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Abstract

The purpose of this paper is to prove various Kolmogorov type criteria for
Cb(X,Y ), the space of bounded continuous functions supplied with the sup-norm
from a topological space X into a Banach space Y . We introduce the maximum-
numerical range f with respect to g for each f, g to characterize best approxima-
tion points in closed convex subsets of Cb(X,Y ).

1 Introduction

The approximation problem for space C(X,H) of continuous functions from a compact
metric spaceX into a unitary spaceH, supplied with the sup-norm, was first introduced
by Brosowski [4]. His main result states that the best approximation of subset G
to element f can be characterized by means of a Kolmogorov criterion if and only
if G satisfies some regularity property. Later Poleunis and Van Devel extend this
characterization theorem to the case that X is an arbitrary topological space in which
also noncompact spaces are involved [8]. The case where X is compact Hausdorff
space and H is the complex number has been studied and developed by many authors
[9, 11, 12, 13]. There exist many generalizations of the Kolmogorov theorem (see, e.g.,
the survey [3]). In this paper, an attempt is made to extend this characterization
theorem for the case that X is an arbitrary topological space and Y is Banach space by
using the concept of numerical range. This concept goes back to Toeplitz, who defined
in 1918 the field of values of a matrix, a concept easily extensible to bounded linear
operators on a Hilbert space. Later, Lumer and Bauer gave independent but related
extensions of Toeplitz’s numerical range to bounded linear operators on Banach spaces
which do not use the algebraic structure of the space of all bounded linear operators.
These works have been extended to the more general setting, as bounded uniformly
continuous functions from the unit sphere of a Banach space to space, but it is not
possible to be extended to all bounded functions[1, 2, 10]. For more information and
background, we refer the reader to the paper [3]. We define maximum numerical range
for operators between different Banach spaces, which can easily be extended to all
bounded functions and which is never empty. As the main result, we give some results
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to characterize the best approximation of convex sets in Cb(X,Y ) by using the concept
of numerical range.

2 Characterization of Approximation Points

Let X be a topological space and Y a Banach space. We denote by Cb(X,Y ), the space
of bounded continuous function f : X → Y equipped with the norm

‖f‖ = sup
x∈X
‖f(x)‖.

LetW be a nonempty subset of the normed space Cb(X,Y ) and f ∈ Cb(X,Y ). The
set of all best approximations to f from W is denoted by PW (f). Thus we define

PW (f) := {g0 ∈W | ‖f − g0‖ = inf
g∈W
‖f − g‖}.

We are interested in the problem of finding and describing the function g0 which
may be the best approximation for the operator f . In 1948, Kolmogorov generalized
the characterization of the best approximation for the polynomial of a fixed continuous
function.

THEOREM 1. Let U be a linear subspace of the space C(X)(X is a compact set)
and let f /∈ U . Then g0 ∈ PU (f), if and only if, for each g,

Remax{(f(q)− g0(q))g(q)} > 0,

where |x(q)− g0(q)| = max |x(t)− g0(t)|.

For the case of non-compact metric X and arbitrary unitary space Y . Poleunis
and Van de Vel extend Brosowskis main result states that the best approximation of
convex set U can be characterized by means of a Kolmogorov criterion if and only if U
satisfies some regularity property.

THEOREM 2. Let U be a closed convex subset of Cb(X,Y ). If G is regular, then
g0 ∈ PU (f), if for ε > 0 and h ∈ U ,

supRe〈(f − g0)(x), (g0 − h)(x)〉 ≥ 0,

where x ∈ O(ε) := {x ∈ X : ||f(x)− g0(x)|| > ‖f(x)− g0(x)|‖ − ε}.

In [6], Harris by using the numerical range of f with respect to g gives a condition
it which equivalent to an extension of non-compact spaces of Kolmogoroff ’s character-
ization of functions of best approximation.

DEFINITION 1. (Intrinsic numerical range). Let Y be a Banach space and let X
be a non-empty set and g ∈ Cb(X;Y ) with ‖g‖ = 1. For every f ∈ Cb(X;Y ), the
intrinsic numerical range of f relative to g is given by

Vg(f) := {φ(f) : φ ∈ Cb(X;Y )∗, ‖φ‖ = φ(g) = 1}.
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DEFINITION 2. (Spatial numerical range). Let Y be a Banach space and let X be
a non-empty set and g ∈ Cb(X;Y ) with ‖g‖ = 1. For every f ∈ Cb(X;Y ), the spatial
numerical range of f relative to g is given by

Φg(f) := {φ(f(t)) : φ ∈ BY ∗ , φ(g(t)) = 1}.

THEOREM 3. Let f, g ∈ Cb(X,Y ) where X is a topological space and Y is a
Hilbert space. Let U be a closed convex subset of Cb(X,Y ) such that f /∈ U and f −g0
is a scalar multiple of g. Then the following are equivalent:

(1) g0 ∈ PU (f) and supReΦg(f) ≤ supReVg(f).

(2) For each h ∈ U ,
supRe〈(f − g0)(x), (g0 − h)(x)〉 ≥ 0,

where the sup is taken over all those x for which ‖(f − g0)(x)‖ = ‖f − g0‖.

By using arguments similar to those of Kolmogorov and Harris, it can be shown that
the characterization of best approximation theorem holds for arbitrary topological and
arbitrary Banach spaces. Now, we define maximum numerical range of f with respect
to g by

Wg(f) := {λ ∈ C : λ = lim
n→∞

φ(f(xn)), (xn, φ)n∈N ∈ Zg},

where
Zg = {(xn, φ)n∈N ∈ X ×BY ∗ , lim

n→∞
φ(g(xn)) = ‖g‖}. (1)

PROPOSITION 1. Let f, g ∈ Cb(X,Y ). Then Wg(f) is a non-empty compact
subset of the complex plane.

PROOF. By definition of the norm on Cb(X,Y ), there exists {xn}n∈N such that

‖g‖ = sup
x∈X
‖g(x)‖ = lim

n→∞
‖g(xn)‖ = lim

n→∞
sup

φ∈BY ∗
|φ(g(xn))|.

As BY ∗ is w∗-compact set then there is a φ0 such that

lim
n→∞

sup
φ∈BY ∗

|φ(g(xn))| = lim
n→∞

|φ0(g(xn))|.

Put λn = φ0(f(xn)). Since {λn} is bounded sequence, there is a convergence sub-
sequence {λni}. Let λ = limni→∞ φ0(f(xni)). Then λ ∈Wg(f) and it a non-empty set.
It is trivial that Wg(f) is a closed set. Since f is a bounded function, for λ ∈ Wg(f),
we have

|λ| = | lim
n→∞

φ(f(xn))| ≤ ‖φ‖‖f( lim
n→∞

xn)‖ ≤ ‖f‖ <∞.
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Thus Wg(f) is bounded. Then by Heine-Borel theorem it is a compact set.

PROPOSITION 2. Let X be a compact topological space. For every continuous
function g with norm one, we have Wg(f) = Φg(f), for each f ∈ Cb(X,Y ).

PROOF. It is trivial.

For x, y ∈ in X, the norm of X is Gateaux differentiable at x 6= 0, if

lim
t→0

‖x+ ty‖ − ‖x‖
t

, exists for each y ∈ X.

The norm of X is called Frechet differentiable at x if the convergence to the limit is
uniform for all y ∈ X. In general, the norm is not Gateaux differentiable at x 6= 0
in X. Nevertheless, it is known [5] that the limits always exist. Norm derivatives of
the spaces Lp(dµ), 1 ≤ p < ∞, and C(X), the space of real continuous functions on a
compact Hausdorff space X, have been studied extensively (see for example [7]). Recall
the norm on X is uniformly Gateaux differentiable if and only if whenever {φn} and
{ψn} are sequences in BY ∗ such that ‖φn +ψn‖ → 2 it follows that ‖ψn−φn‖ → 0 (in
the case X is called uniform smooth).

PROPOSITION 3. Let Y be a uniformly smooth Banach space, X a non-empty
set and g ∈ Cb(X;Y ) with ‖g‖ = 1. Then Wg(f) = Φg(f) for every f ∈ Cb(X,Y ).

PROOF. Let λ ∈ Wg(f), {xn}n∈N a sequence in X and φ ∈ BY ∗ such that
φ(f(xn)) −→ 1 and φ(g(xn)) −→ 1. For every n ∈ N, we take ψn ∈ BY ∗ such
that ψn(g(xn)) = 1. Since ‖φ + ψn‖ → 2, the uniform smoothness of Y gives that
‖φ− ψn‖ → 0. Now, we have

|ψn(f(xn))− λ| ≤ |φ(f(xn))− λ|+ |φ(f(xn))− ψn(f(xn))|
≤ |φ(f(xn))− λ|+ ‖φ− ψ‖‖f‖ → 0.

Therefore λ ∈ Φg(f). Then Wg(f) ⊆ Φg(f), in other hands, Φg(f) ⊆ Wg(f). So
Wg(f) = Φg(f).

In the following, we use the concept of numerical range to characterize best approx-
imation points in closed convex subsets of Cb(X,Y ).

We write Re(.) to denote the real part of (.) and define the directional derivative
of the norm in point x along y by

τ(x, y) := lim sup
t→0+

‖x+ ty‖ − ‖x‖
t

.

THEOREM 4. Let U be a closed convex subset of Cb(X,Y ), f ∈ Cb(X,Y ) \ U
and g0 ∈ U . Then the following statements are equivalent.
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i) g0 ∈ PU (f).

ii) For each h ∈ U ,

maxReWf−h(h− g0) ≤ 0. (2)

PROOF. i→ ii. Let h ∈ Cb(X,Y ) and ({xn}, φ∗) ∈ Zf−h be as in (1). Then

‖f − h+ t(h− g0)‖ ≥ lim
n→∞

‖(f − h+ t(h− g0)(xn)‖

= lim
n→∞

sup
φ∈BY ∗

|φ((f − h+ t(h− g0))(xn))|

≥ lim
n→∞

sup
φ∈BY ∗

Re φ((f − h+ t(h− g0))(xn))

≥ lim
n→∞

Re φ((f − h)(xn)) +Re φ(t(h− g0)(xn))

= ‖f − h‖+Re lim
n→∞

φ((h− g0)(xn)).

Hence

Re lim
n→∞

φ((h− g0)(xn)) ≤ ‖f − h+ t(h− g0)‖ − ‖f − h‖
t

.

Setting t→ 0+, and taking lim sup, thus

maxReWf−h(h− g0) ≤ τ(f − h, h− g0). (3)

Since g0 ∈ PU (f), for h ∈ U and t = 1, we have

‖f − h+ t(h− g0)‖ − ‖f − h‖ ≤ 0.

As the function ϕ defined by ϕ(t) = ‖f−h+t(h−g0)‖−‖f−h‖
t is non-decreasing, setting

t→ 0+, and taking lim sup, therefore τ(f − h, h− g0) ≤ 0. Now by (3), we get (2).
ii→ i. It is not restrictive to assume g0 = 0. Let inequality (2) hold but g0 /∈ PU (f),

then there exists h1 ∈ U \{0}, such that ‖f −h1‖ < ‖f‖. By applying (2) to hλ = λh1,
for 0 < λ ≤ 1, we get

maxReWf−hλ(hλ) = maxReWf−λh1(λh1) ≤ 0.

Since 0 < λ, we have
maxReWf−λh1(h1) ≤ 0,

and

maxReWf−λh1(−h1) ≥ minReWf−λh1(−h1)
= −maxReWf−λh1(h1) ≥ 0.

Then
τ(f − λh1,−h1) ≥ maxReWf−λh1(−h1) ≥ 0.
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Since τ is upper semi-continuous in its arguments, we have

τ(f,−h1) ≥ lim sup
λ→0+

τ(f − λh1,−h1) ≥ 0.

This implies that there exists ε1 such that for t ∈ (0, ε1], we have
‖f−th1‖−‖f‖

t ≥ 0.
Again since ϕ is non-decreasing, we have ‖f‖ ≤ ‖f − h1‖, which is a contradiction.

LEMMA 1. Let U be a closed convex subset of Cb(X,Y ), f ∈ Cb(X,Y ) \ U and
g0 ∈ U . If for each h ∈ U , maxRe Wf−h(h− g0) ≥ 0, then

maxReWf−g0(g0 − h) ≥ 0.

PROOF. Suppose, on the contrary, it is possible to find an element h ∈ U such
that

maxRe Wf−g0(g0 − h) = −δ < 0.

Let (yn, φ0) be an element that limRe φ0(g0 − h)(yn) = maxRe Wf−g0(g0 − h). Since
g0−h and φ0 are continuous functions on X, there exists an open set G ⊆ X such that

max
x∈G

Re φ0(g0 − h)(x) < −δ.

Then there exists 0 < ε0, such that for each ε ∈ (0, ε0], we have

Xf−g0(ε) = {{xn}n∈N ∈ X : lim
n→∞

‖(f − g0)(xn)‖ ≥ ‖f − g0‖ − ε} ⊆ G,

and

maxRe φ0(g0 − h)(xn) < −δ
2
, where {xn} ∈ Xf−g0(ε).

Put D = Xf−g0(ε0), ε1 ≤ 1
2ε0 and

ht = th+ (1− t)g0, for 0 < t < 1.

Since ht → g0 as t→ 0, there exists t0 > 0 such that for any 0 < t ≤ t0,

‖ht − g0‖ ≤ ε1. (4)

Now

Re lim
n→∞

φ0((g0 − ht)(xn)) = Re lim
n→∞

φ0(th+ (1− t)g0 − g0)(xn))

= Re lim
n→∞

φ0(t(h− g0)(xn))

= −tRe lim
n→∞

φ0((g0 − h)(xn)

>
δ

2
.

Then we have

Re lim
n→∞

φ0((g0 − ht)(xn)) > 0, for {xn}n∈N ∈ D.
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On the other hand, by (4), for each (xn, φ)n∈N ∈ Zf−ht , we have

lim
n→∞

‖(f − g0)(xn)‖ = lim
n→∞

‖(f − ht)(xn)− (g0 − ht)(xn)‖

≥ lim
n→∞

‖(f − ht)(xn)‖ − ‖(g0 − ht)(xn)‖

≥ lim
n→∞

φ0((f − ht)(xn))− ‖(g0 − ht)(xn)‖

≥ ‖f − ht‖ − ‖g0 − ht‖
≥ ‖f − g0‖ − 2ε1

≥ ‖f − g0‖ − ε0.

It follows that Zf−ht ⊆ D. Now by (4), we get

maxReWf−ht(ht − g0) = max
(xn,φ)∈Zf−ht

Re lim
n→∞

φ(ht − g0)(xn))

≥ min
(xn,φ)∈Zf−ht

Re lim
n→∞

φ0(ht − g0)(xn))

≥ min
x∈D

Re φ0(ht − g0)(x)) > 0.

This contradiction completes the proof.

THEOREM 5. Let U be a closed convex subset of Cb(X,Y ), f ∈ Cb(X,Y ) \ U
and g0 ∈ U . Then the following statements are equivalent.

i) g0 ∈ PU (f).

ii) For each h ∈ U ,

maxRe Wf−g0(g0 − h) ≥ 0. (5)

PROOF. i→ ii. Since g0 ∈ PU (f), by Theorem 4, for each h ∈ U , we have

maxRe Wf−h(h− g0) ≤ 0.

Now by Lemma 1 we obtain (5).

ii→ i. Let (5) be true and (xhn, φ) be a sequence of Zf−g0 such that

lim
n→∞

Re φ(g0 − h)(xhn) ≥ 0.

Therefore,

‖f − h‖ ≥
∥∥(f − h)

(
xhn
)∥∥ ≥ φ((f − h)

(
xhn
)
)

= lim
n→∞

φ((f − g0 + g0 − h)
(
xhn
)
)

= lim
n→∞

[
φ((f − g0)

(
xhn
)
) + φ((g0 − h)

(
xhn
)
)
]

≥ lim
n→∞

φ((f − g0)
(
xhn
)
) = ‖f − g0‖ .
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This completes the proof.

COROLLARY 1. Let U be a closed convex subset of Cb(X,Y ), f ∈ Cb(X,Y ) \ U
and g0 ∈ U . Then the following statements are equivalent.

i) g0 ∈ PU (f).

ii) For each h ∈ U ,

maxRe Wf−h(h− g0) ≤ 0 ≤ maxReWf−g0(g0 − h).

PROOF. It is a consequence of Theorems 4 and 5.

COROLLARY 2. Let f ∈ Cb(X,Y ) where X is a topological metric space and Y
is a Hilbert space. Let U be a closed convex subset of Cb(X,Y ) with f /∈ U . Then
g0 ∈ PU (f) if and only if

max lim
n→∞

Re〈(f − g0)(xhn), (g0 − h)(xhn)〉 ≥ 0, for each h ∈ U, (6)

where limn→∞ ‖(f − g0)(xhn)‖ = ‖f − g0‖.

PROOF. It is a consequence of the Riesz representation theorem and Theorem 5.

EXAMPLE 1. Let X = C, Y = X and U = co(I) be the set of all convex
combination of I, where I is the identity operator. Suppose that the function f defined
by (x1, x2)→ (−x2, x1). By Corollary 1, g0 = λ0I ∈ PU (f) if and only if the inequality
(6) holds for every λ. But this inequality holds only if λ0 = 0. Then PU (f) = {0}.
Also, we can show this without applying Corollary 1. For λ ∈ [0, 1], we have

‖f − λI‖ ≥ r(f − λI) = sup{| − λ± i|} ≥ 1.

Thus infλ∈[0,1] ‖f − λI‖ ≥ 1, in the other hand ‖f − 0‖ = 1, therefore PU (f) = {0}.

EXAMPLE 2. Let X = Y , Y = {z : z ∈ C, |z| ≤ 1}. Let f ∈ C(X,Y ) be defined
by f(z) = zn and U = Pn−1 be the set of all polynomials of degree at most n− 1. By
Corollary 1, PU (f) = {0}.
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