) according to u and v, we get

 ψu(u, v) = Xu(u, v) + hu(u, v)ϕ(u, v) + h(u, v)ϕu(u, v),

ψv(u, v) = Xv(u, v) + hv(u, v)ϕ(u, v) + h(u, v)ϕv(u, v).
(13)

Also, since α1, α2, α3 are constants, we have

ϕu(u, v) = α1
∂r1
∂u

+ α2
∂r2
∂u

+ α3
∂n

∂u
, (14)

ϕv(u, v) = α1
∂r1
∂v

+ α2
∂r2
∂v

+ α3
∂n

∂v
. (15)

If we substitute (9) into (14) and (15), we get

{
ϕu(u, v) = {(−α2κ1g − α3κ1)r1 + α1κ1gr2 + α1κ1n}

√
E,

ϕv(u, v) = {−α2κ2gr1 + (α1κ2g − α3κ2)r2 + α2κ2n}
√
G.

(16)

Finally, if we substitute (16) into (13),



ψu(u, v) =
(√

E + huα1 − h
√
Eα2κ1g − h

√
Eα3κ1

)
r1

+
(
huα2 + h

√
Eα1κ1g

)
r2 +

(
huα3 + h

√
Eα1κ1

)
n,

ψv(u, v) =
(
hvα1 − h

√
Gα2κ2g

)
r1 +

(
hvα3 + h

√
Gα2κ2

)
n

+
(√

G+ hvα2 + h
√
Gα1κ2g − h

√
Gα3κ2

)
r2,
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are obtained. Therefore, we calculate the normal vector of the orbit surface as

ψu × ψv =
{
h2
√
EG

(
α1α2κ1gκ2 − α21κ1κ2g + α1α3κ1κ2

)
+
√
Ghhu

(
α22κ2 − α1α3κ2g + α23κ2

)
+hhv

√
E (α1α3κ1g − α1α2κ1)− huα3

√
G− h

√
EGα1κ1

}
r1

+
{
h2
√
EG

(
−α1α2κ1κ2g + α22κ1gκ2 + α2α3κ1κ2

)
+
√
Ghhu (−α2α3κ2g − α1α2κ2)

+hhv
√
E
(
α1

2κ1 + α2α3κ1g + α
2
3κ1
)
−hvα3

√
E − h

√
EGα2κ2

}
r2

+
{
h2
√
EG

(
α2α3κ1gκ2 + α

2
3κ1κ2 − α1α3κ1κ2g

)
+
√
Ghhu

(
α21κ2g − α1α3κ2 + α22κ2g

)
+hhv

√
E
(
−α22κ1g − α2α3κ1 − α21κ1g

)
+h
√
EG (α1κ2g − α3κ2 − α2κ1g − α3κ1)

+hv
√
Eα2 + huα1

√
G+

√
EG
}
n. (17)

Let’s now calculate the oriented area of the region obtained by projecting ψ(u, v)
onto the plane with unit normal vector e = σ1r1 + σ2r2 + σ3n.
The projection area Fnψ in the direction of the unit vector e of the orbit surface is

Fnψ = 〈e,Fψ〉 =
〈
e,

∫∫
D

dFψ

〉
=

〈
e,

∫∫
D

ψu × ψvdudv
〉
. (18)

If we substitute (17) into (18), we obtain the oriented area of the region obtained by
projecting the orbit surface as

Fnψ =

∫∫
D

{
α1α2

(
σ1h

2
√
EGκ1gκ2 − σ1hhv

√
Eκ1 − σ2h2

√
EGκ1κ2g − σ2hhu

√
Gκ2

)
+α1α3

(
σ1h

2
√
EGκ1κ2 − σ1hhu

√
Gκ2g − σ3h2

√
EGκ1κ2g + σ1hhv

√
Eκ1g

−σ3hhu
√
Gκ2

)
+ α2α3

(
σ2h

2
√
EGκ1κ2 − σ2hhu

√
Gκ2g + σ3h

2
√
EGκ1gκ2

−σ3hhv
√
Eκ1 + σ2hhv

√
Eκ1g

)
+ α1

2
(
−σ1h2

√
EGκ1κ2g + σ2hhv

√
Eκ1

+σ3hhu
√
Gκ2g − σ3hhv

√
Eκ1g

)
+ α2

2
(
σ1hhu

√
Gκ2 + σ2h

2
√
EGκ1gκ2

+σ3hhu
√
Gκ2g − σ3hhv

√
Eκ1g

)
+ α3

2
(
σ1hhu

√
Gκ2 + σ3h

2
√
EGκ1κ2

+σ2hhv
√
Eκ1

)
+ α1

(
−hσ1

√
EGκ1 + hσ3

√
EGκ2g + σ3hu

√
G
)

+α2

(
−hσ2

√
EGκ2 − hσ3

√
EGκ1g + σ3hv

√
E
)

+α3

(
−huσ1

√
G− hvσ2

√
E − σ3h

√
EGκ2 − σ3h

√
EGκ1

)
+ σ3

√
EG
}
dudv
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or

Fnψ = FnX +
3∑
i=1

Biα2i +
3∑

1=i<j

Bijαiαj +
3∑
i=1

Ciαi, (19)

where

B1 =
∫∫
D

(
−σ1h2

√
EGκ1κ2g + σ2hhv

√
Eκ1 + σ3hhu

√
Gκ2g − σ3hhv

√
Eκ1g

)
dudv,

B2 =
∫∫
D

(
σ1hhu

√
Gκ2+ σ2h

2
√
EGκ1gκ2 + σ3hhu

√
Gκ2g − σ3 hhv

√
Eκ1g

)
dudv,

B3 =
∫∫
D

(
σ1hhu

√
Gκ2 + σ3h

2
√
EGκ1κ2 + σ2hhv

√
Eκ1

)
dudv,

B12 =
∫∫
D

(
σ1h

2
√
EGκ1gκ2− σ1hhv

√
Eκ1 − σ2h2

√
EGκ1κ2g −σ2hhu

√
Gκ2

)
dudv,

B13 =

∫∫
D

(
σ1h

2
√
EGκ1κ2 − σ1hhu

√
Gκ2g − σ3h2

√
EGκ1κ2g + σ1hhv

√
Eκ1g

−σ3hhu
√
Gκ2

)
dudv,

B23 =

∫∫
D

(
σ2h

2
√
EGκ1κ2 − σ2hhu

√
Gκ2g + σ3h

2
√
EGκ1gκ2 − σ3hhv

√
Eκ1

+ σ2hhv
√
Eκ1g

)
dudv,

C1 =
∫∫
D

(
−hσ1

√
EGκ1 + hσ3

√
EGκ2g + σ3hu

√
G
)
dudv,

C2 =
∫∫
D

(
−hσ2

√
EGκ2 − hσ3

√
EGκ1g + σ3hv

√
E
)
dudv,

C3 =
∫∫
D

(
−huσ1

√
G− hvσ2

√
E − σ3h

√
EGκ1 − σ3h

√
EGκ2

)
dudv,

FnX =
∫∫
D

σ3
√
EGdudv.

PROPOSITION 1. Let M be a regular surface given by the parametric equa-
tion X(u, v), and let the parameter curves of M be lines of curvature on M. Let
r1 =

Xu

||Xu|| , r2 =
Xv

||Xv|| ,n = r1 × r2. All the fixed points (with respect to the frame
{r1, r2,n}) whose orbit surfaces have equal projection area in the same direction lie on
the same quadric.
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4 Holditch-type Theorem for Projection Areas

Let P and S be two fixed points and Q be another point on the line segment PS. Then
we may write

qi = λpi + µsi , λ+ µ = 1, 1 ≤ i ≤ 3.

Using (19), we get

FnQ = λ2FnP + 2λµFnPS + µ2FnS , (20)

where

FnPS = FnX +
1

2

3∑
i=1

Ci(pi + si) +
3∑
i=1

Bipisi +
1

2

3∑
1=i<j

Bij(pisj + pjsi)

is called the mixture projection area, and it satisfies FnPS = FnSP and FnPP = FnP . Since

FnP − 2FnPS + FnS =
3∑
i=1

Bi(pi − si)2 +
3∑

1=i<j

Bij(pi − si)(pi − sj),

we can rewrite (20) as follows:

FnQ = λFnP + µFnS − λµ


3∑
i=1

Bi(pi − si)2 +
3∑

1=i<j

Bij(pi − si)(pj − sj)

 . (21)

If we define the oriented distance D(P, S) between the points P , S by

D2(P, S) = ε


3∑
i=1

Bi(pi − si)2 +
3∑

1=i<j

Bij(pi − si)(pj − sj)

 , ε = ∓1, (22)

from (21) we have

FnQ = λFnP + µFnS − ελµD2(P, S).

Since D satisfies

D(P,Q) +D(Q,S) = D(P, S),

denoting

λ =
D(Q,S)
D(P, S) , µ =

D(P,Q)
D(P, S)

yield

FnQ =
1

D(P, S)

{
D(Q,S)FnP +D(P,Q)FnS

}
− εD(P,Q)D(Q,S). (23)
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Now, we consider that the points P and S trace the same orbit surface. In this case,
for the projection area in the direction of e we have FnP = FnS . Then, from (23) we
obtain

FnP −FnQ = εD(P,Q)D(Q,S)

which is the analog result given by H. R. Müller [9]. It should be noted that the
distance function defined here depends on not only the geodesic curvatures of the
parameter curves and principal curvatures of the surface but also on the homothetic
scale.

PROPOSITION 2. Let M be a regular surface given by the parametric equation
X(u, v) whose parameter curves are lines of curvature. Let r1 = Xu

||Xu|| , r2 =
Xv

||Xv|| ,n =

r1 × r2, and PS be a line segment with constant length. If P and S trace the same
orbit surface during the homothetic motion of {r1, r2,n}, then, the point Q on this line
segment traces another surface. The difference between the projection areas of these
surfaces (in the direction of a unit vector e) depends on the distances (defined by (22))
of Q from the endpoints.

5 Applications

Let us consider the cylinder C given by the parametric equationX(u, v) = (cosu, sinu, v)
with D : 0 ≤ u ≤ π, −1 ≤ v ≤ 1. We have r1 = (− sinu, cosu, 0), r2 = (0, 0, 1),
n = (cosu, sinu, 0), κ1g = κ2g = 0, κ1 = −1, κ2 = 0. If we take e = (0, 1, 0), then we
obtain σ1 = cosu, σ2 = 0, σ3 = sinu.
If we choose h(u, v) = 1, then we obtain the oriented projection area formula as

Fnψ = 4 + 4α3. This means all the fixed points with α3 = −1 have vanishing oriented
projection areas. Also, all the fixed points on the tangent plane of the cylinder have the
same projection area as the given cylinder’s projection area. Figure 1 shows some orbit
surfaces with vanishing oriented projection areas from different view angles. Figure 2
shows some orbit surfaces with the projection area 4 from different view angles.
If we choose h(u, v) = u+v

3 , we obtain the oriented projection area formula as

Fnψ = 4−
4

9
α1α2 +

2π

9
α2α3 +

4

3
α2 +

2π

3
α3.

In this case, we obtain the oriented projection area of the orbit surface of ϕ(u, v) =
r1 − 2r2 + 3n as 20

9 +
6π
9 . Figure 3 shows its orbit surface from different view angles.
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[3] M. Düldül, N. Kuruoğlu and A. Tutar, The generalization of Holditch theorem for
closed space curves, Z. Angew. Math. Mech., 84(2004), 60—64.



218 Associated Surfaces Obtained Kinematically

Figure 1: The given cylinder C (red) and the projection plane (yellow) together with
the orbit surfaces of the points: ϕ(u, v) = r1+r2−n (magenta), ϕ(u, v) = 2r1−r2−n
(blue), ϕ(u, v) = −r1 + r2 − n (green).

Figure 2: The given cylinder C (red) and the projection plane (yellow) together with
the orbit surfaces of the points: ϕ(u, v) = r1 (magenta), ϕ(u, v) = 2r1 + 3r2 (blue).
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Figure 3: The given cylinder C (red) and the projection plane (yellow) together with
the orbit surface of the point ϕ(u, v) = r1 − 2r2 + 3n (blue).
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