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Abstract

An operator T on H is called a k-quasi-*-paranormal operator if
|7 T2l < T T"],

for all z € H, where k is a natural number. First, there will be seen some spectral
properties for k-quasi-k-paranormal operator, examples and inclusions. It will
also be seen if T' is algebraically k-quasi-x-paranormal then 7' has finite ascent
and T is polaroid operator. Second, it will be shown that the Riesz idempotent
P, of every k-quasi-+-paranormal T" with respect to each isolated point p 7# 0 of
its spectrum o (7T') is self-adjoint and satisfies P,(H) = ker(T — p) = ker(T — u)™,
and if g = 0, then P,(H) = ker(T*™!). Finally, it will be proved the generalized
Weyl’s theorem for f(T) for every f € Hol(o(T)), if T is an algebraically k-quasi-
x-paranormal operator. If T is an algebraically k-quasi-*-paranormal then f(T")
satisfies a-Weyl’s theorem for every f € Hol(o(T')). Moreover, we show that if T’
is an algebraically k-quasi-x-paranormal operator, F' is algebraic with TF = F'T,
then f(T + F') satisfies the generalized Weyl’s theorem for all f € Hol(o(T + F)).

1 Introduction

Throughout this paper, let H and K be infinite dimensional complex Hilbert spaces
with inner product (-, -). We denote by L(H, K) the set of all bounded operators from
H into K. To simplify, we put L(H) := L(H,H). For T € L(H), we denote by kerT
the null space and by T'(H) the range of T. The closure of a set M will be denoted
by M and we shall henceforth shorten T'— AI to T — X. We shall denote the set of all
complex numbers by C, the set of all real numbers by R and the set of all non—negative
integers by N. An operator T € L(H), is a positive operator, T > O, if (T'z,z) > 0 for
all x € H.

Let T € L(H). For an operator T, as usual, by T* we mean the adjoint of T and
IT| = (T*T)2. An operator T is said to be a hyponormal, if |T| > |T*|2. An operator T
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is said to be a paranormal, if ||T%z|| > ||Tx||* for any unit vector x in H, [19]. Further,
T is said to be a *-paranormal, if |T2%z|| > ||T*x||? for any unit vector z in H, [7].

T. Furuta, M. Ito and T. Yamazaki [20] introduced a very interesting class of
bounded linear Hilbert space operators: class A defined by |T?| > |T'|?, and they
showed that the class A is a subclass of paranormal operators. I. H. Jeon and 1. H.
Kim [23] introduced quasi—class A (i.e., T*|T?|T > T*|T|?T) operators as an extension
of the notion of a class A operators. B. P. Dugall, I. H. Jeon, and I. H. Kim [17],
introduced *-class A operator. An operator T is said to be a x-class A operator, if

72| > TP,

A x-class A is a generalization of a hyponormal operator, [17, Theorem 1.2], and *-class
A is a subclass of the class of *-paranormal operators, [17, Theorem 1.3]. We denote
the set of *-class A by A*. J. L. Shen, F. Zuo and S. C. Yang, in [28] introduced a
quasi-*-class A operator: An operator T is said to be a quasi-x-class A operator, if

T*|T*T > T*|T*|*T.

We denote the set of quasi-#-class A by Q(A*).

2 Definition and Example

DEFINITION 2.1 ([21]). An operator T' € L(H) is called a k-quasi-x-paranormal
operator if
17T | < (|72 ||| 7",

for all x € H, where k is a natural number.

This class of the operators, also is defined in paper [25]. If T is k-quasi-*-paranormal
operator then T is a (k + 1)-quasi-*-paranormal operator. The inverse is not true, as
it can be seen below.

EXAMPLE 2.2. Consider the unilateral weighted shift operators as an infinite di-
mensional Hilbert space operator. Recall that given a bounded sequence of a positive
numbers « : a1, g, a3, ay, ... (called weights) the unilateral weighted shift W,, associ-
ated with weight « is the operator on H = Iy defined by Wye,, = ane,q1 for all n > 1,
where {e,}52  is the canonical orthonormal basis on Is.

0 0 0 0
ar 0 0 0
0 as 0 0
Wo = 0 0 a3 O

It is well known that the following assertions are equivalent:
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1. W, is a x-paranormal operator,
2. W, is a *-class A operator,
3. a2 < apy1ape for all n > 1.
From [21, Proposition 2.1], W,, is a k-quasi-*-paranormal operator, if and only if,
WR(WEAW2 — 20\W, W + A)WE > O for all A € R.
Let diag({ov, }52 1) = diag(aq, a2, as, ...) denote an infinite diagonal matrix on lo. Then,

Wik (W22W2 — 2AW, W + \°) W

= diag({asah - 00k 1O 10k o)
2/\diag({aiai+l Tt a721+k—2ai+k—1o‘i+k—1}zo=l)
2 4.
+ A dlag({aiaiﬂ Tt a?wrk—l}zo:l)

Thus, W,, is a k-quasi-*-paranormal operator, if and only if,
2 2 2 2 2 2 2
(S 79110 SIS IRARTTIMNC Wy S | (O‘n—&-kan—&-k—&-l - 2)‘O‘n+k—1 + A ) > 0’
for all A € R, and n > 1. Equivalently
afwkfl < QpgkQpiks1 for all m > 1.

If apy1 < agga < apgs < appa < ooand ap > agq1, then W, is a (k + 1)-quasi-*-
paranormal but is not a k-quasi-*-paranormal operator.

We write 7(T) = lim,_o ||T7||* for the spectral radius. It is well known that
r(T) < ||T|l, for every T € L(H). The operator T is called normaloid operator if
r(T) = ||T||. It is well known that a *-paranormal operator is normaloid [7, Theorem
1.1], and a quasi-*-paranormal is normaloid, but a k-quasi-*-paranormal operator for
k > 2 is not normaloid operator: if &3 > as and ay = ag = ... = a = ap41 = ..., then

1
n = Q9.

IT|| = @1 and #(T) = lim ||T"

THEOREM 2.3. Let T' € L(H) be a k-quasi-x-paranormal operator for a positive
integer k. Then the following assertions hold.

Lo |72 < [T F2||||T™| for all positive integers n > k,
2. It |T™|| = || T||"™ for some positive n > k, then T is normaloid operator.
PROOF. 1). Since k-quasi-*-paranormal operators are (k + 1)-quasi-t-paranormal

operators, we only need to prove the case n = k. It is clear by the definition of
k-quasi-x-paranormal operators.
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2). Let n > k. From 1) and using |T"|| = ||T||™ we have

ITI" = T = TR = T T2
< T EVPTIT R < TPV |7 |
= ||T||2(n_l)||Tn+2H||T||n.

A

Therefore, ||T||"+2 < || T"F2| so |T||**! = ||T™*!||. Thus by induction we have ||T||" =
|77, for all n € N, hence T is normaloid operator.

DEFINITION 2.4. An operator T is called an algebraically k-quasi-k-paranormal
operator, if there exists a nonconstant complex polynomial h(z) such that h(T) is a
k-quasi-x-paranormal.

If T is a k-quasi-*-paranormal operator, then T is an algebraically k-quasi-*-paranormal
operator. But the inverse is not true, as shown by the example below.

EXAMPLE 2.5. Let
I O
T = <I I) GL(ZQ@ZQ).

. « (I T
Since T (O ]>,

_ 2 _ 2
T*2 (T2T% — 9XTT* 4 X*) T? = ((17 26\ +5A) T (4 — 10\ + 2\ )I>

(4 =10+ 20T (1 —4X+ )1
For A =1, (17 — 26X + 5A%)I is not a positive operator, thus

T2 (T*2T% — 2XTT* + X*) T2 # O
for all A € R. Therefore T is not a 2-quasi-*-paranormal operator.

On the other hand, consider the non constant complex polynomial h(z) = (z — 1)%.
Then A(T) = O, and hence T is an algebraically 2-quasi-+-paranormal operator.

LEMMA 2.6 ([13, Holder-McCarthy inequality]). Let 7' be a positive operator.
Then, the following inequalities hold for all z € H:

1 (TTz,2) < (T, z)"||z]|?A~) for 0 < r < 1,

2. (TTz,z) > (Tz,z)"||z||>)*=") for r > 1.

LEMMA 2.7. If T is a k-quasi-*-class A operator, then T is a k-quasi-*-paranormal
operator.



84 Riesz Idempotent and Weyl’s Theorem

PROOF. Let T be a k-quasi-*-class A operator. From Holder-McCarthy inequality
we have

|T*T* 2| = (T*|T*PT e, 2) < (|T2|T%2, Thz)

IN

1
(|T?PT 2, T*)? | T 2| = | T 22| | T 2.
So T is a k-quasi-*-paranormal operator.

LEMMA 2.8. Let S = ®2°, H,,, where H,, = R?. For given positive operators A, B
on R? and for any fixed n € N, the operator T = Ta,p on S is defined as follows:

T(z1,22,...) = (0, Az1, Bxo, Bxs, Bxy, ...),
and the adjoint operator of T is
T*(x1, 22, ...) = (Aze, Bxs, Bxy, Bxs, ...).
Then
1. The operator T4 p is a quasi-*-class A operator, if and only if,

AB2A > A%,

2. The operator T4, g is a quasi-*-paranormal operator, if and only if,

A(B* —2)\A% + \HA > O, for all A € R.
EXAMPLE 2.9. A non quasi-*-class A operator, quasi-x-paranormal operator.

1 1\? 1 2\1
Az(l 2) aunde(2 8) .

—0.3359... —0.2265...
—0.2265... 0.8244... ) z 0,

Take A and B as

Then
A(B2 - A2)A = (

hence T4 p is not a quasi-*-class A operator. But,

A(B* — 2042 + N1 A = G ;) (&f% Af(f;ﬁ) 8) G ;) >0,

so, T4, p is a quasi-*-paranormal operator.
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3 Spectral Properties

We write o(T'), 0,(T) and 04(T) for the spectrum, point spectrum and approximate
point spectrum, respectively. Sets of isolated points and accumulation points of o(T")
are denoted by isoo(T') and acco(T'), respectively.

A complex number y is said to be in the point spectrum o,(T") of T if there is a
nonzero x € H such that (T — p)x = 0. If in addition, (T — p)*z = 0, then p is said
to be in the joint point spectrum o;,(T") of T. Clearly 0;,(T) C o,(T). In general
030(T) # o,(T).

LEMMA 3.1 ([21, Proposition 3.1]). If T is a k-quasi-+-paranormal operator and
(T — )z =0, then (T — p)*xz =0 for all u # 0.

A complex number p is said to be in the approximate point spectrum o, (7") of
T if there is a sequence {x,,}>°_; C H of unit vectors satisfying (T — p)z,, — 0, as
m — oo. If in additions (T' — p)*z,, — 0, as m — oo, then u is said to be in the joint
approximate point spectrum o,,(T") of operator T'. Clearly 0;,(T) C 04(T). In general
05ul(T) # 7(T).

THEOREM 3.2. Let T be a k-quasi-#-paranormal operator, and (T' — p)z,, — 0,
as m — oo for p # 0. Then (T — p)*z, — 0, as m — 0.

PROOF. Let T be a k-quasi-*-paranormal operator and (T — p)z,, — 0, as m — oo.

We may assume that ||z,,| = 1. By the assumption and using
kol , ,
Tk = (T — /L—i—/j,)k = Z (’[,) /J,k_l(T — /Jz)l +,U/k, fOY k (S N,
i=1

we have (T* — u*)z,, — 0, as m — co. By
T 2| — [l < T — p*)amll

hence
| T* 2| — |pl*, as m — oo. (1)

Moreover
N T* || = |1 T(T* = P ) ||| < NT*T 2, (2)

Since T is a k-quasi-x-paranormal operator, we have
IT* T | < 17> |2 T 2] 2. (3)
Then it follows from (1), (2) and (3) that

lm sup |77 @, || < |ul.
m—00
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Since

* 2
(T = p) @ |
= | T*@ml® = 2Re(T* @, i) + ||z |2
HT*me2 - 2Re<xm7ﬁT$m> + |[L|2||.1‘m||2,

we see that
limsup [[(T = p)* @ ||* < |ul* = |ul* = 0.

m—00

This implies (T — p)*,, — 0, as m — oo.

COROLLARY 3.3. If T is a k-quasi-*-paranormal operator, then o;,(7T") \ {0} =
0a(T) \ {0}

LEMMA 3.4 ([5, Corollary 2]). Let T' = U|T| be the polar decomposition of T,
w = |ple’® # 0 and {z,,} a sequence of vectors. Then the following assertions are
equivalent:

1. (T — p)xm — 0 and (T* — @)zm — 0, as m — o0,
2. (IT] = |u)zm — 0 and (U — e)zm — 0, as m — oo,

3. (|T*| = |u))zm — 0 and (U* — e~ )z, — 0, as m — oo.

COROLLARY 3.5. If T is a k-quasi-x-paranormal operator and u € o,(T) \ {0},
then |u] € 7a(|T)) N 7a(IT7)).

PROOF. If i € 04(T) \ {0}, then by Theorem 3, there exists a sequence of unit
vectors {z,,} such that (T — p)z,, — 0 and (T — p)*x,, — 0, as m — oco. Hence, from
Lemma 3 we have |u| € o,(|T]) Noa(|T*]).

COROLLARY 3.6. Let T be a k-quasi-+-paranormal operator and T' = U|T| is the
polar decomposition of T'. If 1 = |ule?® # 0 and p € 0,(T), then € € 0, (U).

PROOF. Let p € 0,(T). From Corollary 3, p € 0;,(T). Then there exists a
sequence of unit vectors {z,,} such that (T — p)z,, — 0 and (T' — p)*z,, — 0, as
m — oo. From Lemma 3 we have (U —e)z,,, — 0 and (U* —e~*)x,, — 0, as m — oo.
Thus €% € 0;,(U).

LEMMA 3.7 ([21, Proposition 2.4]). Let T € L(H) be a k-quasi-*-paranormal

operator, the range of T* not to be dense, and

T= <61 g) on H=TFH)®kerT*".

Then, A is a *-paranormal on T*(H), C* = 0 and o(T) = o(A) U {0}.
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THEOREM 3.8. Let T be a k-quasi-*-paranormal operator and o(T") = {}. Then
T =pif p#0,and TF! = O if p = 0.

PROOQF. Let’s suppose that T' is a k-quasi-x-paranormal operator. We can consider
two cases:

Case I: If i1 # 0, the range of 7% is dense, then it is a *-paranormal operator. Hence
by [30, Corollary 1], T' = p.

Case II: If u = 0, T does not have dense range, by Lemma 3 we can represent 1" as
the upper triangular matrix

(A B ey k
T<O C) on H=TF(H) @ kerT"".

From the assumption, o(7") = {0} and from Lemma 3 we have o(A4) = {0}. Since A is
a x-paranormal operator, A = O and we have

O BC*
TR+ _ (O Ck“) =0.

THEOREM 3.9. If T is a quasinilpotent algebraically k-quasi-#-paranormal opera-
tor, then T is a nilpotent operator.

PROOF. Let T be an algebraically k-quasi-#-paranormal operator. Then, there ex-
ists a nonconstant polynomial h(z) such that h(T) is a k-quasi-*-paranormal operator.
If h(T)*(H) is dense, h(T) is a *-paranormal operator. Therefore T is an algebraically
*-paranormal operator and by [35, Theorem 2.6] T is a nilpotent operator. If h(T)*(H)
is not dense, by Lemma 3 we have

h(T) = (61 g) on H = h(T)*(H) @ kerh(T)**,

where A is a x-paranormal operator on h(T)*(H), C* = O and o(h(T)) = o(A) U {0}.
Since T is a quasinilpotent operator, o(h(T")) = h(o(T)) = h(0). Therefore o(A) = {0},
thus o(h(T)) = {0}. Since h(0) = 0, we have h(T) = aT* [[;_, (T — ;) for some natural
number k£ and a complex number p;, ¢ = 1,2,...,n. By Theorem 3 we have

ak+1Tk(k+1) H(T o Hi)kJrl = 0.
i=1
Since o(T') = {0}, T — p; is an invertible for all ¢ = 1,2, ..., n, we see that
TFED — O,
For T € L(H), the smallest nonnegative integer p such that kerT? = kerT?*! is called
the ascent of T' and is denoted by p(T"). If no such integer exists, we set p(T) = co. We

say that T € L(H) is of finite ascent if p(T' — pu) < oo, for all yp € C. For T € L(H),
the smallest nonnegative integer g, such that T9(H) = Tt (H), is called the descent
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of T and is denoted by ¢(7T'). If no such integer exists, we set ¢(T') = co. We say that
T € L(H) is of finite descent if ¢(T" — ) < oo, for all u € C.

THEOREM 3.10. If T'is an algebraically k-quasi-*-paranormal operator, then T'— i1
has finite ascent for all u € C.

PROOF. Let T be an algebraically k-quasi-x-paranormal operator. Then, there
exists a nonconstant polynomial h(z) such that h(T") is a k-quasi-*-paranormal operator
and we have

n
W(T) = h(p) = a(T = )" T[T = ),
i=1
where a # 0, u; # p and integers k and n. Let  # 0. We consider two cases:
L If z € ker(T — p)*** and h(u) # 0, we have

((T) = )z = (T = p)* [T = p+ p =)o = a [ (w = p)(T = )"z (4)

i=1
Hence

(W(T) - ‘v =a H p— ;)*(T — p)**z = 0.

From [21, Proposition 3.1] we have z € ker(h(T) — h(u))? = ker(h(T) — h(u)). Hence
(R(T) — h(u))z = 0, and from relation (4) we have (T — p)*z =0, so € ker(T — p)*.
IL. If h(p) = 0 we have

n

T e = af T (0= ) (T =) = 57T = ) (5)
and
(T — )" ||
(T — p)* 2, (T — p)¥ x)?
= <>k V(T )2
B]** ((T)* h(T)*z, h(T)* )2
< | ||(T)* W(T )xn Ih(T)" |2
< [ R(T)E 2 | R(T)F | 2| (T |
BIF (T = )R 2| |(T = ) ~* 2| |[(T — w)¥ || = 0.
So,

2 _ .2 2_
(T = ) )| < "I — )™ 2| |(T = )™ ~Fa].
If # € ker(T — p)**+1, therefore ker(T — p)¥* = ker(T — pu)¥*+1,

Let Hol(o(T)) be the space of all analytic functions in an open neighborhood of
o(T). We say that T' € L(H) has the single valued extension property at p € C, if for
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every open neighborhood U of p the only analytic function f : U — C which satisfies
the equation (T' — p) f(p) = 0, is the constant function f = 0. The operator T is said
to have SVEP if T" has SVEP at every u € C.

COROLLARY 3.11. If T € L(H) is an algebraically k-quasi-*-paranormal operator,
then T has SVEP.

PROOF. The proof of the corollary follows directly from Theorem 3 and [1, Theorem
3.39].

The quasinilpotent part Ho (T — ) and analytic core K (T — p) of T — p are defined
by
Ho(T — ) = {w € H: lim |(T - p) = = 0},

and

K(T —p)
= {x € H : there exists a sequence {x,,} C H and § > 0 for which
x=x0, (T — @)Tpy1 = Tp and ||z, || < 6"||z| for all n =1,2,...}.

Clearly Ho(T — ) and K (T — ) are linear subspaces of H, in general Ho(T — 1) and
K(T — u) are non-closed hyperinvariant subspaces of T — u, such that ker(T' — u) C
HQ (T — /,L).

An operator T is said to be a semi-regular if T(H) is a closed subspace and kerT C
NnenT™(H). An operator T' admits a generalized Kato decomposition, if there exists
a pair of T-invariant closed subspaces (M, N) such that H = M @ N, the restriction
T|ar is a quasinilpotent and T'|y is a semi-regular operator. If T|,; is a nilpotent, we
say T is a Kato type.

An operator T is said to be isoloid operator if every isolated point of o(T) is an
eigenvalue of T', while an operator T' is said to be polaroid if every isolated point of
o(T) is a pole of the resolvent of T'. In general, if T is polaroid operator, then 7' is
isoloid operator. However, the converse is not true.

THEOREM 3.12. If T is an algebraically k-quasi-x-paranormal operator, then T
and T are polaroid operator.

PROOF. Let p € isoo(T'). From [2, Theorem 3.76] we have H = Ho(T —p) ® K (T —
w), where Ho(T — ) and K (T — u) are closed subspaces. By [1, Theorem 1.28], (T' —
w)(K(T—p)) = K(T—p) is a closed subspace and ker(T'—p) C Npen(T—p)™ (K (T—pw)),
thus (T — p)| k(17— is a semi—regular operator. We have o (7|3, (r—,)) = {1}, then
(T — 1) 4o (1—p)) = {0}, thus (T" — )4y (7—p) is quasinilpotent operator. Therefore
T — p admits a generalized Kato decomposition. But, T' — p is an algebraically k-
quasi-+-paranormal operator, by Theorem 3 (T — p)|y(7—,) is a nilpotent operator,
thus T'— p admits a Kato type. Since o(T') does not cluster at u, then T and T* have
the SVEP in p. From [1, Theorem 2.45 and Theorem 2.46] we have p(T — p) < oo
and ¢(T — p) < oo. Hence p is a pole of the resolvent of T, so T is polaroid operator,
therefore T is isoloid operator. From [5, Theorem 2.5], T* is polaroid operator.
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An operator T is called a-isoloid if every isolated point of o, (7T) is an eigenvalue of
T. An operator T is called a-polaroid if every isolated point of o,(T) is a pole of the
resolvent of T'. Clearly, if T' is a-polaroid, then T is a—isoloid. However, the converse
is not true

LEMMA 3.13. Suppose T* is an algebraically k-quasi-*-paranormal operator. Then
T is a-polaroid.

PROOF. Let p be an isolated point of o,(T). Since T* has SVEP, by [1, Corollary
2.28] p is an isolated point of o(T'). But, if T* is polaroid, then T is also polaroid.
Therefore, T is a-polaroid operator.

4 Riesz Idempotent for k-Quasi-+-Paranormal Oper-
ator

The Riesz idempotent P, of an operator T with respect to an isolated point p of o(T')
is defined by
1

S —7)"l4
K 271 aDu(Z ) o

where the integral is taken in the positive direction and D, is a closed disk centered at
p with a small enough radius r such as D, No(T) = {u}. Then, it is well known that
P2 = P, TP, = P, o(T|p,n) = {1} and o(T\1—p,yn)) = o(T) \ .

In general, it is well known that the Riesz idempotent P, is not an orthogonal
projection, and a necessary and sufficient condition for P, to be orthogonal is that P,
is self-adjoint, [15]. For a hyponormal operator in [29], Stampfli has shown that the
Riesz idempotent for an isolated point of spectrum of T is self-adjoint and

P,(H) =ker(T — p) = ker(T' — p)*.

In [31], Uchiyama extended this result for the class A with respect p # 0 and he
proved that in general, the Riesz idempotent of the class A4 with respect to 0 is not
self-adjoint and kerT # kerT™. In [22], Jeon and Kim extended this result for p # 0 in
quasi-class A. Also, in [24], Mecheri extended this result for ;1 # 0 in k-quasi-*-class
A operators. In this paper, we extended this result for k-quasi-*-paranormal operator.

THEOREM 4.1. Let T € L(H) be a k-quasi-*-paranormal operator for the positive
integer k, and let y be an isolated point of o(T"), and P, the Riesz idempotent for .
Then, the following assertions hold:

1. Ifp#0, P,(H) =ker(T — p) = ker(T — p)*, and P, is self-adjoint.
2. If u =0, then P,(H) = ker(T**1)

PROOF. 1). Let T be a k-quasi-+-paranormal operator and p # 0 € isoo(T). From
Theorem 3 p is an eigenvalue of T, thus (T'— p)z = 0, for every « # 0 € H. Then z €
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ker(T' — p)"x = P,(H), hence ker(T — p) C P,(H). On the other hand, o(T|p, () =
{u}. From [21, Proposition 2.2], T'|p, (z) is a k-quasi-+-paranormal operator and by
Theorem 3, T'|p, gy = p- If x € P,(H), then Tx = px, hence = € ker(T'—p). Therefore
P,(H) =ker(T — p).

Next, we show that ker(T' — p) = ker(T' — p)*. Since P,(H) = ker(T' — p), we have
ker(T — p) is a reducing subspace of T and T can be written as follows

T=p®Ty on H=Xker(T — pu) ®ker(T — p)*,

where T is a k-quasi-s-paranormal operator and o(T) = {u} U o (T1).

If p € o(Ty) then p is an isolated point of o(T}). Since T} is a k-quasi-*-paranormal
operator, u € o,(T1), thus ker(Th — pu) # {0}. From ker(Ty — ) C ker(T — ), and
ker(Ty — p) C ker(T — p)*, we have:

{0} # ker(Ty — 1) C kex(T — ) Nker(T — p)* = {0},

which is a contradiction. Thus y & o(Ty) and Ty — u is invertible in ker(T — p)*.
Therefore (T — ) (ker(T — p)*) = ker(T — p)*, so ker(T — p)* C (T — p)(H). By
Lemma 3 we have ker(T — pu) C ker(T — p)* = (T — p)(H)*, therefore

(T = p)(H) C ker(T — p)* C (T — p)(H).
Thus (T — p)(H) = ker(T — p)*, which implies that

kex(T — )" = (T — ) (H)* = kex(T — pr).

Finally, we show that P, is a self-adjoint operator. From

Py(H) = ker(T — 1) = kex(T — )",

we have T'|p, gy = p. Thus, ((z —T)*) "' P, = (z — p)~ 1P, and we have

1
PP = — -y P,d
[ o 6D“((Z ) naz
1 T 1
- — )P dy = — —p)~tdzP, = P,.
27i Jop, (2 = p)~'Pudz o aDu(Z p)~tdzP, [

So P:F, = P, = P2, thus P! = P,.

2). Since kerT* C Py(H), we have to prove that Py(H) C kerT**1. It is known
that Py(H) is an invariant subspace of T' and o(T'|p,(x)) = {0}. From Theorem 3 we
have (T'|py ()" = T*| g,y = O. This implies Py(H) C kerT* 1.

5 Generalized Wey!’s Theorem for k-Quasi-+-Paranormal
Operator

We write (T') = dimkerT and S(T) = dim (H/T(H)) . An operator T' € L(H) is called
an upper semi-Fredholm, if it has a closed range and a(T) < oo, while T is called a
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lower semi-Fredholm if 3(T) < oo. However, T is called a semi-Fredholm operator, if
T is either an upper or a lower semi-Fredholm, and T is said to be a Fredholm operator
if it is both an upper and a lower semi-Fredholm. If T' € L(H) is semi-Fredholm, then
the index is defined by

ind(T) = o(T) — B(T).

An operator T € L(H) is said to be an upper semi—Weyl operator if it is an upper
semi-Fredholm and ind(7T) < 0, while T € L(H) is said to be a lower semi—Weyl
operator if it is a lower semi-Fredholm operator and ind(7") > 0. An operator is said
to be a Weyl operator if it is a Fredholm operator of index zero. The Weyl spectrum
and the essential approximate spectrum are defined by

ow(T)={p e C:T — pis not Weyl}

and
ouww(T) ={p € C: T — 11 is not upper semi-Weyl}.

For T' € L(H) and a nonnegative integer n we define T}, to be the restriction of 7" to
T™(H) viewed as a map from 7" (H) into T"(H), (in particular Tjp = T")

DEFINITION 5.1 ([11]). We say that 7' € L(H)

1. is B-Fredholm operator [B-Weyl], if for some integer n > 0 the range space T"(H)
is a closed and T, = T' |pn(gy: T"(H) — T™(H) is a Fredholm operator[ Weyl
operator].

2. is upper(lower) semi-B-Fredholm operator if for some integer n > 0 the range
space T"(H) is a closed and Tj,) = T' |pn(gy: T"(H) — T"(H) is upper (resp.
lower) semi-Fredholm operator.

3. is upper semi-B-Weyl if T' is upper semi-B-Fredholm and ind(T") < 0.

The B-Weyl spectrum is defined by
opw(T) ={p € C:T — uis not B-Weyl}
while the upper semi-B-Weyl spectrum defined by
oupw(T) ={p € C: T — u is not upper semi-B-Weyl}.

For T € L(H) we write IIoo(T) = {u € isoo(T) : 0 < (T — w)} for the set of
all eigenvalues of T' which are isolated in o(T), and mgo(T) = {u € isoo(T) : 0 <
a(T — p) < oo} for the set of all isolated eigenvalues of finite multiplicity in o(T).

We say that T satisfies the generalized Weyl’s theorem [10] if

o(T)\ opw(T) = Moo (T),
and we say that T satisfies Weyl’s theorem [14], if

o(T)\ 0w(T) = moo(T).
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In [33], H. Weyl proved that Weyl’s theorem holds for hermitian operators. Weyl’s
theorem has been extended from hermitian operators to hyponormal operators from
Coburn in [14]. M. Berkani investigated the generalized Weyl’s theorem which extends
Weyl’s theorem, and proved that the generalized Weyl’s theorem holds for normal
operators [10] and hypernormal operators [12].

THEOREM 5.2. If T € L(H) is an algebraically k-quasi-x-paranormal operator,
then f(T) satisfies the generalized Weyl’s theorem for every f € Hol(o(T)).

PROOF. Let p € go(7'). Then 4 is an isolated point in the spectrum o(T"). Using
the spectral projection P, = ﬁ faD“ (T — )~ 'du, where D,, is a closed disk of center
1 which contains no other points of o(7T'), we can represent T as the direct sum

T =T, &7y, where o(T1) = {u} and o(T2) = o(T) \ {1}

From Theorem 3, i is a pole of the resolvent of T', there exists a positive integer p = p(u)
such that T — pu = (T — p)| p(ay=xer(r—pyr and To — pp = (T' = ) |kerP=(1—p)r (H)- SO
(T — p)P(H) is a closed subspace. From Theorem 3, T'— p has finite ascent for all
uw € C, then (T — p)"(H) = (T — pw)P(H) is a closed for all integers n > p. By
[3, Theorem 2.8] T satisfies the generalized Weyl’s theorem. By [34, Theorem 2.1],
flopw(T)) = opw(f(T)) for all f € Hol(c(T)), since T has SVEP. Since T is an
isoloid operator from [16, Lemma 3.3],

F(e(T)\ Too(T)) = o (£(T)) \ Too (f(T)),

and

o(f(T)) \ Hoo(f(T)) = f(o(T) \ Hoo(T)) = f(opw(T)) = opw (f(T)),
which implies that f(7T) satisfies the generalized Weyl’s theorem.

From [9, Theorem 3.9], we know that: generalized Weyl’s theorem —> Weyl’s
theorem.

COROLLARY 5.3. If T is an algebraically k-quasi-*-paranormal then f(T) satisfies
Weyl’s theorem for every f € Hol(o(T)).

THEOREM 5.4. If T* € L(H) is an algebraically k-quasi-+-paranormal operator,
then f(T') satisfies the generalized Weyl’s theorem for every f € Hol(o(T)).

PROOF. Let p € (7). So p is an isolated point of o(T). By Theorem 3, T*
is polaroid operator, hence T is polaroid operator. Thus, p is a pole of the resolvent
of T. There exists a positive integer p = p(u) such that p = p(T — p) = ¢(T — p).
Then (T — p)P(H) = (T — p)®*Y(H) and (T — p)"(H) is closed for every n > p.
By [3, Theorem 2.8] T satisfies the generalized Weyl’s theorem. Since T* has SVEP,
flopw(T)) = opw (f(T)) for all f € Hol(o(T)), from [34, Theorem 2.1]. By Theorem
3, T is polaroid operator, hence T is isoloid operator. From [16, Lemma 3.3],

f(o(T) \ oo (T)) = o (f(T)) \ Too(f(T)),
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and

o(f(T)) \ oo (f(T) = f(o(T) \ Hoo(T)) = f(opw(T)) = ow (f(T)),

which implies that f(T") satisfies the generalized Weyl’s theorem. For T' € L(H) we
write Poo(T) = {p € o(T) : 0 < p(T — ) = q(T — pu) < oo} for the set of all pole of
resolvent of T, and poo(T) = {p € Poo(T) : a(T — ) < oo} for the set of all pole of
finite rank of resolvent of T'.

We say that T satisfies the generalized Browder’s theorem if
o(T)\ opw(T) = Poo(T),
and we say that T satisfies Browder’s theorem, if

o(T) \ ow(T) = poo(T).

COROLLARY 5.5. If T' € L(H) is an algebraically k-quasi-+-paranormal operator,
then f(T') satisfies the generalized Browder’s theorem for every f € Hol(o(T)).

PROOF. Let T be an algebraically k-quasi-+-paranormal operator, then f(T) has
SVEP. From [16, Theorem 2.9], it follows f(T') satisfies the generalized Browder’s
theorem for every f € Hol(o(T)).

From [9, Theorem 3.15], we know that: generalized Browder’s theorem = Brow-
der’s theorem.

Let ITg(T) = {p € iso0,(T) : 0 < a(T — w)} be the set of all eigenvalues of T,
which are isolated in the approximate point spectrum, and 7, (T) = {p € isoo,(T) :
0 < a(T —p) < oo} be the set of all eigenvalues of finite multiplicity, which are isolated
in the approximate point spectrum of 7'

We say that T satisfies the generalized a—Weyl’s theorem [9], if
0a(T) \ oupw (T) = G (T),
and we say that T satisfies the a—Weyl’s theorem [27], if
0a(T) \ ouw(T) = G0 (T).

Let PS(T) = {p € 0a(T) : p(T — p) < 00 and (T — p)PT=W+1(H) is closed }, the
set of all left poles of resolvent of T and pg,(T) = {pu € P$(T) : a(T — p) < oo}, the
set of all left poles of finite rank of resolvent of T.

We say that T satisfies the generalized a—Browders theorem [9], if

oo(T) \ousw(T) = F5(T),
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and we say that T satisfies the a—Browders theorem [27], if

0a(T) \ 0uw(T) = poo(T).

THEOREM 5.6. Suppose T is an algebraically k-quasi-x-paranormal operator.
Then the generalized a—Browder’s theorem holds for f(T') for all f € Hol(o(T)).

PROOF. Since algebraically k-quasi-*-paranormal operator has finite ascent, then
T* has SVEP. From [6, Theorem 3.2], f(T) satisfies the generalized a—Browders the-
orem for all f € Hol(o(T)).

THEOREM 5.7. Suppose T* is an algebraically k-quasi-x-paranormal operator.
Then the generalized a—Weyl’s theorem holds for 7.

PROOF. Since algebraically k-quasi-*-paranormal operator has finite ascent, then
T* has SVEP. Then from Theorem 5, T satisfies the generalized a—Browders theorem.
So, in view of [4], it is sufficient to show that II%,(T)) = Pg(T). Since the inclusion
P§,(T) C I, (T) always holds true, then it is sufficient to prove this g, (T") C P, (T).
Let p be an arbitrary point of II§,(T"), then u is an isolated point on o,(7T). From
Lemma 3, p is a pole of the resolvent of T, there exists a positive integer p = p(u)
such that p(T' — pu) = (T — p) = p < oco. Thus, (T — p)P™(H) = (T — p)P(H)
and (T — p)P(H) is closed, since it coincides with the kernel of the spectral projection
associated with {p}. Therefore, p € P§y(T')

THEOREM 5.8. Suppose T* is an algebraically k-quasi-x-paranormal operator.
Then the generalized a-Weyl’s theorem holds for f(T) for all f € Hol(o(T)).

PROOF. Suppose that T* is an algebraically k-quasi-k-paranormal operator. Then
T* has SVEP, thus f(T) satisfies the generalized a—Browders theorem. From [4], it
is sufficient to show 1%, (f(T)) C P§(f(T)). Suppose p € Uiy (f(T)). Then u is an
isolated point of o, (f(T)) and 0 < «(f(T) — ). Then p € o,(f(T)), and it satisfies
the equation:

) = p=e(T = p)(T = pig) - oo - (T = 1,)9g(T) (6)

where ¢, tiy, fig, ..., pb, € C, and g(T') is invertible.

Since p is an isolated point of f(o4(T)), if p; € 04(T), then p, is an isolated point
of 0,(T) by relation (6). Since T is a—isoloid, 0 < (T — u,;) for each i = 1,2, ...,n.
Then p,; € I1§,(T) for each i = 1,2, ...,n. From Theorem 5, T satisfies the generalized
a—Weyl’s theorem, then T'— \; is upper semi B-Fredholm and ind(7" — p;) < 0 for each
it =1,2,...,n. Therefore f(T) — p is upper semi-B-Fredholm. Since p € isoo,(f (7))
then f(T') has SVEP in pu, then by [1, Theorem 2.89], p(f(T) — p) < oo. Also, since T™*
has SVEP, f(T)* has SVEP in p, then by [1, Theorem 2.90] p(f(T)—p) = q(f(T)—p) =
p < 0o. Thus, (f(T)— p)PTH(H) = (f(T) — p)P(H) and (f(T) — pu)P(H) is closed, since
it coincides with the kernel of the spectral projection associated with {u}. Therefore
e Piy(F(T)).
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From [9, Theorem 3.11], we know that:
generalized a—Weyl’s theorem = a—Weyl’s theorem.
and from [9, Theorem 3.8], we know that:
generalized a—Browder’s theorem = a—Browder’s theorem.

COROLLARY 5.9. If T* is an algebraically k-quasi-*-paranormal then f(7T) satis-
fies a—Weyl’s theorem for every f € Hol(o(T)).

If T is an algebraically k-quasi-*-paranormal, then T not satisfies a—Weyl’s theorem
[1, Example 4.53], consequently T' not satisfies generalized a—Weyl’s theorem, by [9,
Theorem 3.11].

A bounded operator T' € L(H) is said to be hereditarily polaroid, i.e. any restriction
to an invariant closed subspace is polaroid. This class of operators has been first
considered in [18].

COROLLARY 5.10. Algebraically k-quasi-*-paranormal operators are hereditarily
polaroid.

PROOF. Let T € L(H) be an algebraically k-quasi-*-paranormal and M a closed T-
invariant subspace of H. By assumption there exists a nontrivial polynomial A such that
h(T) is a k-quasi-x-paranormal. The restriction of any k-quasi-*-paranormal operator
to an invariant closed subspace is also k-quasi-x-paranormal, so h(T)|ps is a k-quasi-
s-paranormal. Since h(T'|pr) = h(T)|am, T|ar is algebraically k-quasi-x-paranormal,
hence polaroid, from Theorem 3.

Let K(H) be the space of all compact operators on H. Note that /C(H) is a closed
ideal of L(H). On the quotient space L(H)/KC(H) it is defined the product [S][T] =
[ST], where [S] is the coset S+ IC(H). The space L(H)/K(H) with this additional op-
eration is an algebra, which is called the Calkin Algebra. Let 7 : L(H) — L(H)/K(H)
be the natural mapping (Calkin homomorphism). If 7' > O then 7(T) > O. It is well
known the Theorem of Atkinson: T is a Fredholm operator if and only if 7(T) is an
invertible operator in Calkin algebra, thus o(w(T")) = o.(T), where

0e(T) ={p € C:T — pis not Fredholm}.

An operator T is said to be a Riesz operator if T'— u is a Fredholm operator for all
u € C\{0}. Thus, o.(T) = {0}. Compact operators, also quasinilpotent operators, are
Riesz operators.

THEOREM 5.11. If T € L(H) is a k-quasi-+-paranormal, |T"|| = ||T||" for some
n > k, and Riesz operator, then T is a compact operator.

PROOF. Let T be a k-quasi-x-paranormal operator. Then

m(T)** (7(T)**m(T)? — 2An(T)m(T)* + /\2) m(T)"
= 7 (T (T2 - 20TT* + \*) T%) > O,
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which shows that 7(T") is a k-quasi-#-paranormal. Thus 7(T) is normaloid operator,
Theorem 2. Since T is a Riesz operator by West Decomposition Theorem [32], we can
write T = S 4+ @ where S is a compact and @ is a quasinilpotent operator. From
the definition of homomorphism 7 we have 7(T) = 7(Q), thus o(7(T)) = o(7(Q)) =
0.(Q) = {0}, so m(T) is a quasinilpotent operator. Therefore, |7 (T)| = r(x(T)) =0,
thus 7(T) = O. Then T is a compact operator.

COROLLARY 5.12. If T is a k-quasi-*-paranormal operator and if o gy (T') = {0},
then T is normal operator.

PROOF. From Theorem 5, T satisfies the generalized Weyl’s theorem. By assump-
tion, we have o(T") \ {0} = IIpo(T). So every nonzero point of o(T) is an isolated point
of o(T) and an eigenvalue. Hence o(T') \ {0} is a finite set or a countably infinite set
whose only cluster point is 0. Let o(T) \ {0} = {w,,}, with |uq] > |us] > ... > 0. Since
Uy, is isolated point of o(T"), from Theorem 4, ker(T — p,,) is a reducing subspace of T'.
Let P, be the orthogonal projection onto ker(T' — y,,). Then TP, = P, T = p,, P, and
P,P,, =0if n #m. Put P = &, P,, and we have

T = Tlker(1-p) © Tl(1-pPy(r) = Prbty, P © T|(1-py (1),

with o(T|(r—pym)) = o(T)\{p,} = {0}. Since T'|(;_py(a) is also k-quasi-+-paranormal
operator, T'|(;—pya) = O. Hence T' = @y, P, thus T' is normal operator.

6 Generalized Weyl’s Theorem for Perturbations of
Algebraically k-Quasi-*-Paranormal Operator

A bounded operator T € L(H) is said to be algebraic if there exists a non-constant
polynomial h such that A(7) = 0. Trivially, every nilpotent operator is algebraic and
it is well-known that if 7" (H) has finite dimension for some n € N then T is algebraic.

THEOREM 6.1. If T is an algebraically k-quasi-*-paranormal operator, F' is alge-
braic with TF = FT, then T + F satisfies generalized Weyl’s theorem.

PROOF. Since F is algebraic operator, o(F) = {pq, tig, ..., it,, }. Denote by P; the
spectral projections associated with F' and the spectral set {u;}, i = 1,2, ..., n. We write
F; = F|p,(gy and T; = T'|p, (). Clearly, o(F;) = {;} for every i = 1,2,...,n. Let h be
a nontrivial complex polynomial such that h(F) = O. Then O = h(F;) = h(F)|p,(m),
and from

{0} = o (h(F3)) = h(o(F3)) = h(p),

we obtain that h(y;) = 0. Write k(1) = (u—p;)*g(1) with g(s1;) # 0. Then O = h(F;) =
(F; — 11;)*g(F;), where g(F;) is invertible. Therefore (F; — u;)* = O, hence F; — p; is a
nilpotent operator for all ¢ = 1,2,...,n. Let p € Igo(T + F'). Then p is isolated point
in the spectrum o(T + F'). Since o(T + F) = Ul_,0(T; + F;), then p € o(T; + F;),
for some ¢ = 1,2,...,n and hence p — p; € isoo(T; + F; — ;). The restriction T; to
a closed invariant subspace P;(H) is also algebraically k-quasi-*-paranormal operator,
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then T; is polaroid for all ¢ = 1,2,...,n. Since F; — p,; is a nilpotent operator for all
1 =1,2,...,n, by [5, Theorem 2.10] T; + F; — p, is polaroid for all ¢ = 1,2, ...,n. Then
u — p; is a pole of the resolvent of T; + F; — u,;. By [2, Theorem 3.74] there exists a
positive numbers m; such that

Ho(Ti + Fi — py — (0 — 1)) = Ho(Ti + Fi — p) = ker(Ti + F; — p)™,
for i =1,2,...,n. Taking Ho(T; + F; — p) = {0} for pn € o(T; + F;) and we have
Ho(T + F — p) = & Ho(Ti + Fy — p) = @i ker(Ti+ F; — p)™ =ker(T' + F — )™,
where m = max{my,ma, ..., m, }. Since p € isoo (T + F'), we have
H=Hy(T+F-p)oKT+F—p)=ker(T+F—pu)"®&K(T+F —p).
Therefore,
(T+F—p™"(H)=K(T+F—pu) and H=ker(T+F —p)" & (T +F —p)"(H).

From [2, Theorem 3.6] T'4+ F — u has finite ascent. So, (T + F — p)™(H) = (T + F —
W)™ (H) and (T + F — pu)P(H) is closed for every p > m. By [3, Theorem 2.8] T + F
satisfies the generalized Weyl’s theorem.

THEOREM 6.2. If T is an algebraically k-quasi-*-paranormal operator, F' is alge-
braic with TF = FT, then f(T + F) satisfies the generalized Weyl’s theorem for all
f € Hol(le(T+ F)).

PROOF. Let F be an algebraic operator. Then, o(F) = {y, figy -y fb, }, and F; — u;
is nilpotent operator for i = 1,2, ...,n. Since T is an algebraically k-quasi-*-paranormal,
then T; + p,; is also an algebraically k-quasi-#-paranormal operator. Then 7T; + p, has
SVEP for i = 1,2,...,n and from [2, theorem 2.12] T; + u;, + F; — p; = T; + F; has
SVEP. From [2, theorem 2.9] T + F = @7, (T; + F;) has SVEP. By [16, Corollary 2.8],
flopw(T + F)) = opw(f(T + F)) for all f € Hol(o(T + F)). But, from the above
theorem we have that T'+ F is isoloid operator, then from [16, Lemma 3.3],

fo(T+ F)\Too(T + F)) = o(f(T + F)) \ Moo (f(T + F)),

and
o(f(T+ F))\Hoo(f(T'+ F)) = f(o(T + F)\Too(T + F))
= flopw (T + F)) = opw(f(T + F)),
which implies that f(7T + F') satisfies the generalized Weyl’s theorem.

An operator T is said to be finitely-isoloid if every isolated point of o(T) is an
eigenvalue of T' of the finite multiplicity, so: from g € isoo(T") we have p € woo(T).

COROLLARY 6.3. If T is finitely-isoloid and 7" is an algebraically k-quasi-*-
paranormal operator, R is Riesz operator with TR = RT', then T + R satisfies Weyl’s
theorem.

PROOF. From Corollary 5, it follows that T satisfies Weyl’s theorem and by [26,
Theorem 2.7] T + R satisfies Weyl’s theorem.
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