A Study Of Fixed Points Of Mappings Satisfying E.A Like Property On Dislocated Quasi b-Metric Spaces*

Pradip Gunvant Golhare ${ }^{\dagger}$, Chintaman Tukaram Aage ${ }^{\ddagger}$
Received 23 February 2018

Abstract

In this paper, we introduce the concepts of E.A property and E.A like property in dislocated quasi b-metric spaces. We establish fixed point theorems for mappings satisfying E.A like property in dislocated quasi b-metric spaces which extend results of Kastriot Zoto, Arben Isufati, Panda Sumati Kumari ([5]). We also present some examples which support our results.

1 Introduction

Chakkrid and Cholatis [2] introduced the concept of dislocated quasi b-metric space and established fixed point theorems for cyclic contractions. Rahman et al. [8] studied dislocated quasi b-metric spaces and gained fixed point theorems for Kannan and Chetterjea type contractive mappings. Cholatis et al. [3] proved fixed point theorems for cyclic weakly contractive mappings in dislocated quasi b-metric spaces. Also they have discussed some topological properties of dislocated quasi b-metric spaces.
M. Aamri and D. El Moutawakil [6] introduced new concept called E.A property. Kastriot Zoto et al. [5] introduced the concept of E.A like property in dislocated and dislocated quasi-metric spaces. They have adopted the definition of K. Wadhwa, H. Dubey, R. Jain [4] to define E.A like property.

In this paper, we introduce the concept of E.A property and E.A like property in dislocated quasi b-metric spaces. We establish some fixed point theorems for mappings satisfying E.A property and E.A like property in dislocated quasi b-metric spaces which extend results of Zoto et al. [5]. We also present some examples which support our results.

DEFINITION 1. ([2]). Let X be a non-empty set. Let the mapping $d: X \times X \rightarrow$ $[0, \infty)$ and constant $k \geq 1$ satisfy the following conditions:
(i) $d(x, y)=0=d(y, x) \Rightarrow x=y, \forall x, y \in X$.

[^0](ii) $d(x, y) \leq k[d(x, z)+d(z, y)], \forall x, y, z \in X$.

Then the pair (X, d) is called a dislocated quasi- b-metric space or in short $d q b$-metric space. The constant k is called the coefficient of dislocated quasi- b-metric space (X, d).

EXAMPLE 1. Consider $X=[1, \infty)$ with $d(x, y)=|x-y|+2|x-1|+|y-1|$. Then (X, d) is a $d q b$-metric space with coefficient $k=2$.

EXAMPLE $2([8])$. Let $X=R^{+}, p>1, d: X \times X \rightarrow[0, \infty)$ be defined as

$$
d(x, y)=|x-y|^{p}+|x|^{p}, \quad \forall x, y \in X
$$

Then (X, d) is a $d q b$-metric space with $k=2^{p}>1$. But (X, d) is not a b-metric space and also not dislocated quasi metric space.

EXAMPLE 3 ([2]). Let $X=R$ and suppose

$$
d(x, y)=|2 x-y|^{2}+|2 x+y|^{2} .
$$

Then (X, d) is a $d q b$-metric space with coefficient $k=2$ but (X, d) is not a quasi- b metric space. Also (X, d) is not a dislocated quasi metric space.

DEFINITION 2 ([2]). A sequence $\left\{x_{n}\right\}$ in a $d q b$-metric space $(X, d), d q b$-converges to $x \in X$ if

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right) .
$$

In this case x is called the $d q b$-limit of $\left\{x_{n}\right\}$ and $\left\{x_{n}\right\}$ is said to be $d q b$-convergent to x, written as $x_{n} \rightarrow x$.

DEFINITION 3. ([2]). A sequence $\left\{x_{n}\right\}$ in a $d q b$-metric space (X, d) is called a $d q b$-Cauchy sequence if

$$
\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0=\lim _{n, m \rightarrow \infty} d\left(x_{m}, x_{n}\right) .
$$

DEFINITION 4 ([2]). A $d q b$-metric space (X, d) is said to be $d q b$-complete if every $d q b$-Cauchy sequence in it is $d q b$-convergent in X.

LEMMA 1 ([3]). The limit of a $d q b$-convergent sequence in a $d q b$-metric space is unique.

PROPOSITION 1. Let (X, d) be a $d q b$-metric space with coefficient k and u be the $d q b$-limit of a nonconstant sequence in X. Then $d(u, u)=0$.

PROOF. We see that

$$
\begin{aligned}
d(u, u) & \leq k\left[d\left(u, x_{n}\right)+d\left(x_{n}, u\right)\right] \leq \lim k\left[d\left(u, x_{n}\right)+d\left(x_{n}, u\right)\right] \\
& =k\left[\lim d\left(u, x_{n}\right)+\lim d\left(x_{n}, u\right)\right]=0 .
\end{aligned}
$$

The proof is complete.
We have observed the following result in Rahman and Sarwar [8].
THEOREM 1 ([8]). Let (X, d) be a $d q b$-complete metric space with coefficient $k \geq 1$. Let $T: X \rightarrow X$ be a continuous mapping satisfying

$$
\forall x, y \in X, \quad d(T x, T y) \leq \alpha d(x, y) \quad \text { where } 0 \leq \alpha<1 \text { and } 0 \leq k \alpha<1
$$

Then T has a unique fixed point in X.
Aamri et al. [6]. introduced the following concept of E.A property in metric spaces.
DEFINITION 5 ([6]). Let S and T be two self mappings of a metric space (X, d). We say that T and S satisfy the property (E.A) if there exists a sequence $\left(x_{n}\right)$ such that $\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} S x_{n}=t$ for some $t \in X$.

EXAMPLE 4. Let $X=[0, \infty)$. Define mappings T and S as $T x=\frac{x}{7}$ and $S x=\frac{3 x}{7}$. Now if we take the sequence $\left\{x_{n}\right\}=\left\{\frac{1}{n}\right\}$, then it is obvious that $\lim _{n \rightarrow \infty} T x_{n}=0=$ $\lim _{n \rightarrow \infty} S x_{n}$. And thus T and S satisfy property (E.A).

We have extended this property to $d q b$-metric spaces as follows:
DEFINITION 6. Let f and g be two self mappings of a $d q b$-metric space (X, d). We say that f and g satisfy the E.A property if there exists a sequence $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=u$ for some $u \in X$.

Note that the limit in the above definition is $d q b$-limit.
EXAMPLE 5. Let $X=[0, \infty)$ and $d(x, y)=|2 x-y|^{2}+|2 x+y|^{2}$. Then (X, d) is a $d q b$-metric space with coefficient $k=2$. Let $f x=3 x$ and $g x=x^{2}$. Note that for the sequence $\left\{x_{n}\right\}=1 / n, n \in N$, we get $\lim f x_{n}=\lim g x_{n}=0$. In other words f and g satisfy E.A like property.

Zoto et al.([5]) have defined E.A like property in dislocated metric spaces as follows:
DEFINITION 7 ([5]). Let S and T be two self mappings of a dislocated metric space (X, d). We say that S and T satisfy the E.A like property if there exists a sequence $\left(x_{n}\right)$ such that $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t$ for some $t \in S(X)$ or $t \in T(X)$, i.e. $t \in S(X) \cup T(X)$.

EXAMPLE 6 ([5]). Let $X=R^{+}$. Define $d: X \times X \rightarrow[0, \infty)$ by $d(x, y)=x+2 y$ for all $x, y \in X$. Define $T x=\frac{x}{5}$ and $S x=\frac{x}{4}$ for all $x \in X$. Then for the sequence $x_{n}=\frac{1}{n}, n \in N$, we have

$$
\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} S x_{n}=0 \in T(X) \cup S(X)
$$

Thus T and S satisfy E.A like property.
We have adopted this definition in $d q b$-metric spaces as follows:
DEFINITION 8. Let f and g be two self mappings of a $d q b$-metric space (X, d). We say that f and g satisfy the E.A like property if there exists a sequence $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=u$ for some $u \in f(X) \cup g(X)$.

Note that the limit in the above definition is $d q b$-limit.
EXAMPLE 7. Consider $X=[0, \infty)$ with $d(x, y)=|x-y|^{2}+2|x|+|y|$. Then (X, d) is a $d q b$-metric space with coefficient $k=2$. Let $S x=2 x$ and $T x=x^{4}$. Note that for the sequence $\left\{x_{n}\right\}=1 / n, n \in N$ we get $\lim S x_{n}=\lim T x_{n}=0$ where $0 \in S(X) \cup T(X)$. And thus S and T satisfy E.A like property.

DEFINITION 9 ([7]). Let f and g be self maps of a set X. If $w=f x=g x$ for some x in X then x is called a coincidence point of f and g and w is called a point of coincidence of f and g.

DEFINITION 10 ([7]). Let f and g be self maps of a set X. Then f and g are said to be weakly compatible if they commute at their coincidence point.

2 Main Results

Amri et al. [6] have proved the following theorem.
THEOREM 2. Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that
(i) T and S satisfy the property (E.A),
(ii) $\forall x \neq y \in X$,

$$
d(T x, T y)<\max \left\{d(S x, S y), \frac{[d(T x, S x)+d(T y, S y)}{2}, \frac{[d(T y, S x)+d(T x, S y)]}{2}\right\}
$$

(iii) $T X \subset S X$.

If $S X$ or $T X$ is complete subspace of X, then T and S have a unique common fixed point.

We have extended this result to dislocated quasi b-metric spaces in following manner.

THEOREM 3. Let f and g be two self maps of a $d q b$-metric space $(X, d), f(X) \subset$ $g(X)$ and $g(X)$ is dqb-complete, satisfying the following conditions:
(i)

$$
d(f x, f y) \leq \max \left\{d(g x, g y), \frac{d(f x, g x)+d(g y, f y)}{2}, \frac{d(g x, f y)+d(f x, g y)}{2}\right\}
$$

(ii) f and g are weakly compatible,
(iii) f and g satisfy E.A like property.

Then f and g have a unique common fixed point.
PROOF. In view of assumption (iii), there exists a sequence $\left\{x_{n}\right\}$ in X and $v \in X$ such that

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=v
$$

Since $g(X)$ is $d q b$-complete, there exists $u \in X$ such that $\lim _{n \rightarrow \infty} g x_{n}=g u$. Note that $\lim _{n \rightarrow \infty} f x_{n}=g u$. We claim that $f u=g u$. On the contrary assume that $f u \neq g u$ i.e. at least one of $d(f u, g u)$ and $d(g u, f u)$ is greater than 0 . We first assume that $d(g u, f u)>0$. Then in view of assumption (i) with $x=x_{n}$ and $y=u$ we can write

$$
d\left(f x_{n}, f u\right) \leq \max \left\{d\left(g x_{n}, g u\right), \frac{d\left(f x_{n}, g x_{n}\right)+d(g u, f u)}{2}, \frac{d\left(g x_{n}, f u\right)+d\left(f x_{n}, g u\right)}{2}\right\}
$$

Letting $n \rightarrow \infty$ in the above inequality, we get

$$
d(g u, f u) \leq \max \left\{d(g u, g u), \frac{d(g u, g u)+d(g u, f u)}{2}, \frac{d(g u, f u)+d(g u, g u)}{2}\right\}
$$

It follows that

$$
d(g u, f u) \leq \frac{d(g u, f u)}{2}
$$

which is clearly a contradiction unless $d(g u, f u)=0$. Now, assume that $d(f u, g u)>0$. Again as above taking $x=u$ and $y=x_{n}$ in assumption (i), we can write

$$
d\left(f u, f x_{n}\right) \leq \max \left\{d\left(g u, g x_{n}\right), \frac{d(f u, g u)+d\left(g x_{n}, f x_{n}\right)}{2}, \frac{d\left(g u, f x_{n}\right)+d\left(f u, g x_{n}\right)}{2}\right\}
$$

Letting $n \rightarrow \infty$ in the above inequality, we get

$$
d(f u, g u) \leq \max \left\{d(g u, g u), \frac{d(f u, g u)+d(g u, g u)}{2}, \frac{d(g u, g u)+d(f u, g u)}{2}\right\}
$$

It follows that

$$
d(f u, g u) \leq \frac{d(f u, g u)}{2}
$$

Which is again clearly a contradiction unless $d(f u, g u)=0$. Thus $d(f u, g u)=0=$ $d(g u, f u)$ which means $f u=g u$. As f and g are weakly compatible, we have, $f g u=g f u$ and hence $f^{2} u=f g u=g f u=g^{2} u$. Now we claim that $f u=f^{2} u$ i.e. $f u=f f u$ i.e. $f u$ is fixed point of f. On the contrary we assume that $f f u \neq f u$ i.e. $d(f u, f f u)>0$
and/or $d(f f u, f u)>0$. We first assume that $d(f u, f f u)>0$. Now taking $x=u$ and $y=f u$ in assumption (i), we get

$$
\begin{aligned}
d(f u, f f u) & \leq \max \left\{d(g u, g f u), \frac{d(f u, g u)+d(g f u, f f u)}{2}, \frac{d(g u, f f u)+d(f u, g f u)}{2}\right\} \\
& =\max \left\{d(f u, f f u), \frac{d(f u, f u)+d(f f u, f f u)}{2}, \frac{d(f u, f f u)+d(f u, f f u)}{2}\right\} \\
& =\max \left\{d(f u, f f u), \frac{d(f f u, f f u)}{2}\right\} \\
& \leq \max \left\{d(f u, f f u), \frac{k}{2}[d(f u, f f u)+d(f f u, f u)]\right\} \\
& =\frac{k}{2}[d(f u, f f u)+d(f f u, f u)]
\end{aligned}
$$

This gives

$$
d(f u, f f u) \leq \frac{\frac{k}{2} d(f f u, f u)}{1-\frac{k}{2}}<0
$$

which is a contradiction. Hence $d(f u, f f u)=0$. Now assume that $d(f f u, f u)>0$. Taking $x=f u$ and $y=u$ in assumption (i), we get

$$
\begin{aligned}
d(f f u, f u) & \leq \max \left\{d(g f u, g u), \frac{d(f f u, g f u)+d(g u, f u)}{2}, \frac{d(g f u, f u)+d(f f u, g u)}{2}\right\} \\
& =\max \left\{d(f f u, f u), \frac{d(f f u, f f u)+d(f u, f u)}{2}, \frac{d(f f u, f u)+d(f f u, f u)}{2}\right\} \\
& =\max \left\{d(f f u, f u), \frac{d(f f u, f f u)}{2}\right\} \\
& \leq \max \left\{d(f f u, f u), \frac{k}{2}[d(f u, f f u)+d(f f u, f u)]\right\} \\
& =\frac{k}{2}[d(f u, f f u)+d(f f u, f u)]
\end{aligned}
$$

This gives

$$
d(f f u, f u) \leq \frac{\frac{k}{2} d(f u, f f u)}{1-\frac{k}{2}}<0
$$

which is again a contradiction. Therefore $d(f f u, f u)=0$. Thus, we conclude that $d(f u, f f u)=0=d(f f u, f u)$ i.e. $f f u=f u$. This shows that $f u$ is fixed point of f. But $g f u=f f u=f u$. That is $f u$ is also a fixed point of g. Hence we conclude that $f u$ is a common fixed point of f and g. Now we prove that $f u$ is unique. Let us assume
that t is another common fixed point of f and g i.e. $f t=t=g t$. Consider

$$
\begin{aligned}
d(t, f u) & =d(f t, f f u) \\
& \leq \max \left\{d(g t, g f u), \frac{d(f t, g t)+d(f f u, g f u)}{2}, \frac{d(g t, f f u)+d(f t, g f u)}{2}\right\} \\
& =\max \left\{d(t, f u), \frac{d(t, t)+d(f u, f u)}{2}, \frac{d(t, f u)+d(t, f u)}{2}\right\} \\
& =\max \left\{d(t, f u), \frac{d(t, t)}{2}\right\} \\
& \leq \max \left\{d(t, f u), \frac{k}{2}[d(t, f u)+d(f u, t)]\right\} \\
& =\frac{k}{2}[d(t, f u)+d(f u, t)] .
\end{aligned}
$$

This implies that

$$
d(t, f u) \leq \frac{\frac{k}{2} d(f u, t)}{1-\frac{k}{2}}
$$

which is clearly a contradiction unless $d(f u, t)=0$. Similarly, consider

$$
\begin{aligned}
d(f u, t) & =d(f f u, f t) \\
& \leq \max \left\{d(g f u, g t), \frac{d(f f u, g f u)+d(f t, g t)}{2}, \frac{d(g f u, f t)+d(f f u, g t)}{2}\right\} \\
& =\max \left\{d(f u, t), \frac{d(f u, f u)+d(t, t)}{2}, \frac{d(f u, t)+d(f u, t)}{2}\right\} \\
& =\max \left\{d(f u, t), \frac{d(f u, f u)}{2}\right\} \\
& \leq \max \left\{d(f u, t), \frac{k}{2}[d(f u, t)+d(t, f u)]\right\} \\
& =\frac{k}{2}[d(f u, t)+d(t, f u)] .
\end{aligned}
$$

This implies that

$$
d(f u, t) \leq \frac{\frac{k}{2} d(t, f u)}{1-\frac{k}{2}}
$$

which is clearly a contradiction unless $d(t, f u)=0$. Thus $t=f u$. Hence $f u$ is a unique common fixed point of f and g. This completes the proof.

EXAMPLE 8. Let $X=[0, \infty)$ and $d(x, y)=|2 x-y|^{2}+|2 x+y|^{2}$. Then (X, d) is a $d q b$-metric space with coefficient $k=2$. Let $f x=2 x$ and $g x=x^{3}$. Note that for the
sequence $\left\{x_{n}\right\}=1 / n, n \in N$, we get $\lim f x_{n}=\lim g x_{n}=0$. In other words f and g satisfy E.A like property. Also observe that f and g are weakly compatible. Now

$$
\begin{aligned}
& d(2 x, 2 y) \leq \max \left\{d\left(x^{3}, y^{3}\right), \frac{d\left(2 x, x^{3}\right)+d\left(y^{3}, 2 y\right)}{2}, \frac{d\left(x^{3}, 2 y\right)+d\left(2 x, y^{3}\right)}{2}\right\}, \text { i.e., } \\
&(4 x-2 y)^{2}+(4 x+2 y)^{2} \leq \max \left\{\left(2 x^{3}-y^{3}\right)^{2}+\left(2 x^{3}+y^{3}\right)^{2}\right. \\
& \frac{\left(4 x-x^{3}\right)^{2}+\left(4 x+x^{3}\right)^{2}+\left(2 y^{3}-2 y\right)^{2}+\left(2 y^{3}+2 y\right)^{2}}{2} \\
&\left.\frac{\left(2 x^{3}-2 y\right)^{2}+\left(2 x^{3}+2 y\right)^{2}+\left(4 x-y^{3}\right)^{2}+\left(4 x+y^{3}\right)^{2}}{2}\right\}
\end{aligned}
$$

is true for all $x, y \in[0, \infty)$. Thus f and g satisfy all the conditions of the theorem and hence have unique common fixed point $0=f 0=g 0$.

Kastriot Zoto et al. [5] have proved the following theorem.
THEOREM 4. Let (X, d) be a complete dislocated quasi metric space and f, g : $X \rightarrow X$ are two self maps satisfying the conditions:
(i) $d(f x, f y) \leq \alpha d(f x, g y)+\beta d(g x, f y)+\gamma d(g x, g y)+\delta d(g y, f y)+\eta d(g x, f x)$ for all $x, y \in X$, where the constants $\alpha, \beta, \gamma, \delta, \eta \geq 0$ are nonnegative and $0 \leq \alpha+\beta+$ $\gamma+\delta+\eta<\frac{1}{2}$,
(ii) f and g satisfy E.A like property,
(iii) f and g are weakly compatible for all $x, y \in X$, and $0 \leq \alpha+\beta+\gamma+\delta+\eta<\frac{1}{2}$.

Then f and g have a unique common fixed point in X.
We have extended this result to the dislocated quasi b-metric space in the following way.

THEOREM 5. Let (X, d) be $d q b$-complete metric space with coefficient $k \geq 1$ and S and T be two self maps on X satisfying following conditions:
(i) $d(S x, S y) \leq \alpha d(S x, T y)+\beta d(T x, S y)+\gamma d(T x, T y)+\delta d(T y, S y)+\eta d(T x, S x)$ for all $x, y \in X$ and the constants $\alpha, \beta, \gamma, \delta, \eta \geq 0$ are such that $0 \leq \alpha+\beta+\gamma+\delta+\eta<$ $\frac{1}{2 k}$,
(ii) S and T satisfy E.A like property,
(iii) S and T are weakly compatible.

Then, T and S have a unique common fixed point in X.
PROOF. In view of assumption (ii), there exists a sequence $\left\{x_{n}\right\}$ in X and $u \in$ $S(X) \cup T(X)$ such that

$$
\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=u
$$

Let us assume that $\lim _{n \rightarrow \infty} S x_{n}=u \in T(X)$. Now we can find $v \in X$ such that $T v=u$. Now from inequality (i), taking $x=v$ and $y=x_{n}$, we can write
$d\left(S v, S x_{n}\right) \leq \alpha d\left(S v, T x_{n}\right)+\beta d\left(T v, S x_{n}\right)+\gamma d\left(T v, T x_{n}\right)+\delta d\left(T x_{n}, S x_{n}\right)+\eta d(T v, S v)$.
Letting $n \rightarrow \infty$ in above inequality, we get

$$
\begin{aligned}
d(S v, u) \leq & \alpha d(S v, u)+\beta d(T v, u)+\gamma d(T v, u)+\delta d(u, u)+\eta d(T v, S v) \\
= & \alpha d(S v, u)+\beta d(u, u)+\gamma d(u, u)+\delta d(u, u)+\eta d(u, S v) \\
\leq & \alpha d(S v, u)+\eta d(u, S v)+k \beta[d(u, S v)+d(S v, u)] \\
& +k \gamma[d(u, S v)+d(S v, u]+k \delta[d(u, S v)+d(S v, u)] \\
= & (\alpha+k \beta+k \gamma+k \delta) d(S v, u)+(\eta+k \beta+k \gamma+k \delta) d(u, S v) .
\end{aligned}
$$

This gives

$$
\begin{align*}
d(S v, u) & \leq \frac{\eta+k \beta+k \gamma+k \delta}{1-(\alpha+k \beta+k \gamma+k \delta)} d(u, S v) \\
& \leq \frac{k \eta+k \beta+k \gamma+k \delta}{1-(k \alpha+k \beta+k \gamma+k \delta)} d(u, S v) \tag{1}
\end{align*}
$$

Similarly, taking $x=x_{n}$ and $y=v$, in inequality (i) we can write $d\left(S x_{n}, S v\right) \leq \alpha d\left(S x_{n}, T v\right)+\beta d\left(T x_{n}, S v\right)+\gamma d\left(T x_{n}, T v\right)+\delta d(T v, S v)+\eta d\left(T x_{n}, S x_{n}\right)$.

Letting $n \rightarrow \infty$ in above inequality, we get

$$
\begin{aligned}
d(u, S v) \leq & \alpha d(u, T v)+\beta d(u, S v)+\gamma d(u, T v)+\delta d(u, S v)+\eta d(u, u) \\
= & \alpha d(u, u)+\beta d(u, S v)+\gamma d(u, u)+\delta d(u, S u)+\eta d(u, u)) \\
\leq & k \alpha[d(u, S v)+d(S v, u)]+\beta d(u, S v)+k \gamma[d(u, S v)+d(S v, u)] \\
& +\delta d(u, S v)+k \eta[d(u, S v)+d(S v, u)] \\
= & (k \alpha+k \gamma+k \eta) d(S v, u)+(k \alpha+\beta+k \gamma+\delta+k \eta) d(u, S v) .
\end{aligned}
$$

This gives

$$
\begin{align*}
d(u, S v) & \leq \frac{k \alpha+k \gamma+k \eta}{1-(k \alpha+\beta+k \gamma+\delta+k \eta)} d(S v, u) \\
& \leq \frac{k \alpha+k \gamma+k \eta}{1-(k \alpha+k \beta+k \gamma+k \delta+k \eta)} d(S v, u) \tag{2}
\end{align*}
$$

Taking

$$
\xi=\max \left\{\frac{k \eta+k \beta+k \gamma+k \delta}{1-(k \alpha+k \beta+k \gamma+k \delta)}, \frac{k \alpha+k \gamma+k \eta}{1-(k \alpha+k \beta+k \gamma+k \delta+k \eta)}\right\}
$$

from inequalities (1) and (2), we get

$$
d(S v, u) \leq \xi^{2} d(S v, u) \text { and } d(u, S v) \leq \xi^{2} d(u, S v)
$$

where $0 \leq \xi<1$. Thus $d(u, S v)=0=d(S v, u)$ and hence $S v=u$. Now, we have $T v=u=S v$. As we know that S and T are weakly compatible, we conclude that v is a coincidence point of S and T, so that S and T commute at v i.e. $S(T v)=T(S v)$ i.e. $S u=T u$.

Next, we claim that u is a common fixed point of S and T. For this we consider
$d\left(S u, S x_{n}\right) \leq \alpha d\left(S u, T x_{n}\right)+\beta d\left(T u, S x_{n}\right)+\gamma d\left(T u, T x_{n}\right)+\delta d\left(T x_{n}, S x_{n}\right)+\eta d(T u, S u)$.
Letting $n \rightarrow \infty$ in the above inequality, we get

$$
\begin{aligned}
d(S u, u) \leq & \alpha d(S u, u)+\beta d(T u, u)+\gamma d(T u, u)+\delta d(u, u)+\eta d(T u, S u) \\
= & \alpha d(S u, u)+\beta d(S u, u)+\gamma d(S u, u)+\delta d(u, u)+\eta d(S u, S u) \\
\leq & \alpha d(S u, u)+\beta d(S u, u)+\gamma d(S u, u)+k \delta[d(u, S u)+d(S u, u)] \\
& +k \eta[d(S u, u)+d(u, S u)] \\
= & (\alpha+\beta+\gamma+k \delta+k \eta) d(S u, u)+(k \delta+k \eta) d(u, S u) .
\end{aligned}
$$

This gives

$$
\begin{align*}
d(S u, u) & \leq \frac{k \delta+k \eta}{1-(\alpha+\beta+\gamma+k \delta+k \eta)} d(u, S u) \\
& \leq \frac{k \delta+k \eta}{1-(k \alpha+k \beta+k \gamma+k \delta+k \eta)} d(u, S u) \tag{3}
\end{align*}
$$

Similarly, consider
$d\left(S x_{n}, S u\right) \leq \alpha d\left(S x_{n}, T u\right)+\beta d\left(T x_{n}, S u\right)+\gamma d\left(T x_{n}, T u\right)+\delta d(T u, S u)+\eta d\left(T x_{n}, S x_{n}\right)$.
Letting $n \rightarrow \infty$ in above inequality, we get

$$
\begin{aligned}
d(u, S u) \leq & \alpha d(u, T u)+\beta d(u, S u)+\gamma d(u, T u)+\delta d(T u, S u)+\eta d(u, u) \\
= & \alpha d(u, S u)+\beta d(u, S u)+\gamma d(u, S u)+\delta d(S u, S u)+\eta d(u, u) \\
\leq & \alpha d(u, S u)+\beta d(u, S u)+\gamma d(u, S u)+k \delta[d(u, S u)+d(S u, u)] \\
& +k \eta[d(S u, u)+d(u, S u)] \\
= & (k \delta+k \eta) d(S u, u)+(\alpha+\beta+\gamma+k \delta+k \eta) d(u, S u) .
\end{aligned}
$$

This gives

$$
\begin{align*}
d(u, S u) & \leq \frac{k \delta+k \eta}{1-(\alpha+\beta+\gamma+k \delta+k \eta)} d(S u, u) \\
& \leq \frac{k \delta+k \eta}{1-(k \alpha+k \beta+k \gamma+k \delta+k \eta)} d(S u, u) \tag{4}
\end{align*}
$$

Taking

$$
\xi^{\prime}=\max \left\{\frac{k \delta+k \eta}{1-(k \alpha+k \beta+k \gamma+k \delta+k \eta)}, \frac{k \delta+k \eta}{1-(k \alpha+k \beta+k \gamma+k \delta+k \eta)}\right\}
$$

from inequalities (3) and (4), we get

$$
d(S u, u) \leq \xi^{\prime 2} d(S u, u) \text { and } d(u, S u) \leq \xi^{\prime 2} d(u, S u) \text { where } 0 \leq \xi^{\prime}<1
$$

Thus $d(u, S u)=0=d(S u, u)$. This means that $S u=u$. Which in turn implies that $T u=S u=u$ i.e. u is common fixed point of S and T.

Next, we prove that this common fixed point of S and T is unique. Let, if possible, u^{\prime} be another common fixed point of S and T. Then from inequality (i) we can write

$$
\begin{aligned}
d\left(u, u^{\prime}\right)= & d\left(S u, S u^{\prime}\right) \leq \alpha d\left(S u, T u^{\prime}\right)+\beta d\left(T u, S u^{\prime}\right)+\gamma d\left(T u, T u^{\prime}\right)+\delta d\left(T u^{\prime}, S u^{\prime}\right) \\
& +\eta d(T u, S u) \\
= & \alpha d\left(u, u^{\prime}\right)+\beta d\left(u, u^{\prime}\right)+\gamma d\left(u, u^{\prime}\right)+\delta d\left(u^{\prime}, u^{\prime}\right)+\eta d(u, u) \\
\leq & \alpha d\left(u, u^{\prime}\right)+\beta d\left(u, u^{\prime}\right)+\gamma d\left(u, u^{\prime}\right)+k \delta\left[d\left(u^{\prime}, u\right)+d\left(u, u^{\prime}\right)\right] \\
& +k \eta\left[d\left(u, u^{\prime}\right)+d\left(u^{\prime}, u\right)\right] \\
= & (\alpha+\beta+\gamma+k \delta+k \eta) d\left(u, u^{\prime}\right)+(k \delta+k \eta) d\left(u^{\prime}, u\right)
\end{aligned}
$$

This gives

$$
\begin{align*}
d\left(u, u^{\prime}\right) & \leq \frac{k \delta+k \eta}{1-(\alpha+\beta+\gamma+k \delta+k \eta)} d\left(u^{\prime}, u\right) \\
& \leq \frac{k \delta+k \eta}{1-(k \alpha+k \beta+k \gamma+k \delta+k \eta)} d\left(u^{\prime}, u\right) \tag{5}
\end{align*}
$$

Similarly, consider

$$
\begin{aligned}
d\left(u^{\prime}, u\right)= & d\left(S u^{\prime}, S u\right) \\
\leq & \alpha d\left(S u^{\prime}, T u^{\prime}\right)+\beta d\left(T u^{\prime}, S u\right)+\gamma d\left(T u^{\prime}, T u\right)+\delta d(T u, S u)+\eta d\left(T u^{\prime}, S u^{\prime}\right) \\
= & \alpha d\left(u^{\prime}, u\right)+\beta d\left(u^{\prime}, u\right)+\gamma d\left(u^{\prime}, u\right)+\delta d(u, u)+\eta d\left(u^{\prime}, u^{\prime}\right) \\
\leq & \alpha d\left(u^{\prime}, u\right)+\beta d\left(u^{\prime}, u\right)+\gamma d\left(u^{\prime}, u\right)+k \delta\left[d\left(u^{\prime}, u\right)+d\left(u, u^{\prime}\right)\right] \\
& +k \eta\left[d\left(u, u^{\prime}\right)+d\left(u^{\prime}, u\right)\right] \\
= & (\alpha+\beta+\gamma+k \delta+k \eta) d\left(u^{\prime}, u\right)+(k \delta+k \eta) d\left(u, u^{\prime}\right) .
\end{aligned}
$$

This gives

$$
\begin{align*}
d\left(u^{\prime}, u\right) & \leq \frac{k \delta+k \eta}{1-(\alpha+\beta+\gamma+k \delta+k \eta)} d\left(u, u^{\prime}\right) \\
& \leq \frac{k \delta+k \eta}{1-(k \alpha+k \beta+k \gamma+k \delta+k \eta)} d\left(u, u^{\prime}\right) \tag{6}
\end{align*}
$$

Taking $\epsilon=\frac{k \delta+k \eta}{1-(k \alpha+k \beta+k \gamma+k \delta+k \eta)}$, from inequalities (5) and (6), we get

$$
d\left(u, u^{\prime}\right) \leq \epsilon^{2} d\left(u, u^{\prime}\right) \text { and } d\left(u^{\prime}, u\right) \leq \epsilon^{2} d\left(u^{\prime}, u\right), \quad \text { where } 0 \leq \epsilon<1
$$

We arrive at the conclusion that $d\left(u, u^{\prime}\right)=0=d\left(u^{\prime}, u\right)$ i.e. $u=u^{\prime}$. Thus u is a unique common fixed point of S and T. Hence the theorem.

EXAMPLE 9. Consider $X=[1, \infty)$ with $d(x, y)=|x-y|+2|x-1|+|y-1|$. Then (X, d) is a $d q b$-metric space with coefficient $k=2$. Let $S x=2 x-1$ and $T x=x^{4}$. Note that for the sequence $\left\{x_{n}\right\}=1+1 / n, n \in N$, we get $\lim S x_{n}=\lim T x_{n}=1$ where $1 \in S(X) \cup T(X)$. In other words, S and T satisfy E.A like property. Also we observe that S and T are weakly compatible. Now,

$$
\begin{aligned}
d(S x, S y) & =d(2 x-1,2 y-1)=|2 x-1-2 y+1|+2|2 x-1-1|+|2 y-1-1| \\
& =|2 x-2 y|+2|2 x-2|+|2 y-2|
\end{aligned}
$$

$$
\begin{aligned}
& d(S x, T y)=d\left(2 x-1, y^{4}\right)=\left|2 x-1-y^{4}\right|+2|2 x-1-1|+\left|y^{4}-1\right| \\
&=\left|2 x-1-y^{4}\right|+2|2 x-2|+\left|y^{4}-1\right| \\
& d(T x, S y)=d\left(x^{4}, 2 y-1\right)=\left|x^{4}-2 y-1\right|+2\left|x^{4}-1\right|+|2 y-1-1| \\
&=\left|x^{4}-2 y-1\right|+2\left|x^{4}-1\right|+|2 y-2| \\
& d(T x, T y)=d\left(x^{4}, y^{4}\right)=\left|x^{4}-y^{4}\right|+2\left|x^{4}-1\right|+\left|y^{4}-1\right| \\
& \\
& d(T y, S y)=d\left(y^{4}, 2 y-1\right)=\left|y^{4}-2 y-1\right|+2\left|y^{4}-1\right|+|2 y-1-1| \\
&=\left|y^{4}-2 y-1\right|+2\left|y^{4}-1\right|+|2 y-2| \\
& d(T x, S x)=d\left(x^{4}, 2 x-1\right)=\left|x^{4}-2 x-1\right|+2\left|x^{4}-1\right|+|2 x-1-1| \\
&=\left|x^{4}-2 x-1\right|+2\left|x^{4}-1\right|+|2 x-2|
\end{aligned}
$$

It is easy to verify that for all $x, y \in X$,

$$
\begin{aligned}
d(2 x-1,2 y-1) \leq & \frac{1}{25} d\left(2 x-1, y^{4}\right)+\frac{1}{25} d\left(x^{4}, 2 y-1\right)+\frac{1}{25} d\left(x^{4}, y^{4}\right) \\
& +\frac{1}{25} d\left(y^{4}, 2 y-1\right)+\frac{1}{25} d\left(x^{4}, 2 x-1\right)
\end{aligned}
$$

Where

$$
\alpha=\frac{1}{25}=\beta=\gamma=\delta=\eta
$$

and

$$
0 \leq \alpha+\beta+\gamma+\delta+\eta=\frac{1}{25}+\frac{1}{25}+\frac{1}{25}+\frac{1}{25}+\frac{1}{25}=\frac{5}{25}=\frac{1}{5}<\frac{1}{4}
$$

Thus S and T satisfy all the conditions of the theorem and hence have a unique common fixed point 1 in $X=[1, \infty)$. Uniqueness can also be established by observing that $x^{4}=2 x-1$ i.e. $x^{4}-2 x+1=0$ has only two real roots 1 and other less than 1 . Thus it is clear that 1 is the only common fixed point of S and T in $X=[1, \infty)$.

THEOREM 6. Let (X, d) be a $d q b$-metric space with coefficient $k>1$ and S and T be two self maps on X satisfying the following conditions:
(i) $d(S x, S y) \leq \alpha[d(S x, T y)+d(T x, S y)]+\beta[d(S x, T y)+d(T x, T y)]+\gamma[d(T x, S y)+$ $d(T x, T y)]$ for all $x, y \in X$ and the constants $\alpha, \beta, \gamma \geq 0$ are such that $0 \leq$ $\alpha+\beta+\gamma<\frac{1}{4 k}$,
(ii) S and T satisfy E.A like property,
(iii) S and T are weakly compatible.

Then T and S have a unique common fixed point in X.
PROOF. In view of assumption (ii), there exists a sequence $\left\{x_{n}\right\}$ in X and $u \in$ $S(X) \cup T(X)$ such that

$$
\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=u
$$

Let us assume that $\lim _{n \rightarrow \infty} S x_{n}=u \in T(X)$. Now we can find $v \in X$ such that $T v=u$. Now from inequality (i), taking $x=v$ and $y=x_{n}$, we can write

$$
\begin{aligned}
d\left(S v, S x_{n}\right) \leq & \alpha\left[d\left(S v, T x_{n}\right)+d\left(T v, S x_{n}\right)\right]+\beta\left[d\left(S v, T x_{n}\right)+d\left(T v, T x_{n}\right)\right] \\
& +\gamma\left[d\left(T v, S x_{n}\right)+d\left(T v, T x_{n}\right)\right]
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the above inequality, we get

$$
\begin{aligned}
d(S v, u) & \leq \alpha[d(S v, u)+d(T v, u)]+\beta[d(S v, u)+d(T v, u)]+\gamma[d(T v, u)+d(T v, u)] \\
& =\alpha[d(S v, u)+d(u, u)]+\beta[d(S v, u)+d(u, u)]+\gamma[d(u, u)+d(u, u)] \\
& =(\alpha+k \alpha+\beta+k \beta+2 k \gamma) d(S v, u)+(k \alpha+k \beta+2 k \gamma) d(u, S v) \\
& \leq 2 k(\alpha+\beta+\gamma) d(S v, u)+2 k(\alpha+\beta+\gamma) d(u, S v)
\end{aligned}
$$

This gives

$$
\begin{equation*}
d(S v, u) \leq \frac{2 k(\alpha+\beta+\gamma)}{1-2 k(\alpha+\beta+\gamma)} d(u, S v) \tag{7}
\end{equation*}
$$

Similarly, taking $x=x_{n}$ and $y=v$, in condition (i), we can write

$$
\begin{aligned}
d\left(S x_{n}, S v\right) \leq & \alpha\left[d\left(S x_{n}, T v\right)+d\left(T x_{n}, S v\right)\right]+\beta\left[d\left(S x_{n}, T v\right)+d\left(T x_{n}, T v\right)\right] \\
& +\gamma\left[d\left(T x_{n}, S v\right)+d\left(T x_{n}, T v\right)\right]
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the above inequality, we get

$$
\begin{aligned}
d(u, S v) & \leq \alpha[d(u, T v)+d(u, S v)]+\beta[d(u, T v)+d(u, T v)]+\gamma[d(u, S v)+d(u, T v)] \\
& \leq \alpha[d(u, u)+d(u, S v)]+\beta[d(u, u)+d(u, u)]+\gamma[d(u, S v)+d(u, u)] \\
& \leq(\alpha+k \alpha+2 k \beta+\gamma+k \gamma) d(u, S v)+(k \alpha+2 k \beta+k \gamma) d(S v, u) \\
& \leq 2 k(\alpha+\beta+\gamma) d(u, S v)+2 k(\alpha+\beta+\gamma) d(S v, u)
\end{aligned}
$$

This gives

$$
\begin{equation*}
d(u, S v) \leq \frac{2 k(\alpha+\beta+\gamma)}{1-2 k(\alpha+\beta+\gamma)} d(S v, u) \tag{8}
\end{equation*}
$$

From inequalities (7) and (8), we get

$$
d(u, S v) \leq\left(\frac{2 k(\alpha+\beta+\gamma)}{1-2 k(\alpha+\beta+\gamma)}\right)^{2} d(S v, u)
$$

and

$$
d(S v, u) \leq\left(\frac{2 k(\alpha+\beta+\gamma)}{1-2 k(\alpha+\beta+\gamma)}\right)^{2} d(u, S v)
$$

where $0 \leq \frac{2 k(\alpha+\beta+\gamma)}{1-2 k(\alpha+\beta+\gamma)}<1$. Hence, we conclude that $d(S v, u)=0=d(u, S v)$ i.e. $S v=u$. Thus $T v=u=S v$. As we know that S and T are weakly compatible, we conclude that v is a coincidence point of S and T, so that $S(T v)=T(S v)$ implies that $S u=T u$.

Now we claim that u is a common fixed point of S and T. For this, we consider

$$
\begin{aligned}
d\left(S u, S x_{n}\right) \leq & \alpha\left[d\left(S u, T x_{n}\right)+d\left(T u, S x_{n}\right)\right]+\beta\left[d\left(S u, T x_{n}\right)+d\left(T u, T x_{n}\right)\right] \\
& +\gamma\left[d\left(T u, S x_{n}\right)+d\left(T u, T x_{n}\right)\right] .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the above inequality, we get

$$
\begin{aligned}
d(S u, u) & \leq \alpha[d(S u, u)+d(T u, u)]+\beta[d(S u, u)+d(T u, u)]+\gamma[d(T u, u)+d(T u, u)] \\
& =\alpha[d(S u, u)+d(S u, u)]+\beta[d(S u, u)+d(S u, u)]+\gamma[d(S u, u)+d(S u, u)] \\
& =(2 \alpha+2 \beta+2 \gamma) d(S u, u)
\end{aligned}
$$

This gives, since $2 \alpha+2 \beta+2 \gamma<1, d(S u, u)=0$. Similarly, we can show that $d(u, S u)=$ 0 . Thus we get $d(S u, u)=0=d(u, S u)$ which implies that $S u=u$ and $S u=u=T u$. Hence we infer that u is a common fixed point of T and S. Next we claim that u is a unique common fixed point of T and S. Let, if possible, u^{\prime} be another common fixed point of S and T. Then from inequality (i) we can write

$$
\begin{aligned}
d\left(u, u^{\prime}\right)= & d\left(S u, S u^{\prime}\right) \\
\leq & \alpha\left[d\left(S u, T u^{\prime}\right)+d\left(T u, S u^{\prime}\right)\right]+\beta\left[d\left(S u, T u^{\prime}\right)+d\left(T u, T u^{\prime}\right)\right] \\
& +\gamma\left[d\left(T u, S u^{\prime}\right)+d\left(T u, T u^{\prime}\right)\right] \\
= & \alpha\left[d\left(u, u^{\prime}\right)+d\left(u, u^{\prime}\right)\right]+\beta\left[d\left(u, u^{\prime}\right)+d\left(u, u^{\prime}\right)\right]+\gamma\left[d\left(u, u^{\prime}\right)+d\left(u, u^{\prime}\right)\right] \\
= & 2(\alpha+\beta+\gamma) d\left(u, u^{\prime}\right) .
\end{aligned}
$$

Since $2 \alpha+2 \beta+2 \gamma<1$, this gives that $d\left(u, u^{\prime}\right)=0$. Similarly, we show that $d\left(u^{\prime}, u\right)=0$. Thus $d\left(u, u^{\prime}\right)=0=d\left(u^{\prime}, u\right)$ which implies that $u=u^{\prime}$. Thus u is a unique common fixed point of S and T. Hence the theorem.

EXAMPLE 10. Consider $X=[1, \infty)$ with $d(x, y)=|x-y|^{2}+2|x-1|+|y-1|$. Then (X, d) is a $d q b$-metric space with coefficient $k=2$. Let $S x=2 x-1$ and $T x=x^{7}$. Note that for the sequence $\left\{x_{n}\right\}=1+1 / n, n \in N$ we get $\lim S x_{n}=\lim T x_{n}=1$ where $1 \in S(X) \cup T(X)$. In other words S and T satisfy E.A like property. Also observe that
S and T are weakly compatible. Now

$$
\begin{aligned}
& d(S x, S y)=d(2 x-1,2 y-1)=|2 x-2 y|^{2}+2|2 x-2|+|2 y-2|, \\
& d(S x, T y)=d\left(2 x-1, y^{7}\right)=\left|2 x-1-y^{7}\right|^{2}+2|2 x-2|+\left|y^{7}-1\right|, \\
& d(T x, S y)=d\left(x^{7}, 2 y-1\right)=\left|x^{7}-2 y-1\right|^{2}+2\left|x^{7}-1\right|+|2 y-1|, \\
& d(S x, T y)=d\left(2 x-1, y^{7}\right)=\left|2 x-1-y^{7}\right|^{2}+2|2 x-2|+\left|y^{7}-1\right|, \\
& d(T x, T y)=d\left(x^{7}, y^{7}\right)=\left|x^{7}-y^{7}\right|^{2}+2\left|x^{7}-1\right|+\left|y^{7}-1\right| .
\end{aligned}
$$

It is easy to verify that, for all $x, y \in X$,

$$
\begin{aligned}
d(2 x-1,2 y-1) \leq & \alpha\left[d\left(2 x-1, y^{7}\right)+d\left(x^{7}, 2 y-1\right)\right]+\beta\left[d\left(2 x-1, y^{7}\right)+d\left(x^{7}, y^{7}\right)\right] \\
& +\gamma\left[d\left(x^{7}, 2 y-1\right)+d\left(x^{7}, y^{7}\right)\right]
\end{aligned}
$$

taking $\alpha=\beta=\gamma=\frac{1}{27}$ so that $\alpha+\beta+\gamma=\frac{1}{9}<\frac{1}{8}$. Thus S and T satisfy all the conditions of the above theorem and hence have the unique common fixed point 1 in X.

References

[1] S. Banach, sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fundam. Math. 3(1922), 133-181.
[2] C. Klin-eam and C. Suanoom, Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions, Fixed Point Theory Appl., 2015, 2015:74, 12 pp.
[3] C. Suanoom, C. Klineam and S. Suantai, Dislocated quasi-b-metric spaces and fixed point theorems for cyclic weakly contractions, J. Nonlinear Sci. Appl., 9(2016), 2779-2788.
[4] K. Wadhwa, H. Dubey and R. Jain, Impact of E. A. Like property on common fixed point theorems in fuzzy metric spaces, J. Adv. Stud. Topol., 3(2012), 52-59.
[5] K. Zoto, A. Isufati and S. K. Pandai, Fixed point results and E. A property in dislocated and dislocated quasi-metric spaces, Turkish Journal of Analysis and Number Theory, 2015, Vol. 3, No. 1, 24-29.
[6] M. Aamri and D. Moutawakil, some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270(2002), 181-188.
[7] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341(2008), 416-420.
[8] M. U. Rahman and M. Sarwar, Dislocated quasi b-metric space and fixed point theorems, Electron. J. Math. Anal. Appl., 4(2016), 16-24.
[9] P. S. Kumari, V. V. Kumar and I. Rambhadra Sarma, Common fixed point theorems on weakly compatible maps on dislocated metric spaces, Math. Sci. (Springer) 6 (2012), Art. 71, 5 pp.

[^0]: *Mathematics Subject Classifications: $47 \mathrm{H} 10,55 \mathrm{M} 20$.
 ${ }^{\dagger}$ Department of Mathematics, Sant Dnyaneshwar Mahavidyalaya, Soegaon, Aurangabad, India
 ${ }^{\ddagger}$ Department of Mathematics, North Maharashtra University, Jalgaon, India

