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Abstract

In this paper, we investigate bounds on difference between two approximate
solutions of fractional impulsive differential equation. Also some qualitative prop-
erties of solutions has been studied using fractional impulsive inequality.

1 Introduction

Complex and dynamic behaviour of every real life phenomena may not be modelled
using integer order derivatives. Such a problem may instead be better modelled by
using fractional order derivatives. Fractional order derivatives are the generalization of
integer order derivatives which gives numerous applications in engineering, biological
sciences, Fluid mechanics, control theory, signal and image processing etc. For more
details see [3], [13]—[15], [18], [21], [22].
In last two decades, impulsive differential equations gained much attention of many

researchers as it is useful for modeling real life phenomena and physical process in
science and engineering. These type of equations are mainly featured by the sudden
change in their states at particular moments over time of negligible duration. For more
details on the impulsive differential equations and their applications, we refer to [16],
[17].
The method of approximations of solutions gives the beneficial information of so-

lutions without knowing the solutions of differential equations explicitly. Also it es-
tablishes the bound on the difference between two εi-approximate solutions. For more
references see [4], [5], [8], [9], [11], [12].
Many authors studied existence, uniqueness of impulsive fractional differential equa-

tions, see [1], [6], [7], [10], [19], [24]. For example, the authors, T. Lian et al. [6] studied
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the existence and uniqueness of the fractional differential equation

cDq
tx(t) = f(t, x(t)), t ∈ (0, b], 0 < α ≤ 1,

x(0) = x0,

by using Picard’s iterative method.
In [10], A. Yarkar et al. studied the existence of

cDq
tx(t) = f(t, x), t ∈ (t0, T ], 0 < α < 1,

x(t)(t− t0)1−q|t=to = x0,

by using the method of upper and lower solutions.
Motivated by the works of [4], [5], [8], [9], [11], [12], in this paper, we study the

following impulsive fractional differential equation:

cDq
tx(t) = f(t, x(t)), t ∈ (0, T ], t 6= τk, k = 1, 2, ..,m, (1)

x(0) = x0, (2)

∆x(τk) = Ikx(τk), k = 1, 2, ...,m, (3)

where, cDq
t is the classical Caputo frational derivative of order q ∈ (0, 1) with lower

limit zero, x0 ∈ R, f : [0, T ] × X → X is continuous, Ik : X → X. The impulsive
moments τk are such that 0 = τ0 < τ1 < τ2 < ... < τm < τm+1 = T , m ∈ N,
x(τ+

k ) = lim
ε→0+

x(τk + ε) and x(τ−k ) = lim
ε→0−

x(τk + ε) represent the right and the left

limits of x at τk.
The paper is organised as follows: Section 2 consists of preliminaries and hypothe-

ses. In section 3, we establish the bound on the difference between two approximate
solutions. Section 4 deals with nearness and convergence properties of solutions and
finally, we give continuous dependence of solutions on parameters in section 5.

2 Preliminaries and Hypotheses

Let X be a Banach space with the norm ‖ · ‖. Let PC([0, T ], X) denote the set
{x : [0, T ]→ X : x(t) is piecewise continuous at t 6= τk, left continuous at t = τk, and
the right limit x(τk + 0) exists for k = 1, 2, ...,m}. Clearly, PC([0, T ], X) is a Banach
space with the supremum norm

‖x‖PC([0,T ],X) = sup{‖x(t)‖ : t ∈ [0, T ] \ {τ1, τ2, ..., τm}}.

DEFINITION 2.1 ([21]). Let f : R+ → R be a continuous function on R+ and
α > 0. Then the expression

Iα0 f(t) =
1

Γ(α)

∫ t

a

(t− s)α−1ds, t > 0

is called the Riemman-Liouville integral of order α.
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DEFINITION 2.2 ([21]). Let f : R+ → R. The Caputo fractional derivative of
order α of f is defined by

Dα
t f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds, t > 0

where α ∈ (n− 1, n), n ∈ N.

DEFINITION 2.3 ([24]). A function x ∈ PC([0, T ], X) satisfying the equations:

x(t) = x0 +
1

Γ(q)

∑
0<τk<t

∫ τk

τk−1

(τk − s)q−1f(s, x(s))ds

+
1

Γ(q)

∫ t

τk

(τk − s)q−1f(s, x(s))ds

+
∑

0<τk<t

Ikx(τ−k ), t ∈ (τk, τk+1], k = 1, 2, ..,m,

x(0) = x0

is said to be the solution of the fractional impulsive initial value problem (FIIVP)
(1)—(3).

DEFINITION 2.4. For i = 1, 2, xi ∈ PC([0, T ], X) is the function such that xi(t)
exists for t ∈ (0, T ] and satisfies the inequality

‖cDq
tx(t)− f(t, x(t))‖ ≤ εi

for given constant εi ≥ 0, where it is considered that the initial and impulsive conditions

xi(0) = xi0, (4)

∆xi(τk) = Ikxi(τk), (5)

are satisfied. Then xi(t) is said to be an εi-approximate solution to the FIIVP (1)—(3).

LEMMA 2.5 ([20]). Suppose that p ∈ C[R+,R+] and for k = 1, 2, ..., t ≥ t0,

m(t) ≤ c+

t∫
t0

p(s)m(s)ds+
∑

t0<tk<t

αk
Γ(βk)

tk∫
tk−1

(tk − s)βk−1m(s)ds+
∑

t0<tk<t

γkm(tk)

where αk ≥ 0, γk ≥ −1, βk > 0, k = 1, 2, ... and c are constants. Then, for t ≥ to, the
following assertions hold:

(I) 0 < βk ≤ 1
2 for k = 1, 2, .... We see that

m(t) ≤ c
∏

t0<tk<t

{
(1 + γk)e

( tk∫
tk−1

p(ξ)dξ
)

+
αk

Γ(βk)

(
eµktk

µ
β2
k

k

Γ(β2
k)

) 1
µk

×
( tk∫
tk−1

e
vk

( s∫
tk−1

p(ξ)dξ−s
)
ds

) 1
vk
}
e

( t∫
tl

p(ξ)dξ
)
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where µk = βk + 1 and vk = 1 + 1
βk
.

(II) βk >
1
2 for k = 1, 2, .... We see that

m(t) ≤ c
∏

t0<tk<t

{
(1 + γk)e

( tk∫
tk−1

p(ξ)dξ
)

+
αk

Γ(βk)

(
e2tk

22βk−1
Γ(2βk − 1)

) 1
2

×
( tk∫
tk−1

e
2
( s∫
tk−1

p(ξ)dξ−s
)
ds

) 1
2
}
e

( t∫
tl

p(ξ)dξ
)
.

Now we introduce the following hypotheses.

(H1) Let f : [0, T ]×X → X be a continuous function such that there exists a positive
constant p∗ > 0 satisfying

‖f(t, ψ)− f(t, φ)‖ ≤ p∗(‖ψ − φ‖),

for every t ∈ [0, T ], ψ, φ ∈ X.

(H2) Let Ik : X → X be functions such that there exist positive constants Lk satisfying

‖Ik(x)− Ik(y)‖ ≤ Lk‖x− y‖, x, y ∈ X, k = 1, 2, ...,m.

(H3) There exist nonnegative constants ε3, δk such that

‖f(t, φ)− f̄(t, φ)‖ ≤ ε3, ‖Ik(φ)− Īk(φ)‖ ≤ δk.

(H4) There exist nonnegative constants εn, δn, δkn such that

‖f(t, φ)− fn(t, φ)‖ ≤ εn, ‖x0 − yn0‖ ≤ δn, ‖Ikφ(τk)− Iknφ(τk)‖ ≤ δkn.

with εn → 0, δn → 0, δkn → 0 as n→∞.

3 Bound on Difference Between Approximate Solu-
tions

THEOREM 3.1. If x1(t) and x2(t) are εi approximate solutions of equation (1)
with (4) and (5) and the hypotheses (H1) and (H2) are satisfied, then the following
inequality holds:

‖x1 − x2‖PC ≤
[ (ε1 + ε2)

Γ(q + 1)
T q + ‖x1

0 − x2
0‖
]
C∗∗,

where C∗∗ is some constant.
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PROOF. Let xi(i = 1, 2) be εi approximate solutions of equation (1) with (4) and
(5). Then we have,

‖cDq
tx(t)− f(t, x(t))‖ ≤ εi.

Operating Iq on both the sides, we get

Iqεi ≥ Iq‖cDq
tx(t)− f(t, x(t))‖

≥
∥∥xi(t)− xi0 − 1

Γ(q)

∑
0<τk<t

∫ τk

τk−1

(τk − s)q−1f(s, xi(s))ds

− 1

Γ(q)

∫ t

τk

(t− s)q−1f(s, xi(s))ds

−
∑

0<τk<t

Ikxi(τ
−
k )
∥∥.

Using the inequalities ‖u1 − v1‖ ≤ ‖u1‖+ ‖v1‖ and |‖u1‖ − ‖v1‖| ≤ ‖u1 − v1‖, we get
(ε1 + ε2)

Γ(q + 1)
tq ≥

∥∥x1(t)− x1
0 −

1

Γ(q)

∑
0<τk<t

∫ τk

τk−1

(τk − s)q−1f(s, x1(s))ds

− 1

Γ(q)

∫ t

τk

(t− s)q−1f(s, x1(s))ds−
∑

0<τk<t

Ikx1(τ−k )
∥∥

+
∥∥x2(t)− x2

0 −
1

Γ(q)

∑
0<τk<t

∫ τk

τk−1

(τk − s)q−1f(s, x2(s))ds

− 1

Γ(q)

∫ t

τk

(t− s)q−1f(s, x2(s))ds−
∑

0<τk<t

Ikx2(τ−k )
∥∥

≥ ‖x1(t)− x2(t)‖ − ‖x1
0 − x2

0‖

− 1

Γ(q)

∑
0<τk<t

∫ τk

τk−1

(τk − s)q−1‖f(s, x1(s))− f(s, x2(s))‖ds

− 1

Γ(q)

∫ t

τk

(t− s)q−1‖f(s, x1(s))− f(s, x2(s))‖ds

−
∑

0<τk<t

‖Ikx1(τ−k )− Ikx2(τ−k )‖.

By using hypotheses (H1) and (H2), we get

(ε1 + ε2)

Γ(q + 1)
tq ≥ ‖x1(t)− x2(t)‖ − ‖x1

0 − x2
0‖

− 1

Γ(q)

∑
0<τk<t

∫ τk

τk−1

(τk − s)q−1p∗‖x1(s)− x2(s)‖ds

− 1

Γ(q)

∫ t

τk

(t− s)q−1p∗‖x1(s))− x2(s)‖ds

−
∑

0<τk<t

Lk‖x1(τ−k )− x2(τ−k )‖.
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Let z(t) = ‖x1(t)− x2(t)‖. Then we have

(ε1 + ε2)

Γ(q + 1)
tq ≥ z(t)− ‖x1

0 − x2
0‖ −

1

Γ(q)

∑
0<τk<t

∫ τk

τk−1

(τk − s)q−1p∗z(s)ds

− 1

Γ(q)

∫ t

τk

(t− s)q−1p∗z(s)ds−
∑

0<τk<t

Lkz(τ
−
k ).

Therefore we get

z(t) ≤ (ε1 + ε2)

Γ(q + 1)
tq + ‖x1

0 − x2
0‖+

1

Γ(q)

∑
0<τk<t

∫ τk

τk−1

(τk − s)q−1p∗z(s)ds

+
1

Γ(q)

∫ t

τk

(t− s)q−1p∗z(s)ds+
∑

0<τk<t

Lkz(τ
−
k ).

Applying the impulsive fractional inequality given in Lemma 2.5, we get

Case I: For 0 < q ≤ 1
2 ,

z(t)

≤
[ (ε1 + ε2)

Γ(q + 1)
tq

+‖(x1
0 − x2

0)‖
] ∏

0<τk<t

{
(1 + Lk)e

( τk∫
τk−1

(t−ξ)q−1

Γ(q)
p∗dξ

)
+

p∗

Γ(q)

(
eµkτk

µq
2

k

Γ(q2)

) 1
µk

×
( τk∫
τk−1

e
vk

( s∫
τk−1

(t−ξ)q−1

Γ(q)
p∗dξ−s

)
ds

) 1
vk
}
e

( t∫
τl

(t−ξ)q−1

Γ(q)
p∗dξ

)
(6)

where µk = q + 1, vk = 1 + 1
q and tl = max{τk : t ≥ τk, k = 1, 2, ..}. Let

I1 = e

( τk∫
τk−1

(t−ξ)q−1

Γ(q)
p∗dξ

)
,

I2 = e
vk

(
s∫

τk−1

(t−ξ)q−1

Γ(q)
p∗dξ

)
−vks

,

I3 =

τk∫
τk−1

I2ds.

Since t − τk ≤ T , t − τk−1 ≤ T and t ≤ T , we obtain I1 ≤ C1 and I3 ≤ C2 where C1

and C2 are some arbitrary constants. Now substituting the above values in inequality
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(6), we get the following inequality

‖x1(t)− x2(t)‖ ≤
[ (ε1 + ε2)

Γ(q + 1)
tq + ‖(x1

0 − x2
0)‖
] ∏

0<τk<t

{
(1 + Lk)

}

{C1 +
p∗

Γ(q)

(
eµkτk

µq
2

k

Γ(q2)

) 1
µk

C2}e

( t∫
tl

(t−ξ)q−1

Γ(q)
p∗dξ

)

≤
[ (ε1 + ε2)

Γ(q + 1)
tq + ‖(x1

0 − x2
0)‖
] ∏

0<τk<t

{
(1 + Lk)

}
C3e

−p∗(t−tl)
q

Γ(q+1)

≤
[ (ε1 + ε2)

Γ(q + 1)
T q + ‖(x1

0 − x2
0)‖
] ∏

0<τk<t

{
(1 + Lk)

}
C3e

−p∗Tq
Γ(q+1)

≤
[ (ε1 + ε2)

Γ(q + 1)
T q + ‖(x1

0 − x2
0)‖
] ∏

0<τk<t

{
(1 + Lk)

}
C∗

where C3 = {C1 + p∗

Γ(q)

(
eµkτk

µq
2

k

Γ(q2)

) 1
µk

C2}, and C∗ = C3e
−p∗Tq
Γ(q+1) are some constants.

This gives

‖x1 − x2‖PC ≤
[ (ε1 + ε2)

Γ(q + 1)
T q + ‖(x1

0 − x2
0)‖
]
C∗∗ (7)

where C∗∗ =
∏

0<τk<t

{
(1 + Lk)

}
C∗.

Case II: For q > 1
2 , we similarly obtain the same inequality (7).

REMAR. If we put ε1 = ε2 = 0 and x1
0 = x2

0, t ∈ (0, T ] in inequality (7) then the
uniqueness of solutions of (1)—(3) is established.

4 Nearness and Convergence of Solutions

Consider the FIIVP (1)—(3), along with the following FIIVP

cDq
t y(t) = f̄(t, y(t)), t ∈ (0, T ], t 6= τk, k = 1, 2, ..,m, (8)

y(0) = y0, (9)

∆y(τk) = Īky(τk), k = 1, 2, ...,m, (10)

where, f̄ : [0, T ]×X → X and Īk : X → X.

THEOREM 4.1. Let x(t) and y(t) be respective solutions of initial value problem
(1)—(3) and (8)—(10) on [0, T ]. Suppose that the functions f, f̄ , Ik and Īk in (1)—(3)
and (8)—(10) satisfy hypotheses (H1)—(H3). Then the following inequality holds:

‖x− y‖PC ≤
{
‖x0 − y0‖+

2ε3
qΓ(q)

T q + δk

}
C∗∗.
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PROOF. Using the facts that x(t) and y(t) be respectively solutions of initial value
problem (1)—(2) and (8)—(10) and hypotheses (H1)—(H3), we get

‖x(t)− y(t)‖

≤ ‖x0 − y0‖+
1

Γ(q)

∑
0<τk<t

∫ τk

τk−1

(t− s)q−1‖f(s, x(s))− f̄(s, y(s))‖ds

+
1

Γ(q)

∫ t

τk

(t− s)q−1‖f(s, x(s))− f̄(s, y(s))‖ds+
∑

0<τk<t

Lk‖x(τk)− y(τk)‖+ δk

≤ [‖x0 − y0‖+
ε3

qΓ(q)

(
(t− τk)q +

∑
0<τk<t

(τk − τk−1)q
)

+ δk]

+
1

Γ(q)

∑
0<τk<t

∫ τk

τk−1

(τk − s)q−1p∗‖x(s)− y(s)‖ds

+
1

Γ(q)

∫ t

τk

(t− s)q−1p∗‖x(s)− y(s)‖ds+
∑

0<τk<t

Lk‖x(τk)− y(τk)‖.

Let z(t) = ‖x(t)− y(t)‖. Then

z(t) = ‖x(t)− y(t)‖ ≤ [‖x0 − y0‖+
ε3

qΓ(q)

(
(t− τk)q +

∑
0<τk<t

(τk − τk−1)q
)

+ δk]

+
1

Γ(q)

∑
0<τk<t

∫ τk

τk−1

(τk − s)q−1p∗z(s)ds+
1

Γ(q)

∫ t

τk

(t− s)q−1p∗z(s)ds

+
∑

0<τk<t

Lkz(τk). (11)

Now applying the Lemma 2.5, we get

‖x(t)− y(t)‖
≤ [‖x0 − y0‖+

ε3
qΓ(q)

(
(t− τk)q

+
∑

0<τk<t

(τk − τk−1)q
)

+ δk]
∏

0<tk<t

{
(1 + Lk)

}
C3e

( t∫
tl

(t−ξ)q−1

Γ(q)
p∗dξ

)

≤
[
‖x0 − y0‖+

ε3
Γ(q + 1)

(
(t− τk)q +

∑
0<τk<t

(τk − τk−1)q
)

+ δk

]

×
∏

0<tk<t

{
(1 + Lk)

}
C3e

p∗Tq
Γ(q+1)

which gives

‖x− y‖PC ≤ [‖x0 − y0‖+
2ε3

Γ(q + 1)
T q + δk]

∏
0<tk<t

{
(1 + Lk)

}
C3e

p∗Tq
Γ(q+1) .

≤
[
‖x0 − y0‖+

2ε3
Γ(q + 1)

T q + δk
]
C∗∗.
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This completes the proof.

REMARK. If f is close to f̄ , x0 is close to y0 then the corresponding solutions of
initial value problem (1)—(3) and (8)—(10) are close to each other.

Consider the initial value problem (1)—(3) with the initial value problem

cDq
t yn(t) = fn(t, yn(t)), t ∈ (0, T ], t 6= τk, k = 1, 2, ..,m, (12)

yn(0) = yn0, (13)

∆yn(τk) = Iknyn(τk), k = 1, 2, ...,m, (14)

where fn : [0, T ]×X → X and Ikn : X → X

COROLLARY 4.2. Let x(t) and yn(t), n = 1, 2, ... be respectively solutions of initial
value problems (1)—(3) and (12)—(14) on [0, T ]. Suppose that the functions f, fn, Ik
and Ikn in (1)-(3) and (12)—(14) satisfy the hypotheses (H1), (H2) and (H4). Then
yn(t)→ x(t) as n→∞ on (0, T ].

REMARK. The result obtained in this corollary provides suffi cient conditions that
ensures solutions of FIIVP problem (12)—(14) will converge to solutions of initial value
problem (1)—(3).

5 Continuous Dependence of Solutions On Parame-
ters

Consider the following FIIVP

cDq
tx(t) = f(t, x(t), δ), t ∈ (0, T ], t 6= τk, k = 1, 2, ..,m (15)

x(0) = x0, (16)

∆x(τk) = Ikx(τk), k = 1, 2, ...,m. (17)

and

cDq
t y(t) = f(t, y(t), δ′), t ∈ (0, T ], t 6= τk, k = 1, 2, ..,m (18)

y(0) = y0, (19)

∆y(τk) = Iky(τk), k = 1, 2, ...,m. (20)

where f : [0, T ]×X ×R→ X, Ik : X → X, and δ, δ′ are real parameters.

COROLLARY 5.1. Let x(t) and y(t) be solutions of equations (15)—(17) and (18)—
(20), respectively. Assume the hypothesis [H2] holds and∥∥f(t, ψ, δ)− f(t, φ, δ′)

∥∥ ≤ L∗(‖ψ − φ‖+ ‖δ − δ′‖).

Then

‖x− y‖PC ≤
[
‖x0 − y0‖+

L∗‖δ − δ′‖
Γ(q + 1)

2T q
]
C∗∗.
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PROOF. It is an easy consequence of our main result so we have omitted the proof.
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