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Abstract

An operator T on H is called a k-quasi-∗-paranormal operator if

‖T ∗T kx‖2 ≤ ‖T k+2x‖‖T kx‖,

for all x ∈ H, where k is a natural number. First, there will be seen some spectral
properties for k-quasi-∗-paranormal operator, examples and inclusions. It will
also be seen if T is algebraically k-quasi-∗-paranormal then T has finite ascent
and T is polaroid operator. Second, it will be shown that the Riesz idempotent
Pµ of every k-quasi-∗-paranormal T with respect to each isolated point µ 6= 0 of
its spectrum σ(T ) is self-adjoint and satisfies Pµ(H) = ker(T −µ) = ker(T −µ)∗,
and if µ = 0, then Pµ(H) = ker(T k+1). Finally, it will be proved the generalized
Weyl’s theorem for f(T ) for every f ∈ Hol(σ(T )), if T is an algebraically k-quasi-
∗-paranormal operator. If T ∗ is an algebraically k-quasi-∗-paranormal then f(T )
satisfies a-Weyl’s theorem for every f ∈ Hol(σ(T )). Moreover, we show that if T
is an algebraically k-quasi-∗-paranormal operator, F is algebraic with TF = FT ,
then f(T +F ) satisfies the generalized Weyl’s theorem for all f ∈ Hol(σ(T +F )).

1 Introduction

Throughout this paper, let H and K be infinite dimensional complex Hilbert spaces
with inner product 〈·, ·〉. We denote by L(H,K) the set of all bounded operators from
H into K. To simplify, we put L(H) := L(H,H). For T ∈ L(H), we denote by kerT
the null space and by T (H) the range of T . The closure of a set M will be denoted
by M and we shall henceforth shorten T − λI to T − λ. We shall denote the set of all
complex numbers by C, the set of all real numbers by R and the set of all non−negative
integers by N. An operator T ∈ L(H), is a positive operator, T ≥ O, if 〈Tx, x〉 ≥ 0 for
all x ∈ H.
Let T ∈ L(H). For an operator T, as usual, by T ∗ we mean the adjoint of T and

|T | = (T ∗T )
1
2 . An operator T is said to be a hyponormal, if |T |2 ≥ |T ∗|2. An operator T
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is said to be a paranormal, if ‖T 2x‖ ≥ ‖Tx‖2 for any unit vector x in H, [19]. Further,
T is said to be a ∗-paranormal, if ‖T 2x‖ ≥ ‖T ∗x‖2 for any unit vector x in H, [7].
T. Furuta, M. Ito and T. Yamazaki [20] introduced a very interesting class of

bounded linear Hilbert space operators: class A defined by |T 2| ≥ |T |2, and they
showed that the class A is a subclass of paranormal operators. I. H. Jeon and I. H.
Kim [23] introduced quasi−class A (i.e., T ∗|T 2|T ≥ T ∗|T |2T ) operators as an extension
of the notion of a class A operators. B. P. Dugall, I. H. Jeon, and I. H. Kim [17],
introduced ∗-class A operator. An operator T is said to be a ∗-class A operator, if

|T 2| ≥ |T ∗|2.

A ∗-class A is a generalization of a hyponormal operator, [17, Theorem 1.2], and ∗-class
A is a subclass of the class of ∗-paranormal operators, [17, Theorem 1.3]. We denote
the set of ∗-class A by A∗. J. L. Shen, F. Zuo and S. C. Yang, in [28] introduced a
quasi-∗-class A operator: An operator T is said to be a quasi-∗-class A operator, if

T ∗|T 2|T ≥ T ∗|T ∗|2T.

We denote the set of quasi-∗-class A by Q(A∗).

2 Definition and Example

DEFINITION 2.1 ([21]). An operator T ∈ L(H) is called a k-quasi-∗-paranormal
operator if

‖T ∗T kx‖2 ≤ ‖T k+2x‖‖T kx‖,

for all x ∈ H, where k is a natural number.

This class of the operators, also is defined in paper [25]. If T is k-quasi-∗-paranormal
operator then T is a (k + 1)-quasi-∗-paranormal operator. The inverse is not true, as
it can be seen below.

EXAMPLE 2.2. Consider the unilateral weighted shift operators as an infinite di-
mensional Hilbert space operator. Recall that given a bounded sequence of a positive
numbers α : α1, α2, α3, α4, ... (called weights) the unilateral weighted shift Wα associ-
ated with weight α is the operator on H = l2 defined by Wαen = αnen+1 for all n ≥ 1,
where {en}∞n=1 is the canonical orthonormal basis on l2.

Wα =



0 0 0 0 . . .
α1 0 0 0 . . .
0 α2 0 0 . . .
0 0 α3 0 . . .
0 0 0 α4 . . .
...

...
...

...
. . .


It is well known that the following assertions are equivalent:
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1. Wα is a ∗-paranormal operator,

2. Wα is a ∗-class A operator,

3. α2n ≤ αn+1αn+2 for all n ≥ 1.

From [21, Proposition 2.1], Wα is a k-quasi-∗-paranormal operator, if and only if,

W ∗kα (W ∗2α W 2
α − 2λWαW

∗
α + λ2)W k

α ≥ O for all λ ∈ R.

Let diag({αn}∞n=1) = diag(α1, α2, α3, ...) denote an infinite diagonal matrix on l2. Then,

W ∗kα
(
W ∗2α W 2

α − 2λWαW
∗
α + λ2

)
W k
α

= diag({α2nα2n+1 · ... · α2n+k−1α2n+kα2n+k+1}∞n=1)
− 2λdiag({α2nα2n+1 · ... · α2n+k−2α2n+k−1α2n+k−1}∞n=1)
+ λ2diag({α2nα2n+1 · ... · α2n+k−1}∞n=1)

Thus, Wα is a k-quasi-∗-paranormal operator, if and only if,

α2nα
2
n+1 · ... · α2n+k−1

(
α2n+kα

2
n+k+1 − 2λα2n+k−1 + λ2

)
≥ 0,

for all λ ∈ R, and n ≥ 1. Equivalently

α2n+k−1 ≤ αn+kαn+k+1 for all n ≥ 1.

If αk+1 ≤ αk+2 ≤ αk+3 ≤ αk+4 ≤ ... and αk > αk+1, then Wα is a (k + 1)-quasi-∗-
paranormal but is not a k-quasi-∗-paranormal operator.

We write r(T ) = limn→∞ ‖Tn‖
1
n for the spectral radius. It is well known that

r(T ) ≤ ‖T‖, for every T ∈ L(H). The operator T is called normaloid operator if
r(T ) = ‖T‖. It is well known that a ∗-paranormal operator is normaloid [7, Theorem
1.1], and a quasi-∗-paranormal is normaloid, but a k-quasi-∗-paranormal operator for
k ≥ 2 is not normaloid operator: if α1 > α2 and α2 = α3 = ... = αk = αk+1 = ..., then

‖T‖ = α1 and r(T ) = lim
n→∞

‖Tn‖ 1n = α2.

THEOREM 2.3. Let T ∈ L(H) be a k-quasi-∗-paranormal operator for a positive
integer k. Then the following assertions hold.

1. ‖T ∗Tn‖2 ≤ ‖Tn+2‖‖Tn‖ for all positive integers n ≥ k,

2. If ‖Tn‖ = ‖T‖n for some positive n ≥ k, then T is normaloid operator.

PROOF. 1). Since k-quasi-∗-paranormal operators are (k + 1)-quasi-∗-paranormal
operators, we only need to prove the case n = k. It is clear by the definition of
k-quasi-∗-paranormal operators.
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2). Let n ≥ k. From 1) and using ‖Tn‖ = ‖T‖n we have

‖T‖4n = ‖Tn‖4 = ‖T ∗nTn‖2 = ‖T ∗(n−1)T ∗Tn‖2

≤ ‖T ∗(n−1)‖2‖T ∗Tn‖2 ≤ ‖T‖2(n−1)‖Tn+2‖‖Tn‖
= ‖T‖2(n−1)‖Tn+2‖‖T‖n.

Therefore, ‖T‖n+2 ≤ ‖Tn+2‖ so ‖T‖n+1 = ‖Tn+1‖. Thus by induction we have ‖T‖n =
‖Tn‖, for all n ∈ N, hence T is normaloid operator.

DEFINITION 2.4. An operator T is called an algebraically k-quasi-∗-paranormal
operator, if there exists a nonconstant complex polynomial h(z) such that h(T ) is a
k-quasi-∗-paranormal.

If T is a k-quasi-∗-paranormal operator, then T is an algebraically k-quasi-∗-paranormal
operator. But the inverse is not true, as shown by the example below.

EXAMPLE 2.5. Let

T =

(
I O
I I

)
∈ L(l2 ⊕ l2).

Since T ∗ =

(
I I
O I

)
,

T ∗2
(
T ∗2T 2 − 2λTT ∗ + λ2

)
T 2 =

(
(17− 26λ+ 5λ2)I (4− 10λ+ 2λ2)I

(4− 10λ+ 2λ2)I (1− 4λ+ λ2)I

)
.

For λ = 1, (17− 26λ+ 5λ2)I is not a positive operator, thus

T ∗2
(
T ∗2T 2 − 2λTT ∗ + λ2

)
T 2 6≥ O

for all λ ∈ R. Therefore T is not a 2-quasi-∗-paranormal operator.

On the other hand, consider the non constant complex polynomial h(z) = (z− 1)2.
Then h(T ) = O, and hence T is an algebraically 2-quasi-∗-paranormal operator.

LEMMA 2.6 ([13, Holder-McCarthy inequality]). Let T be a positive operator.
Then, the following inequalities hold for all x ∈ H:

1. 〈T rx, x〉 ≤ 〈Tx, x〉r‖x‖2(1−r) for 0 < r < 1,

2. 〈T rx, x〉 ≥ 〈Tx, x〉r‖x‖2(1−r) for r ≥ 1.

LEMMA 2.7. If T is a k-quasi-∗-class A operator, then T is a k-quasi-∗-paranormal
operator.
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PROOF. Let T be a k-quasi-∗-class A operator. From Holder-McCarthy inequality
we have ∥∥T ∗T kx∥∥2 =

〈
T ∗k|T ∗|2T kx, x

〉
≤
〈
|T 2|T kx, T kx

〉
≤

〈
|T 2|2T kx, T kx

〉 1
2
∥∥T kx∥∥ = ‖T k+2x‖‖T kx‖.

So T is a k-quasi-∗-paranormal operator.

LEMMA 2.8. Let S = ⊕∞n=1Hn, where Hn
∼= R2. For given positive operators A,B

on R2 and for any fixed n ∈ N, the operator T = TA,B on S is defined as follows:

T (x1, x2, ...) = (0, Ax1, Bx2, Bx3, Bx4, ...),

and the adjoint operator of T is

T ∗(x1, x2, ...) = (Ax2, Bx3, Bx4, Bx5, ...).

Then

1. The operator TA,B is a quasi-∗-class A operator, if and only if,

AB2A ≥ A4,

2. The operator TA,B is a quasi-∗-paranormal operator, if and only if,

A(B4 − 2λA2 + λ2)A ≥ O, for all λ ∈ R.

EXAMPLE 2.9. A non quasi-∗-class A operator, quasi-∗-paranormal operator.

Take A and B as

A =

(
1 1
1 2

) 1
2

and B =

(
1 2
2 8

) 1
4

.

Then

A(B2 −A2)A =

(
−0.3359... −0.2265...
−0.2265... 0.8244...

)
6≥ O,

hence TA,B is not a quasi-∗-class A operator. But,

A(B4 − 2λA2 + λ2)A =

(
1 1
1 2

) 1
2
(

(1− λ)2 2(1− λ)

2(1− λ) λ2 − 4λ+ 8

)(
1 1
1 2

) 1
2

≥ O,

so, TA,B is a quasi-∗-paranormal operator.
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3 Spectral Properties

We write σ(T ), σp(T ) and σa(T ) for the spectrum, point spectrum and approximate
point spectrum, respectively. Sets of isolated points and accumulation points of σ(T )
are denoted by isoσ(T ) and accσ(T ), respectively.
A complex number µ is said to be in the point spectrum σp(T ) of T if there is a

nonzero x ∈ H such that (T − µ)x = 0. If in addition, (T − µ)∗x = 0, then µ is said
to be in the joint point spectrum σjp(T ) of T . Clearly σjp(T ) ⊆ σp(T ). In general
σjp(T ) 6= σp(T ).

LEMMA 3.1 ([21, Proposition 3.1]). If T is a k-quasi-∗-paranormal operator and
(T − µ)x = 0, then (T − µ)∗x = 0 for all µ 6= 0.

A complex number µ is said to be in the approximate point spectrum σa(T ) of
T if there is a sequence {xm}∞m=1 ⊂ H of unit vectors satisfying (T − µ)xm → 0, as
m→∞. If in additions (T − µ)∗xm → 0, as m→∞, then µ is said to be in the joint
approximate point spectrum σja(T ) of operator T . Clearly σja(T ) ⊆ σa(T ). In general
σja(T ) 6= σa(T ).

THEOREM 3.2. Let T be a k-quasi-∗-paranormal operator, and (T − µ)xm → 0,
as m→∞ for µ 6= 0. Then (T − µ)∗xm → 0, as m→∞.

PROOF. Let T be a k-quasi-∗-paranormal operator and (T−µ)xm → 0, asm→∞.
We may assume that ‖xm‖ = 1. By the assumption and using

T k = (T − µ+ µ)k =

k∑
i=1

(
k
i

)
µk−i(T − µ)i + µk, for k ∈ N,

we have (T k − µk)xm → 0, as m→∞. By

|‖T kxm‖ − |µ|k| ≤ ‖(T k − µk)xm‖

hence
‖T kxm‖ → |µ|k, as m→∞. (1)

Moreover ∣∣‖T ∗µkxm‖ − ‖T ∗(T k − µk)xm‖
∣∣ ≤ ‖T ∗T kxm‖. (2)

Since T is a k-quasi-∗-paranormal operator, we have

‖T ∗T kxm‖ ≤ ‖T 2+kxm‖
1
2 ‖T kxm‖

1
2 . (3)

Then it follows from (1), (2) and (3) that

lim sup
m→∞

‖T ∗xm‖ ≤ |µ|.
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Since

‖(T − µ)∗xm‖2

= ‖T ∗xm‖2 − 2Re〈T ∗xm, µxm〉+ |µ|2‖xm‖2

= ‖T ∗xm‖2 − 2Re〈xm, µTxm〉+ |µ|2‖xm‖2,

we see that
lim sup
m→∞

‖(T − µ)∗xm‖2 ≤ |µ|2 − |µ|2 = 0.

This implies (T − µ)∗xm → 0, as m→∞.

COROLLARY 3.3. If T is a k-quasi-∗-paranormal operator, then σja(T ) \ {0} =
σa(T ) \ {0}.

LEMMA 3.4 ([5, Corollary 2]). Let T = U |T | be the polar decomposition of T ,
µ = |µ|eiθ 6= 0 and {xm} a sequence of vectors. Then the following assertions are
equivalent:

1. (T − µ)xm → 0 and (T ∗ − µ)xm → 0, as m→∞,

2. (|T | − |µ|)xm → 0 and (U − eiθ)xm → 0, as m→∞,

3. (|T ∗| − |µ|)xm → 0 and (U∗ − e−iθ)xm → 0, as m→∞.

COROLLARY 3.5. If T is a k-quasi-∗-paranormal operator and µ ∈ σa(T ) \ {0},
then |µ| ∈ σa(|T |) ∩ σa(|T ∗|).

PROOF. If µ ∈ σa(T ) \ {0}, then by Theorem 3, there exists a sequence of unit
vectors {xm} such that (T − µ)xm → 0 and (T − µ)∗xm → 0, as m→∞. Hence, from
Lemma 3 we have |µ| ∈ σa(|T |) ∩ σa(|T ∗|).

COROLLARY 3.6. Let T be a k-quasi-∗-paranormal operator and T = U |T | is the
polar decomposition of T . If µ = |µ|eiθ 6= 0 and µ ∈ σa(T ), then eiθ ∈ σja(U).

PROOF. Let µ ∈ σa(T ). From Corollary 3, µ ∈ σja(T ). Then there exists a
sequence of unit vectors {xm} such that (T − µ)xm → 0 and (T − µ)∗xm → 0, as
m→∞. From Lemma 3 we have (U−eiθ)xm → 0 and (U∗−e−iθ)xm → 0, as m→∞.
Thus eiθ ∈ σja(U).

LEMMA 3.7 ([21, Proposition 2.4]). Let T ∈ L(H) be a k-quasi-∗-paranormal
operator, the range of T k not to be dense, and

T =

(
A B
0 C

)
on H = T k(H)⊕ kerT ∗k.

Then, A is a ∗-paranormal on T k(H), Ck = 0 and σ(T ) = σ(A) ∪ {0}.
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THEOREM 3.8. Let T be a k-quasi-∗-paranormal operator and σ(T ) = {µ}. Then
T = µ if µ 6= 0, and T k+1 = O if µ = 0.

PROOF. Let’s suppose that T is a k-quasi-∗-paranormal operator. We can consider
two cases:
Case I: If µ 6= 0, the range of T k is dense, then it is a ∗-paranormal operator. Hence

by [30, Corollary 1], T = µ.
Case II: If µ = 0, T does not have dense range, by Lemma 3 we can represent T as

the upper triangular matrix

T =

(
A B
O C

)
on H = T k(H)⊕ kerT ∗k.

From the assumption, σ(T ) = {0} and from Lemma 3 we have σ(A) = {0}. Since A is
a ∗-paranormal operator, A = O and we have

T k+1 =

(
O BCk

O Ck+1

)
= O.

THEOREM 3.9. If T is a quasinilpotent algebraically k-quasi-∗-paranormal opera-
tor, then T is a nilpotent operator.

PROOF. Let T be an algebraically k-quasi-∗-paranormal operator. Then, there ex-
ists a nonconstant polynomial h(z) such that h(T ) is a k-quasi-∗-paranormal operator.
If h(T )k(H) is dense, h(T ) is a ∗-paranormal operator. Therefore T is an algebraically
∗-paranormal operator and by [35, Theorem 2.6] T is a nilpotent operator. If h(T )k(H)
is not dense, by Lemma 3 we have

h(T ) =

(
A B
0 C

)
on H = h(T )k(H)⊕ kerh(T )∗k,

where A is a ∗-paranormal operator on h(T )k(H), Ck = O and σ(h(T )) = σ(A)∪ {0}.
Since T is a quasinilpotent operator, σ(h(T )) = h(σ(T )) = h(0). Therefore σ(A) = {0},
thus σ(h(T )) = {0}. Since h(0) = 0, we have h(T ) = aT k

∏n
i=1(T−µi) for some natural

number k and a complex number µi, i = 1, 2, ..., n. By Theorem 3 we have

ak+1T k(k+1)
n∏
i=1

(T − µi)k+1 = O.

Since σ(T ) = {0}, T − µi is an invertible for all i = 1, 2, ..., n, we see that

T k(k+1) = O.

For T ∈ L(H), the smallest nonnegative integer p such that kerT p = kerT p+1 is called
the ascent of T and is denoted by p(T ). If no such integer exists, we set p(T ) =∞.We
say that T ∈ L(H) is of finite ascent if p(T − µ) < ∞, for all µ ∈ C. For T ∈ L(H),
the smallest nonnegative integer q, such that T q(H) = T q+1(H), is called the descent
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of T and is denoted by q(T ). If no such integer exists, we set q(T ) =∞. We say that
T ∈ L(H) is of finite descent if q(T − µ) <∞, for all µ ∈ C.

THEOREM 3.10. If T is an algebraically k-quasi-∗-paranormal operator, then T−µ
has finite ascent for all µ ∈ C.

PROOF. Let T be an algebraically k-quasi-∗-paranormal operator. Then, there
exists a nonconstant polynomial h(z) such that h(T ) is a k-quasi-∗-paranormal operator
and we have

h(T )− h(µ) = a(T − µ)k
n∏
i=1

(T − µi),

where a 6= 0, µi 6= µ and integers k and n. Let x 6= 0. We consider two cases:
I. If x ∈ ker(T − µ)k+1 and h(µ) 6= 0, we have

(h(T )− h(µ))x = a(T − µ)k
n∏
i=1

(T − µ+ µ− µi)x = a

n∏
i=1

(µ− µi)(T − µ)kx. (4)

Hence

(h(T )− h(µ))2x = a2
n∏
i=1

(µ− µi)2(T − µ)2kx = 0.

From [21, Proposition 3.1] we have x ∈ ker(h(T ) − h(µ))2 = ker(h(T ) − h(µ)). Hence
(h(T )− h(µ))x = 0, and from relation (4) we have (T − µ)kx = 0, so x ∈ ker(T − µ)k.
II. If h(µ) = 0 we have

h(T )kx = ak
n∏
i=1

(µ− µi)k(T − µ)k
2

x = b−k(T − µ)k
2

x. (5)

and

‖(T − µ)k
2

x‖4

= 〈(T − µ)k
2

x, (T − µ)k
2

x〉2

= 〈bkh(T )kx, bkh(T )kx〉2

= |b|4k〈h(T )∗h(T )kx, h(T )k−1x〉2

≤ |b|4k‖h(T )∗h(T )kx‖2‖h(T )k−1x‖2

≤ |b|4k‖h(T )k+2x‖‖h(T )k−1x‖2‖h(T )kx‖
= |b|k−1‖(T − µ)k

2+2kx‖‖(T − µ)k
2−kx‖‖(T − µ)k

2

x‖ = 0.

So,
‖(T − µ)k

2

x‖3 ≤ |b|k−1‖(T − µ)k
2+2kx‖‖(T − µ)k

2−kx‖.

If x ∈ ker(T − µ)k
2+1, therefore ker(T − µ)k

2

= ker(T − µ)k
2+1.

Let Hol(σ(T )) be the space of all analytic functions in an open neighborhood of
σ(T ). We say that T ∈ L(H) has the single valued extension property at µ ∈ C, if for
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every open neighborhood U of µ the only analytic function f : U → C which satisfies
the equation (T − µ)f(µ) = 0, is the constant function f ≡ 0. The operator T is said
to have SVEP if T has SVEP at every µ ∈ C.

COROLLARY 3.11. If T ∈ L(H) is an algebraically k-quasi-∗-paranormal operator,
then T has SVEP.

PROOF. The proof of the corollary follows directly from Theorem 3 and [1, Theorem
3.39].

The quasinilpotent part H0(T −µ) and analytic core K(T −µ) of T −µ are defined
by

H0(T − µ) = {x ∈ H : lim
n→∞

‖(T − µ)nx‖ 1n = 0},

and

K(T − µ)

= {x ∈ H : there exists a sequence {xn} ⊂ H and δ > 0 for which

x = x0, (T − µ)xn+1 = xn and ‖xn‖ ≤ δn‖x‖ for all n = 1, 2, ...}.

Clearly H0(T − µ) and K(T − µ) are linear subspaces of H, in general H0(T − µ) and
K(T − µ) are non-closed hyperinvariant subspaces of T − µ, such that ker(T − µ) ⊆
H0(T − µ).
An operator T is said to be a semi-regular if T (H) is a closed subspace and kerT ⊆

∩n∈NTn(H). An operator T admits a generalized Kato decomposition, if there exists
a pair of T -invariant closed subspaces (M,N) such that H = M ⊕ N , the restriction
T |M is a quasinilpotent and T |N is a semi-regular operator. If T |M is a nilpotent, we
say T is a Kato type.
An operator T is said to be isoloid operator if every isolated point of σ(T ) is an

eigenvalue of T , while an operator T is said to be polaroid if every isolated point of
σ(T ) is a pole of the resolvent of T . In general, if T is polaroid operator, then T is
isoloid operator. However, the converse is not true.

THEOREM 3.12. If T is an algebraically k-quasi-∗-paranormal operator, then T
and T ∗ are polaroid operator.

PROOF. Let µ ∈ isoσ(T ). From [2, Theorem 3.76] we have H = H0(T −µ)⊕K(T −
µ), where H0(T − µ) and K(T − µ) are closed subspaces. By [1, Theorem 1.28], (T −
µ)(K(T−µ)) = K(T−µ) is a closed subspace and ker(T−µ) ⊆ ∩n∈N(T−µ)n(K(T−µ)),
thus (T − µ)|K(T−µ) is a semi−regular operator. We have σ(T |H0(T−µ)) = {µ}, then
σ((T − µ)|H0(T−µ)) = {0}, thus (T − µ)|H0(T−µ) is quasinilpotent operator. Therefore
T − µ admits a generalized Kato decomposition. But, T − µ is an algebraically k-
quasi-∗-paranormal operator, by Theorem 3 (T − µ)|H0(T−µ) is a nilpotent operator,
thus T − µ admits a Kato type. Since σ(T ) does not cluster at µ, then T and T ∗ have
the SVEP in µ. From [1, Theorem 2.45 and Theorem 2.46] we have p(T − µ) < ∞
and q(T − µ) <∞. Hence µ is a pole of the resolvent of T, so T is polaroid operator,
therefore T is isoloid operator. From [5, Theorem 2.5], T ∗ is polaroid operator.
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An operator T is called a-isoloid if every isolated point of σa(T ) is an eigenvalue of
T . An operator T is called a-polaroid if every isolated point of σa(T ) is a pole of the
resolvent of T . Clearly, if T is a-polaroid, then T is a−isoloid. However, the converse
is not true

LEMMA 3.13. Suppose T ∗ is an algebraically k-quasi-∗-paranormal operator. Then
T is a-polaroid.

PROOF. Let µ be an isolated point of σa(T ). Since T ∗ has SVEP, by [1, Corollary
2.28] µ is an isolated point of σ(T ). But, if T ∗ is polaroid, then T is also polaroid.
Therefore, T is a-polaroid operator.

4 Riesz Idempotent for k-Quasi-∗-Paranormal Oper-
ator

The Riesz idempotent Pµ of an operator T with respect to an isolated point µ of σ(T )
is defined by

Pµ =
1

2πi

∫
∂Dµ

(z − T )−1dz,

where the integral is taken in the positive direction and Dµ is a closed disk centered at
µ with a small enough radius r such as Dµ ∩ σ(T ) = {µ}. Then, it is well known that
P 2µ = Pµ, TPµ = PµT , σ(T |Pµ(H)) = {µ} and σ(T |(I−Pµ)(H)) = σ(T ) \ {µ}.
In general, it is well known that the Riesz idempotent Pµ is not an orthogonal

projection, and a necessary and suffi cient condition for Pµ to be orthogonal is that Pµ
is self-adjoint, [15]. For a hyponormal operator in [29], Stampfli has shown that the
Riesz idempotent for an isolated point of spectrum of T is self-adjoint and

Pµ(H) = ker(T − µ) = ker(T − µ)∗.

In [31], Uchiyama extended this result for the class A with respect µ 6= 0 and he
proved that in general, the Riesz idempotent of the class A with respect to 0 is not
self-adjoint and kerT 6= kerT ∗. In [22], Jeon and Kim extended this result for µ 6= 0 in
quasi-class A. Also, in [24], Mecheri extended this result for µ 6= 0 in k-quasi-∗-class
A operators. In this paper, we extended this result for k-quasi-∗-paranormal operator.

THEOREM 4.1. Let T ∈ L(H) be a k-quasi-∗-paranormal operator for the positive
integer k, and let µ be an isolated point of σ(T ), and Pµ the Riesz idempotent for µ.
Then, the following assertions hold:

1. If µ 6= 0, Pµ(H) = ker(T − µ) = ker(T − µ)∗, and Pµ is self-adjoint.

2. If µ = 0, then Pµ(H) = ker(T k+1)

PROOF. 1). Let T be a k-quasi-∗-paranormal operator and µ 6= 0 ∈ isoσ(T ). From
Theorem 3 µ is an eigenvalue of T, thus (T − µ)x = 0, for every x 6= 0 ∈ H. Then x ∈
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ker(T − µ)mx = Pµ(H), hence ker(T − µ) ⊆ Pµ(H). On the other hand, σ(T |Pµ(H)) =
{µ}. From [21, Proposition 2.2], T |Pµ(H) is a k-quasi-∗-paranormal operator and by
Theorem 3, T |Pµ(H) = µ. If x ∈ Pµ(H), then Tx = µx, hence x ∈ ker(T−µ). Therefore
Pµ(H) = ker(T − µ).
Next, we show that ker(T − µ) = ker(T − µ)∗. Since Pµ(H) = ker(T − µ), we have

ker(T − µ) is a reducing subspace of T and T can be written as follows

T = µ⊕ T1 on H = ker(T − µ)⊕ ker(T − µ)⊥,

where T1 is a k-quasi-∗-paranormal operator and σ(T ) = {µ} ∪ σ(T1).
If µ ∈ σ(T1) then µ is an isolated point of σ(T1). Since T1 is a k-quasi-∗-paranormal

operator, µ ∈ σp(T1), thus ker(T1 − µ) 6= {0}. From ker(T1 − µ) ⊆ ker(T − µ), and
ker(T1 − µ) ⊆ ker(T − µ)⊥, we have:

{0} 6= ker(T1 − µ) ⊆ ker(T − µ) ∩ ker(T − µ)⊥ = {0},

which is a contradiction. Thus µ 6∈ σ(T1) and T1 − µ is invertible in ker(T − µ)⊥.
Therefore (T − µ)(ker(T − µ)⊥) = ker(T − µ)⊥, so ker(T − µ)⊥ ⊆ (T − µ)(H). By
Lemma 3 we have ker(T − µ) ⊆ ker(T − µ)∗ = (T − µ)(H)⊥, therefore

(T − µ)(H) ⊆ ker(T − µ)⊥ ⊆ (T − µ)(H).

Thus (T − µ)(H) = ker(T − µ)⊥, which implies that

ker(T − µ)∗ = (T − µ)(H)⊥ = ker(T − µ).

Finally, we show that Pµ is a self-adjoint operator. From

Pµ(H) = ker(T − µ) = ker(T − µ)∗,

we have T |Pµ(H) = µ. Thus, ((z − T )∗)−1Pµ = (z − µ)−1Pµ and we have

P ∗µPµ = − 1

2πi

∫
∂Dµ

((z − T )∗)−1Pµdz

= − 1

2πi

∫
∂Dµ

(z − µ)−1Pµdz =
1

2πi

∫
∂Dµ

(z − µ)−1dzPµ = Pµ.

So P ∗µPµ = Pµ = P 2µ , thus P
∗
µ = Pµ.

2). Since kerT k ⊆ P0(H), we have to prove that P0(H) ⊆ kerT k+1. It is known
that P0(H) is an invariant subspace of T and σ(T |P0(H)) = {0}. From Theorem 3 we
have (T |P0(H))k+1 = T k+1|P0(H) = O. This implies P0(H) ⊆ kerT k+1.

5 GeneralizedWeyl’s Theorem for k-Quasi-∗-Paranormal
Operator

We write α(T ) = dimkerT and β(T ) = dim (H/T (H)) . An operator T ∈ L(H) is called
an upper semi-Fredholm, if it has a closed range and α(T ) < ∞, while T is called a
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lower semi-Fredholm if β(T ) < ∞. However, T is called a semi-Fredholm operator, if
T is either an upper or a lower semi-Fredholm, and T is said to be a Fredholm operator
if it is both an upper and a lower semi-Fredholm. If T ∈ L(H) is semi-Fredholm, then
the index is defined by

ind(T ) = α(T )− β(T ).

An operator T ∈ L(H) is said to be an upper semi−Weyl operator if it is an upper
semi-Fredholm and ind(T ) ≤ 0, while T ∈ L(H) is said to be a lower semi−Weyl
operator if it is a lower semi-Fredholm operator and ind(T ) ≥ 0. An operator is said
to be a Weyl operator if it is a Fredholm operator of index zero. The Weyl spectrum
and the essential approximate spectrum are defined by

σw(T ) = {µ ∈ C : T − µ is not Weyl}

and
σuw(T ) = {µ ∈ C : T − µ is not upper semi-Weyl}.

For T ∈ L(H) and a nonnegative integer n we define T[n] to be the restriction of T to
Tn(H) viewed as a map from Tn(H) into Tn(H), (in particular T[0] = T.)

DEFINITION 5.1 ([11]). We say that T ∈ L(H)

1. is B-Fredholm operator [B-Weyl], if for some integer n ≥ 0 the range space Tn(H)
is a closed and T[n] = T |Tn(H): Tn(H) → Tn(H) is a Fredholm operator[ Weyl
operator].

2. is upper(lower) semi-B-Fredholm operator if for some integer n ≥ 0 the range
space Tn(H) is a closed and T[n] = T |Tn(H): Tn(H) → Tn(H) is upper (resp.
lower) semi-Fredholm operator.

3. is upper semi-B-Weyl if T is upper semi-B-Fredholm and ind(T ) ≤ 0.

The B-Weyl spectrum is defined by

σBW (T ) = {µ ∈ C : T − µ is not B-Weyl}

while the upper semi-B-Weyl spectrum defined by

σUBW (T ) = {µ ∈ C : T − µ is not upper semi-B-Weyl}.

For T ∈ L(H) we write Π00(T ) = {µ ∈ isoσ(T ) : 0 < α(T − µ)} for the set of
all eigenvalues of T which are isolated in σ(T ), and π00(T ) = {µ ∈ isoσ(T ) : 0 <
α(T − µ) <∞} for the set of all isolated eigenvalues of finite multiplicity in σ(T ).
We say that T satisfies the generalized Weyl’s theorem [10] if

σ(T ) \ σBW (T ) = Π00(T ),

and we say that T satisfies Weyl’s theorem [14], if

σ(T ) \ σw(T ) = π00(T ).
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In [33], H. Weyl proved that Weyl’s theorem holds for hermitian operators. Weyl’s
theorem has been extended from hermitian operators to hyponormal operators from
Coburn in [14]. M. Berkani investigated the generalized Weyl’s theorem which extends
Weyl’s theorem, and proved that the generalized Weyl’s theorem holds for normal
operators [10] and hypernormal operators [12].

THEOREM 5.2. If T ∈ L(H) is an algebraically k-quasi-∗-paranormal operator,
then f(T ) satisfies the generalized Weyl’s theorem for every f ∈ Hol(σ(T )).

PROOF. Let µ ∈ Π00(T ). Then µ is an isolated point in the spectrum σ(T ). Using
the spectral projection Pµ = 1

2πi

∫
∂Dµ

(T − µ)−1dµ, where Dµ is a closed disk of center
µ which contains no other points of σ(T ), we can represent T as the direct sum

T = T1 ⊕ T2, where σ(T1) = {µ} and σ(T2) = σ(T ) \ {µ}.

From Theorem 3, µ is a pole of the resolvent of T , there exists a positive integer p = p(µ)
such that T1 − µ = (T − µ)|P (H)=ker(T−µ)p and T2 − µ = (T − µ)|kerP=(T−µ)p(H). So
(T − µ)p(H) is a closed subspace. From Theorem 3, T − µ has finite ascent for all
µ ∈ C, then (T − µ)n(H) = (T − µ)p(H) is a closed for all integers n ≥ p. By
[3, Theorem 2.8] T satisfies the generalized Weyl’s theorem. By [34, Theorem 2.1],
f(σBW (T )) = σBW (f(T )) for all f ∈ Hol(σ(T )), since T has SVEP. Since T is an
isoloid operator from [16, Lemma 3.3],

f(σ(T ) \Π00(T )) = σ(f(T )) \Π00(f(T )),

and

σ(f(T )) \Π00(f(T )) = f(σ(T ) \Π00(T )) = f(σBW (T )) = σBW (f(T )),

which implies that f(T ) satisfies the generalized Weyl’s theorem.

From [9, Theorem 3.9], we know that: generalized Weyl’s theorem =⇒ Weyl’s
theorem.

COROLLARY 5.3. If T is an algebraically k-quasi-∗-paranormal then f(T ) satisfies
Weyl’s theorem for every f ∈ Hol(σ(T )).

THEOREM 5.4. If T ∗ ∈ L(H) is an algebraically k-quasi-∗-paranormal operator,
then f(T ) satisfies the generalized Weyl’s theorem for every f ∈ Hol(σ(T )).

PROOF. Let µ ∈ Π00(T ). So µ is an isolated point of σ(T ). By Theorem 3, T ∗

is polaroid operator, hence T is polaroid operator. Thus, µ is a pole of the resolvent
of T . There exists a positive integer p = p(µ) such that p = p(T − µ) = q(T − µ).
Then (T − µ)p(H) = (T − µ)(p+1)(H) and (T − µ)n(H) is closed for every n ≥ p.
By [3, Theorem 2.8] T satisfies the generalized Weyl’s theorem. Since T ∗ has SVEP,
f(σBW (T )) = σBW (f(T )) for all f ∈ Hol(σ(T )), from [34, Theorem 2.1]. By Theorem
3, T is polaroid operator, hence T is isoloid operator. From [16, Lemma 3.3],

f(σ(T ) \Π00(T )) = σ(f(T )) \Π00(f(T )),
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and

σ(f(T )) \Π00(f(T )) = f(σ(T ) \Π00(T )) = f(σBW (T )) = σBW (f(T )),

which implies that f(T ) satisfies the generalized Weyl’s theorem. For T ∈ L(H) we
write P00(T ) = {µ ∈ σ(T ) : 0 < p(T − µ) = q(T − µ) < ∞} for the set of all pole of
resolvent of T, and p00(T ) = {µ ∈ P00(T ) : α(T − µ) < ∞} for the set of all pole of
finite rank of resolvent of T .

We say that T satisfies the generalized Browder’s theorem if

σ(T ) \ σBW (T ) = P00(T ),

and we say that T satisfies Browder’s theorem, if

σ(T ) \ σw(T ) = p00(T ).

COROLLARY 5.5. If T ∈ L(H) is an algebraically k-quasi-∗-paranormal operator,
then f(T ) satisfies the generalized Browder’s theorem for every f ∈ Hol(σ(T )).

PROOF. Let T be an algebraically k-quasi-∗-paranormal operator, then f(T ) has
SVEP. From [16, Theorem 2.9], it follows f(T ) satisfies the generalized Browder’s
theorem for every f ∈ Hol(σ(T )).

From [9, Theorem 3.15], we know that: generalized Browder’s theorem =⇒ Brow-
der’s theorem.

Let Πa
00(T ) = {µ ∈ isoσa(T ) : 0 < α(T − µ)} be the set of all eigenvalues of T ,

which are isolated in the approximate point spectrum, and πa00(T ) = {µ ∈ isoσa(T ) :
0 < α(T −µ) <∞} be the set of all eigenvalues of finite multiplicity, which are isolated
in the approximate point spectrum of T .

We say that T satisfies the generalized a−Weyl’s theorem [9], if

σa(T ) \ σUBW (T ) = Πa
00(T ),

and we say that T satisfies the a−Weyl’s theorem [27], if

σa(T ) \ σuw(T ) = πa00(T ).

Let P a00(T ) = {µ ∈ σa(T ) : p(T − µ) <∞ and (T − µ)p(T−µ)+1(H) is closed }, the
set of all left poles of resolvent of T and pa00(T ) = {µ ∈ P a00(T ) : α(T − µ) < ∞}, the
set of all left poles of finite rank of resolvent of T.
We say that T satisfies the generalized a−Browders theorem [9], if

σa(T ) \ σUBW (T ) = P a00(T ),
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and we say that T satisfies the a−Browders theorem [27], if

σa(T ) \ σuw(T ) = pa00(T ).

THEOREM 5.6. Suppose T ∗ is an algebraically k-quasi-∗-paranormal operator.
Then the generalized a−Browder’s theorem holds for f(T ) for all f ∈ Hol(σ(T )).

PROOF. Since algebraically k-quasi-∗-paranormal operator has finite ascent, then
T ∗ has SVEP. From [6, Theorem 3.2], f(T ) satisfies the generalized a−Browders the-
orem for all f ∈ Hol(σ(T )).

THEOREM 5.7. Suppose T ∗ is an algebraically k-quasi-∗-paranormal operator.
Then the generalized a−Weyl’s theorem holds for T.

PROOF. Since algebraically k-quasi-∗-paranormal operator has finite ascent, then
T ∗ has SVEP. Then from Theorem 5, T satisfies the generalized a−Browders theorem.
So, in view of [4], it is suffi cient to show that Πa

00(T ) = P a00(T ). Since the inclusion
P a00(T ) ⊆ Πa

00(T ) always holds true, then it is suffi cient to prove this Πa
00(T ) ⊆ P a00(T ).

Let µ be an arbitrary point of Πa
00(T ), then µ is an isolated point on σa(T ). From

Lemma 3, µ is a pole of the resolvent of T , there exists a positive integer p = p(µ)
such that p(T − µ) = q(T − µ) = p < ∞. Thus, (T − µ)p+1(H) = (T − µ)p(H)
and (T − µ)p(H) is closed, since it coincides with the kernel of the spectral projection
associated with {µ}. Therefore, µ ∈ P a00(T )

THEOREM 5.8. Suppose T ∗ is an algebraically k-quasi-∗-paranormal operator.
Then the generalized a-Weyl’s theorem holds for f(T ) for all f ∈ Hol(σ(T )).

PROOF. Suppose that T ∗ is an algebraically k-quasi-∗-paranormal operator. Then
T ∗ has SVEP, thus f(T ) satisfies the generalized a−Browders theorem. From [4], it
is suffi cient to show Πa

00(f(T )) ⊆ P a00(f(T )). Suppose µ ∈ Πa
00(f(T )). Then µ is an

isolated point of σa(f(T )) and 0 < α(f(T ) − µ). Then µ ∈ σa(f(T )), and it satisfies
the equation:

f(T )− µ = c(T − µ1)(T − µ2) · ... · (T − µn)g(T ) (6)

where c, µ1, µ2, ..., µn ∈ C, and g(T ) is invertible.
Since µ is an isolated point of f(σa(T )), if µi ∈ σa(T ), then µi is an isolated point

of σa(T ) by relation (6). Since T is a−isoloid, 0 < α(T − µi) for each i = 1, 2, ..., n.
Then µi ∈ Πa

00(T ) for each i = 1, 2, ..., n. From Theorem 5, T satisfies the generalized
a−Weyl’s theorem, then T −λi is upper semi B-Fredholm and ind(T −µi) ≤ 0 for each
i = 1, 2, ..., n. Therefore f(T ) − µ is upper semi-B-Fredholm. Since µ ∈ isoσa(f(T ))
then f(T ) has SVEP in µ, then by [1, Theorem 2.89], p(f(T )−µ) <∞. Also, since T ∗
has SVEP, f(T )∗ has SVEP in µ, then by [1, Theorem 2.90] p(f(T )−µ) = q(f(T )−µ) =
p <∞. Thus, (f(T )−µ)p+1(H) = (f(T )−µ)p(H) and (f(T )−µ)p(H) is closed, since
it coincides with the kernel of the spectral projection associated with {µ}. Therefore
µ ∈ P a00(f(T )).
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From [9, Theorem 3.11], we know that:
generalized a−Weyl’s theorem =⇒ a−Weyl’s theorem.

and from [9, Theorem 3.8], we know that:
generalized a−Browder’s theorem =⇒ a−Browder’s theorem.

COROLLARY 5.9. If T ∗ is an algebraically k-quasi-∗-paranormal then f(T ) satis-
fies a−Weyl’s theorem for every f ∈ Hol(σ(T )).

If T is an algebraically k-quasi-∗-paranormal, then T not satisfies a−Weyl’s theorem
[1, Example 4.53], consequently T not satisfies generalized a−Weyl’s theorem, by [9,
Theorem 3.11].
A bounded operator T ∈ L(H) is said to be hereditarily polaroid, i.e. any restriction

to an invariant closed subspace is polaroid. This class of operators has been first
considered in [18].

COROLLARY 5.10. Algebraically k-quasi-∗-paranormal operators are hereditarily
polaroid.

PROOF. Let T ∈ L(H) be an algebraically k-quasi-∗-paranormal andM a closed T -
invariant subspace ofH. By assumption there exists a nontrivial polynomial h such that
h(T ) is a k-quasi-∗-paranormal. The restriction of any k-quasi-∗-paranormal operator
to an invariant closed subspace is also k-quasi-∗-paranormal, so h(T )|M is a k-quasi-
∗-paranormal. Since h(T |M ) = h(T )|M , T |M is algebraically k-quasi-∗-paranormal,
hence polaroid, from Theorem 3.

Let K(H) be the space of all compact operators on H. Note that K(H) is a closed
ideal of L(H). On the quotient space L(H)/K(H) it is defined the product [S][T ] =
[ST ], where [S] is the coset S+K(H). The space L(H)/K(H) with this additional op-
eration is an algebra, which is called the Calkin Algebra. Let π : L(H)→ L(H)/K(H)
be the natural mapping (Calkin homomorphism). If T ≥ O then π(T ) ≥ O. It is well
known the Theorem of Atkinson: T is a Fredholm operator if and only if π(T ) is an
invertible operator in Calkin algebra, thus σ(π(T )) = σe(T ), where

σe(T ) = {µ ∈ C : T − µ is not Fredholm}.

An operator T is said to be a Riesz operator if T − µ is a Fredholm operator for all
µ ∈ C\{0}. Thus, σe(T ) = {0}. Compact operators, also quasinilpotent operators, are
Riesz operators.

THEOREM 5.11. If T ∈ L(H) is a k-quasi-∗-paranormal, ‖Tn‖ = ‖T‖n for some
n ≥ k, and Riesz operator, then T is a compact operator.

PROOF. Let T be a k-quasi-∗-paranormal operator. Then

π(T )∗k
(
π(T )∗2π(T )2 − 2λπ(T )π(T )∗ + λ2

)
π(T )k

= π
(
T ∗k

(
T ∗2T 2 − 2λTT ∗ + λ2

)
T k
)
≥ O,
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which shows that π(T ) is a k-quasi-∗-paranormal. Thus π(T ) is normaloid operator,
Theorem 2. Since T is a Riesz operator by West Decomposition Theorem [32], we can
write T = S + Q where S is a compact and Q is a quasinilpotent operator. From
the definition of homomorphism π we have π(T ) = π(Q), thus σ(π(T )) = σ(π(Q)) =
σe(Q) = {0}, so π(T ) is a quasinilpotent operator. Therefore, ‖π(T )‖ = r(π(T )) = 0,
thus π(T ) = O. Then T is a compact operator.

COROLLARY 5.12. If T is a k-quasi-∗-paranormal operator and if σBW (T ) = {0},
then T is normal operator.

PROOF. From Theorem 5, T satisfies the generalized Weyl’s theorem. By assump-
tion, we have σ(T ) \ {0} = Π00(T ). So every nonzero point of σ(T ) is an isolated point
of σ(T ) and an eigenvalue. Hence σ(T ) \ {0} is a finite set or a countably infinite set
whose only cluster point is 0. Let σ(T ) \ {0} = {µn}, with |µ1| ≥ |µ2| ≥ ... > 0. Since
µn is isolated point of σ(T ), from Theorem 4, ker(T −µn) is a reducing subspace of T .
Let Pn be the orthogonal projection onto ker(T − µn). Then TPn = PnT = µnPn and
PnPm = 0 if n 6= m. Put P = ⊕nPn, and we have

T = T |ker(I−P ) ⊕ T |(I−P )(H) = ⊕nµnPn ⊕ T |(I−P )(H),

with σ(T |(I−P )(H)) = σ(T )\{µn} = {0}. Since T |(I−P )(H) is also k-quasi-∗-paranormal
operator, T |(I−P )(H) = O. Hence T = ⊕nµnPn, thus T is normal operator.

6 Generalized Weyl’s Theorem for Perturbations of
Algebraically k-Quasi-∗-Paranormal Operator

A bounded operator T ∈ L(H) is said to be algebraic if there exists a non-constant
polynomial h such that h(T ) = 0. Trivially, every nilpotent operator is algebraic and
it is well-known that if Tn(H) has finite dimension for some n ∈ N then T is algebraic.

THEOREM 6.1. If T is an algebraically k-quasi-∗-paranormal operator, F is alge-
braic with TF = FT , then T + F satisfies generalized Weyl’s theorem.

PROOF. Since F is algebraic operator, σ(F ) = {µ1, µ2, ..., µn}. Denote by Pi the
spectral projections associated with F and the spectral set {µi}, i = 1, 2, ..., n.We write
Fi = F |Pi(H) and Ti = T |Pi(H). Clearly, σ(Fi) = {µi} for every i = 1, 2, ..., n. Let h be
a nontrivial complex polynomial such that h(F ) = O. Then O = h(Fi) = h(F )|Pi(H),
and from

{0} = σ(h(Fi)) = h(σ(Fi)) = h(µi),

we obtain that h(µi) = 0.Write h(µ) = (µ−µi)kg(µ) with g(µi) 6= 0. Then O = h(Fi) =
(Fi− µi)kg(Fi), where g(Fi) is invertible. Therefore (Fi− µi)k = O, hence Fi− µi is a
nilpotent operator for all i = 1, 2, ..., n. Let µ ∈ Π00(T + F ). Then µ is isolated point
in the spectrum σ(T + F ). Since σ(T + F ) = ∪ni=1σ(Ti + Fi), then µ ∈ σ(Ti + Fi),
for some i = 1, 2, ..., n and hence µ − µi ∈ isoσ(Ti + Fi − µi). The restriction Ti to
a closed invariant subspace Pi(H) is also algebraically k-quasi-∗-paranormal operator,
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then Ti is polaroid for all i = 1, 2, ..., n. Since Fi − µi is a nilpotent operator for all
i = 1, 2, ..., n, by [5, Theorem 2.10] Ti + Fi − µi is polaroid for all i = 1, 2, ..., n. Then
µ − µi is a pole of the resolvent of Ti + Fi − µi. By [2, Theorem 3.74] there exists a
positive numbers mi such that

H0(Ti + Fi − µi − (µ− µi)) = H0(Ti + Fi − µ) = ker(Ti + Fi − µ)mi ,

for i = 1, 2, ..., n. Taking H0(Ti + Fi − µ) = {0} for µ 6∈ σ(Ti + Fi) and we have

H0(T + F − µ) = ⊕ni=1H0(Ti + Fi − µ) = ⊕ni=1ker(Ti+ Fi − µ)mi = ker(T + F − µ)m,

where m = max{m1,m2, ...,mn}. Since µ ∈ isoσ(T + F ), we have

H = H0(T + F − µ)⊕K(T + F − µ) = ker(T + F − µ)m ⊕K(T + F − µ).

Therefore,

(T + F − µ)m(H) = K(T + F − µ) and H = ker(T + F − µ)m ⊕ (T + F − µ)m(H).

From [2, Theorem 3.6] T + F − µ has finite ascent. So, (T + F − µ)m(H) = (T + F −
µ)m+1(H) and (T + F − µ)p(H) is closed for every p ≥ m. By [3, Theorem 2.8] T + F
satisfies the generalized Weyl’s theorem.

THEOREM 6.2. If T is an algebraically k-quasi-∗-paranormal operator, F is alge-
braic with TF = FT , then f(T + F ) satisfies the generalized Weyl’s theorem for all
f ∈ Hol(σ(T + F )).

PROOF. Let F be an algebraic operator. Then, σ(F ) = {µ1, µ2, ..., µn}, and Fi−µi
is nilpotent operator for i = 1, 2, ..., n. Since T is an algebraically k-quasi-∗-paranormal,
then Ti + µi is also an algebraically k-quasi-∗-paranormal operator. Then Ti + µi has
SVEP for i = 1, 2, ..., n and from [2, theorem 2.12] Ti + µi + Fi − µi = Ti + Fi has
SVEP. From [2, theorem 2.9] T +F = ⊕ni=1(Ti +Fi) has SVEP. By [16, Corollary 2.8],
f(σBW (T + F )) = σBW (f(T + F )) for all f ∈ Hol(σ(T + F )). But, from the above
theorem we have that T + F is isoloid operator, then from [16, Lemma 3.3],

f(σ(T + F ) \Π00(T + F )) = σ(f(T + F )) \Π00(f(T + F )),

and
σ(f(T + F )) \Π00(f(T + F )) = f(σ(T + F ) \Π00(T + F ))

= f(σBW (T + F )) = σBW (f(T + F )),

which implies that f(T + F ) satisfies the generalized Weyl’s theorem.

An operator T is said to be finitely-isoloid if every isolated point of σ(T ) is an
eigenvalue of T of the finite multiplicity, so: from µ ∈ isoσ(T ) we have µ ∈ π00(T ).

COROLLARY 6.3. If T is finitely-isoloid and T is an algebraically k-quasi-∗-
paranormal operator, R is Riesz operator with TR = RT , then T +R satisfies Weyl’s
theorem.

PROOF. From Corollary 5, it follows that T satisfies Weyl’s theorem and by [26,
Theorem 2.7] T +R satisfies Weyl’s theorem.
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