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Abstract

In this paper, we prove a theorem dealing with |A, pn|k summability method
of infinite series by using the concept of quasi β-power increasing sequence instead
of almost increasing sequence.

1 Introduction

A positive sequence (bn) is said to be almost increasing if there exists a positive in-
creasing sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn
(see [1]). Obviously, every increasing sequence is almost increasing. However, the con-
verse need not be true as can be seen by taking an example, say, bn = ne(−1)

n

. A
positive sequence (γn) is said to be a quasi β-power increasing sequence if there exists
a constant K = K(β, γ) ≥ 1 such that Knβγn ≥ mβγm holds for all n ≥ m ≥ 1
(see [8]). It should be noted that every almost increasing sequence is quasi β-power
increasing for any nonnegative β, but the converse need not be true as can be seen by
taking the example, say γn = n−β for β > 0. A sequence (λn) is said to be of bounded
variation, denoted by (λn) ∈ BV, if

∑∞
n=1 |∆λn| =

∑∞
n=1 |λn − λn+1| < ∞. Let

∑
an

be a given infinite series with the partial sums (sn). By (un) and (tn) we denote the
n-th (C, 1) mean of the sequences (sn) and (nan), respectively. The series

∑
an is said

to be summable |C, 1|k, k ≥ 1, if (see [5, 7])

∞∑
n=1

nk−1|un − un−1|k =

∞∑
n=1

1

n
|tn|k <∞.

Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as (n→∞), (P−i = p−i = 0, i ≥ 1) .

The sequence-to-sequence transformation

ωn =
1

Pn

n∑
v=0

pvsv
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defines the sequence (ωn) of the Riesz mean or simply the
(
N̄ , pn

)
mean of the sequence

(sn), generated by the sequence of coeffi cients (pn) (see [6]). The series
∑
an is said

to be summable
∣∣N̄ , pn∣∣k , k ≥ 1, if (see [2])

∞∑
n=1

(
Pn
pn

)k−1
|∆ωn−1|k <∞,

where

∆ωn−1 = − pn
PnPn−1

n∑
v=1

Pv−1av, n ≥ 1.

In the special case, when pn = 1 for all values of n, |N̄ , pn|k summability reduces to
|C, 1|k summability.
Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero di-

agonal entries. Then A defines the sequence-to-sequence transformation, mapping the
sequence s = (sn) to As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ....

The series
∑
an is said to be summable |A, pn|k, k ≥ 1, if (see [12])

∞∑
n=1

(
Pn
pn

)k−1
|∆̄An(s)|k <∞,

where
∆̄An(s) = An(s)−An−1(s).

If we take anv = pv
Pn
, then |A, pn|k summability reduces to |N̄ , pn|k summability. If

we take anv = pv
Pn
and pn = 1 for all values of n, then |A, pn|k summability reduces to

|C, 1|k summability. Also, if we take pn = 1 for all values of n, then |A, pn|k summability
reduces to |A|k summability (see [13]). If we take anv = pv

Pn
, then |A|k summability

reduces to |R, pn|k summability (see [3]).
Before stating the main theorem we must first introduce some further notations.

Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and
Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... (1)

and
â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (2)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and
series-to-series transformations, respectively. Then, we have

An (s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (3)
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and

∆̄An (s) =

n∑
v=0

ânvav. (4)

2 Known Result

In [4], Bor has proved the following theorem for
∣∣N̄ , pn∣∣k summability factors of infinite

series.

THEOREM 1. Let (Xn) be an almost increasing sequence and let there be sequences
(βn) and (λn) such that

|∆λn| ≤ βn, (5)

βn → 0 as n→∞,
∞∑
n=1

n |∆βn|Xn <∞, (6)

|λn|Xn = O(1). (7)

If
m∑
n=1

|λn|
n

= O(1) as m→∞,

m∑
n=1

1

n
|tn|k = O(Xm) as m→∞, (8)

and (pn) is a sequence such that

m∑
n=1

pn
Pn
|tn|k = O (Xm) as m→∞, (9)

then the series
∑
anλn is summable

∣∣N̄ , pn∣∣k , k ≥ 1.

3 Main Result

Many works dealing with absolute matrix summability factors of infinite series have
been done (see [9]-[11]). The purpose of this paper is to generalize Theorem 1 to |A, pn|k
summability by using quasi β-power increasing sequences instead of almost increasing
sequences.
Now, we shall prove the following theorem.

THEOREM 2. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (10)

an−1,v ≥ anv, for n ≥ v + 1, (11)
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ann = O

(
pn
Pn

)
, (12)

and (Xn) be a quasi β-power increasing sequence for some 0 < β < 1. If (λn) ∈ BV
and all the conditions of Theorem 1 are satisfied, then the series

∑
anλn is summable

|A, pn|k, k ≥ 1.

REMARK 1. If we take anv = pv
Pn
and (Xn) as an almost increasing sequence, then

we get Theorem 1. In this case the condition (λn) ∈ BV is not needed.

We need the following lemma for the proof of Theorem 2.

LEMMA 1 ([8]). Under the conditions on (Xn), (βn) and (λn) as taken in the
statement of Theorem 2, the following conditions hold;

nβnXn = O (1) as n→∞, (13)

∞∑
n=1

βnXn <∞. (14)

4 Proof of Theorem 2

Let (In) denote A-transform of the series
∑
anλn. Then, by (3) and (4), we have

∆̄In =

n∑
v=1

ânvavλv

=

n∑
v=1

ânvλv
v

vav.

Using Abel’s transformation, we have that

∆̄In =

n−1∑
v=1

∆v

(
ânvλv
v

) v∑
r=1

rar +
ânnλn
n

n∑
r=1

rar

=

n−1∑
v=1

v + 1

v
∆v (ânv)λvtv +

n−1∑
v=1

1

v
ân,v+1λv+1tv

+

n−1∑
v=1

v + 1

v
ân,v+1∆λvtv +

n+ 1

n
annλntn

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 2, it is suffi cient to show that

∞∑
n=1

(
Pn
pn

)k−1
|In,r|k <∞, for r = 1, 2, 3, 4.
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First, when k > 1, applying Hölder’s inequality with indices k and k
′
, where 1k + 1

k′
= 1,

we have that

m+1∑
n=2

(
Pn
pn

)k−1
|In,1|k = O(1)

m+1∑
n=2

(
Pn
pn

)k−1(n−1∑
v=1

|∆v(ânv)||λv||tv|
)k

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1(n−1∑
v=1

|∆v(ânv)||λv|k|tv|k
)

×
(
n−1∑
v=1

|∆v(ânv)|
)k−1

.

By (1) and (2), we have that

∆v(ânv) = ânv − ân,v+1 = ānv − ān−1,v − ān,v+1 + ān−1,v+1 = anv − an−1,v.

Thus using (1), (10) and (11)

n−1∑
v=1

|∆v(ânv)| =
n−1∑
v=1

(an−1,v − anv) ≤ ann.

Hence, we get

m+1∑
n=2

(
Pn
pn

)k−1
|In,1|k = O(1)

m+1∑
n=2

(
Pn
pn

)k−1
ak−1nn

(
n−1∑
v=1

|∆v(ânv)||λv|k|tv|k
)

= O(1)

m∑
v=1

|λv|k−1|λv||tv|k
m+1∑
n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

pv
Pv
|λv||tv|k

= O(1)

m−1∑
v=1

∆|λv|
v∑
r=1

pr
Pr
|tr|k +O(1)|λm|

m∑
v=1

pv
Pv
|tv|k

= O(1)

m−1∑
v=1

|∆λv|Xv +O(1)|λm|Xm

= O(1)

m−1∑
v=1

βvXv +O(1)|λm|Xm = O(1) as m→∞,
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by virtue of the hypotheses of Theorem 2 and Lemma 1. Also, we have that

m+1∑
n=2

(
Pn
pn

)k−1
|In,2|k ≤

m+1∑
n=2

(
Pn
pn

)k−1(n−1∑
v=1

|ân,v+1||λv+1|
|tv|
v

)k

≤
m+1∑
n=2

(
Pn
pn

)k−1(n−1∑
v=1

|ân,v+1||λv+1|
|tv|k
v

)
×
(
n−1∑
v=1

|ân,v+1|
|λv+1|
v

)k−1

≤
m+1∑
n=2

(
Pn
pn

)k−1
ak−1nn

(
n−1∑
v=1

|ân,v+1||λv+1|
|tv|k
v

)
×
(
n−1∑
v=1

|λv+1|
v

)k−1

= O(1)

m∑
v=1

|λv+1|
v
|tv|k

m+1∑
n=v+1

|ân,v+1|.

By (1), (2), (10) and (11), we obtain

|ân,v+1| =
v∑
i=0

(an−1,i − ani).

Thus, using (1) and (10), we have

m+1∑
n=v+1

|ân,v+1| =
m+1∑
n=v+1

v∑
i=0

(an−1,i − ani) ≤ 1,

then we get

m+1∑
n=2

(
Pn
pn

)k−1
|In,2|k = O(1)

m∑
v=1

|λv+1|
v
|tv|k

= O(1)

m−1∑
v=1

|∆λv+1|
v∑
r=1

1

r
|tr|k +O(1)|λm+1|

m∑
v=1

1

v
|tv|k

= O(1)

m−1∑
v=1

βv+1Xv+1 +O(1)|λm+1|Xm+1 = O(1) as m→∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.
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Also, we have that

m+1∑
n=2

(
Pn
pn

)k−1
|In,3|k = O(1)

m+1∑
n=2

(
Pn
pn

)k−1(n−1∑
v=1

|ân,v+1||∆λv||tv|
)k

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1(n−1∑
v=1

|ân,v+1||∆λv||tv|k
)
×
(
n−1∑
v=1

|ân,v+1||∆λv|
)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1
ak−1nn

(
n−1∑
v=1

|ân,v+1|βv|tv|k
)

= O(1)

m∑
v=1

βv|tv|k
m+1∑
n=v+1

|ân,v+1|

= O(1)

m∑
v=1

vβv
|tv|k
v

= O(1)

m−1∑
v=1

|∆ (vβv)|
v∑
r=1

1

r
|tr|k +O(1)mβm

m∑
v=1

1

v
|tv|k

= O(1)

m−1∑
v=1

v|∆βv|Xv +O(1)

m−1∑
v=1

βvXv +O(1)mβmXm

= O(1) as m→∞,

by (5), (6), (8), (12), (13) and (14).
Finally, as in In,1, we have that

m∑
n=1

(
Pn
pn

)k−1
|In,4|k = O(1)

m∑
n=1

(
Pn
pn

)k−1
|λn|k|tn|kaknn

= O(1)

m∑
n=1

pn
Pn
|λn||tn|k = O(1) as m→∞,

by (5), (7), (9), (12) and (14). Hence, the proof of Theorem 2 is completed.

If we take anv = pv
Pn
and pn = 1 for all values of n, then we get a result concerning

|C, 1|k summability factors of infinite series.
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