Generalized Quasi Power Increasing Sequences*

Hikmet Seyhan Özarslan ${ }^{\dagger}$

Received 16 February 2018

Abstract

In this paper, we prove a theorem dealing with $\left|A, p_{n}\right|_{k}$ summability method of infinite series by using the concept of quasi β-power increasing sequence instead of almost increasing sequence.

1 Introduction

A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). Obviously, every increasing sequence is almost increasing. However, the converse need not be true as can be seen by taking an example, say, $b_{n}=n e^{(-1)^{n}}$. A positive sequence $\left(\gamma_{n}\right)$ is said to be a quasi β-power increasing sequence if there exists a constant $K=K(\beta, \gamma) \geq 1$ such that $K n^{\beta} \gamma_{n} \geq m^{\beta} \gamma_{m}$ holds for all $n \geq m \geq 1$ (see [8]). It should be noted that every almost increasing sequence is quasi β-power increasing for any nonnegative β, but the converse need not be true as can be seen by taking the example, say $\gamma_{n}=n^{-\beta}$ for $\beta>0$. A sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denoted by $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$, if $\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|=\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$. Let $\sum a_{n}$ be a given infinite series with the partial sums $\left(s_{n}\right)$. By $\left(u_{n}\right)$ and $\left(t_{n}\right)$ we denote the n-th $(C, 1)$ mean of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see $[5,7]$)

$$
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}-u_{n-1}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad(n \rightarrow \infty), \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right)
$$

The sequence-to-sequence transformation

$$
\omega_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

[^0]defines the sequence $\left(\omega_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [6]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2])
$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\Delta \omega_{n-1}\right|^{k}<\infty
$$
where
$$
\Delta \omega_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1
$$

In the special case, when $p_{n}=1$ for all values of $n,\left|\bar{N}, p_{n}\right|_{k}$ summability reduces to $|C, 1|_{k}$ summability.

Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots
$$

The series $\sum a_{n}$ is said to be summable $\left|A, p_{n}\right|_{k}, k \geq 1$, if (see [12])

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty
$$

where

$$
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s)
$$

If we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then $\left|A, p_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability. If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then $\left|A, p_{n}\right|_{k}$ summability reduces to $|C, 1|_{k}$ summability. Also, if we take $p_{n}=1$ for all values of n, then $\left|A, p_{n}\right|_{k}$ summability reduces to $|A|_{k}$ summability (see [13]). If we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then $|A|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ summability (see [3]).

Before stating the main theorem we must first introduce some further notations. Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{2}
\end{equation*}
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} . \tag{4}
\end{equation*}
$$

2 Known Result

In [4], Bor has proved the following theorem for $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.

THEOREM 1. Let $\left(X_{n}\right)$ be an almost increasing sequence and let there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{5}\\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{6}\\
\left|\lambda_{n}\right| X_{n}=O(1) \tag{7}
\end{gather*}
$$

If

$$
\begin{gather*}
\sum_{n=1}^{m} \frac{\left|\lambda_{n}\right|}{n}=O(1) \quad \text { as } \quad m \rightarrow \infty \\
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{8}
\end{gather*}
$$

and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{9}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

3 Main Result

Many works dealing with absolute matrix summability factors of infinite series have been done (see [9]-[11]). The purpose of this paper is to generalize Theorem 1 to $\left|A, p_{n}\right|_{k}$ summability by using quasi β-power increasing sequences instead of almost increasing sequences.

Now, we shall prove the following theorem.
THEOREM 2. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{gather*}
\bar{a}_{n 0}=1, n=0,1, \ldots \tag{10}\\
a_{n-1, v} \geq a_{n v}, \text { for } n \geq v+1 \tag{11}
\end{gather*}
$$

$$
\begin{equation*}
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right) \tag{12}
\end{equation*}
$$

and $\left(X_{n}\right)$ be a quasi β-power increasing sequence for some $0<\beta<1$. If $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$ and all the conditions of Theorem 1 are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|A, p_{n}\right|_{k}, k \geq 1$.

REMARK 1. If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $\left(X_{n}\right)$ as an almost increasing sequence, then we get Theorem 1. In this case the condition $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$ is not needed.

We need the following lemma for the proof of Theorem 2.
LEMMA 1 ([8]). Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of Theorem 2, the following conditions hold;

$$
\begin{gather*}
n \beta_{n} X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{13}\\
\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{14}
\end{gather*}
$$

4 Proof of Theorem 2

Let $\left(I_{n}\right)$ denote A-transform of the series $\sum a_{n} \lambda_{n}$. Then, by (3) and (4), we have

$$
\begin{aligned}
\bar{\Delta} I_{n} & =\sum_{v=1}^{n} \hat{a}_{n v} a_{v} \lambda_{v} \\
& =\sum_{v=1}^{n} \frac{\hat{a}_{n v} \lambda_{v}}{v} v a_{v}
\end{aligned}
$$

Using Abel's transformation, we have that

$$
\begin{aligned}
\bar{\Delta} I_{n} & =\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{r=1}^{n} r a_{r} \\
& =\sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} t_{v}+\sum_{v=1}^{n-1} \frac{1}{v} \hat{a}_{n, v+1} \lambda_{v+1} t_{v} \\
& +\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v}+\frac{n+1}{n} a_{n n} \lambda_{n} t_{n} \\
& =I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4} .
\end{aligned}
$$

To complete the proof of Theorem 2, it is sufficient to show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4
$$

First, when $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v} \| t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1}
\end{aligned}
$$

By (1) and (2), we have that

$$
\Delta_{v}\left(\hat{a}_{n v}\right)=\hat{a}_{n v}-\hat{a}_{n, v+1}=\bar{a}_{n v}-\bar{a}_{n-1, v}-\bar{a}_{n, v+1}+\bar{a}_{n-1, v+1}=a_{n v}-a_{n-1, v}
$$

Thus using (1), (10) and (11)

$$
\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|=\sum_{v=1}^{n-1}\left(a_{n-1, v}-a_{n v}\right) \leq a_{n n}
$$

Hence, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \frac{p_{r}}{P_{r}}\left|t_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2 and Lemma 1. Also, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, 2}\right|^{k} \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|}{v}\right)^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v}\right) \times\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \frac{\left|\lambda_{v+1}\right|}{v}\right)^{k-1} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v}\right) \times\left(\sum_{v=1}^{n-1} \frac{\left|\lambda_{v+1}\right|}{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right| .
\end{aligned}
$$

By (1), (2), (10) and (11), we obtain

$$
\left|\hat{a}_{n, v+1}\right|=\sum_{i=0}^{v}\left(a_{n-1, i}-a_{n i}\right)
$$

Thus, using (1) and (10), we have

$$
\sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right|=\sum_{n=v+1}^{m+1} \sum_{i=0}^{v}\left(a_{n-1, i}-a_{n i}\right) \leq 1
$$

then we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, 2}\right|^{k} & =O(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| \sum_{r=1}^{v} \frac{1}{r}\left|t_{r}\right|^{k}+O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m} \frac{1}{v}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \beta_{v+1} X_{v+1}+O(1)\left|\lambda_{m+1}\right| X_{m+1}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2 and Lemma 1.

Also, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \beta_{v}\left|t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m} \beta_{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m} v \beta_{v} \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| \sum_{r=1}^{v} \frac{1}{r}\left|t_{r}\right|^{k}+O(1) m \beta_{m} \sum_{v=1}^{m} \frac{1}{v}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) a s m \rightarrow \infty,
\end{aligned}
$$

by (5), (6), (8), (12), (13) and (14).
Finally, as in $I_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} a_{n n}^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|\lambda_{n}\right|\left|t_{n}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by (5), (7), (9), (12) and (14). Hence, the proof of Theorem 2 is completed.
If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then we get a result concerning $|C, 1|_{k}$ summability factors of infinite series.

References

[1] N. K. Bari and S. B. Stečkin, Best approximations and differential properties of two conjugate functions, Trudy Moskov. Mat. Obšč, 5(1956), 483-522 (in Russian).
[2] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc., 97(1985), 147-149.
[3] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113(1991), 1009-1012.
[4] H. Bor, On absolute Riesz summability factors, Adv. Stud. Contemp. Math. (Pusan), 3(2)(2001), 23-29.
[5] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7(1957), 113-141.
[6] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
[7] E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math., 49(1925), 234-256.
[8] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen, 58(2001), 791-796.
[9] H. S. Özarslan, A new application of almost increasing sequences, Miskolc Math. Notes., 14(2013), 201-208.
[10] H. S. Özarslan and E. Yavuz, A new note on absolute matrix summability, J. Inequal. Appl., 474(2013), 1-7.
[11] H. S. Özarslan, A new application of absolute matrix summability, C. R. Acad. Bulgare Sci., 68(2015), 967-972.
[12] W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math., 34(11)(2003), 1547-1557.
[13] N. Tanovič-Miller, On strong summability, Glas. Mat. Ser. III, 14(34)(1979), 8797.

[^0]: *Mathematics Subject Classifications: 26D15, 40D15, 40F05, 40G99.
 ${ }^{\dagger}$ Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey

