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Abstract

In this paper we use the heat transfer equation as a parabolic model problem

and we extend the topological sensitivity notion for the non-stationary regime.

We derive a topological asymptotic formula valid for a large class of shape func-

tions and arbitrary shaped geometric perturbations. The proposed approach is

applied for solving a geometric inverse problem. The leading term of the obtained

asymptotic expansion is used for building a one-iteration detection algorithm. The

efficiency and accuracy of the proposed algorithm are illustrated by two numerical

examples.

1 Introduction

Consider a non-homegeneous heated domain Ω ⊂ R
2 with a smooth boundary Σ := ∂Ω.

The temperature field φ inside Ω satisfies the system











∂φ

∂t
− div(c(x)∇φ) = Q in Ω × (0, T ),

φ = φd on Σ × (0, T ),
φ(., 0) = 0 in Ω,

(1)

where the parameter c is a given smooth positive function describing the physical
properties of the medium Ω, Q ∈ L2(0, T, L2(Ω)) is a given function describing the
heat generated source, φd ∈ L2(0, T, H1/2(Σ)) is a given boundary temperature, and
T > 0 is the computational time. It is well known that the problem (1) admits a unique
solution φ that belongs to the time dependent functional space H1(0, T ;H1(Ω)), for
more details one can consult [4].

The aim of this work is the detection of an unknown domain D∗ strictly included in
a non homogeneous material Ω such that the domain Ω\D∗ solves the optimal design
problem

(Pinv) min
D⊂Ω

S(Ω\D),
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where S is a shape function of the form

S(Ω\D) =

∫ T

0

FΩ\D(φD(., t))dt,

with φD the solution to the following heat transfer problem in Ω\D


















∂φD

∂t
− ∆φD = Q in Ω\D × (0, T ),

∇φD.n = φn on Σ × (0, T ),
φD = 0 on ∂D × (0, T ),

φD(., 0) = 0 in Ω\D.

To solve this optimization problem, we propose an accurate approach based on the
topological sensitivity analysis method. The first step of our approach consists in
finding the place where creating a small geometric perturbation will bring the best
improvement of the shape function to be minimized.

More precisely, let Hz,ε ⊂ Ω be a small geometric perturbation that is centered at
z ∈ Ω and has the shape Hz,ε = z + εH, where ε > 0 and H ⊂ R

2 is a fixed bounded
domain containing the origin. The topological sensitivity analysis method leads to an
asymptotic expansion of the shape functional S on the form

S(Ω\Hz,ε) = S(Ω) + ρ(ε)δS(z) + o(ρ(ε)), ∀z ∈ Ω,

where ε 7→ ρ(ε) is a scalar positive function going to zero with ε. This formula is called
the topological asymptotic expansion and δS the topological sensitivity function or the
topological gradient. Obviously, if we want to minimize S, the best location to insert
a small geometric perturbation Hz,ε in Ω is where δS is most negative. In fact, if
δS(z) < 0, we have S(Ω\Hz,ε) < S(Ω) for small ε. Starting with this observation, the
topological sensitivity analysis allows us to build fast and accurate numerical algorithms
that can solve a large class of problems in applications.

The theoretical aspect of the topological sensitivity analysis method has been de-
rived for various operators; one can consult [10] for the Laplace equation, [9] for the
elasticity problem, [1, 6, 11] for the Stokes system, [12] for the Helmholtz equation and
[5] for the acoustic problem.

However, the most significant contributions in this context have been focused on
problems associated with stationary partial differential equations (PDE) [2, 3]. Until
recently, there have been very few investigations dealing with the transient regime.

In this paper, we consider the heat transfer equation as a parabolic model problem
and we extend the topological sensitivity notion for the non-stationary case.

The rest of this paper is organized as follows. In the next Section, we examine the
influence of a small geometric perturbation on the heat transfer problem’s solution. In
Section 3, we extend the topological sensitivity analysis notion for the non-stationary
regime and we derive a topological asymptotic expansion valid for a large class of shape
functions. Section 4 is devoted to some numerical applications.
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2 Estimate of the Perturbed Solution

Let Hz,ε be a small geometric perturbation created inside the initial domain. We
denote by φε the solution to the following heat transfer problem in the perturbed
domain Ω\Hz,ε with a Dirichlet boundary condition on the boundary ∂Hz,ε



















∂φε
∂t

− div(c(x)∇φε) = Q in Ω\Hz,ε × (0, T ),

φε = gD on Σ × (0, T ),
φε = 0 on ∂Hz,ε × (0, T ),

φε(., 0) = 0 in Ω\Hz,ε.

(2)

Note that for ε = 0, we have Ω\Hz,ε = Ω and φε coincides with the temperature field
φ in the non-perturbed domain Ω.

Next, we discuss the influence of the small geometric perturbation on the tempera-
ture distribution. We will derive the asymptotic behavior of the variation φε − φ with
respect to the perturbation size ε. We will prove that the leading term of the variation
φε − φ is defined as

Θ(x, t) = 2πφ(z, t)Γ(x− z), ∀(x, t) ∈ Ω\Hz,ε × (0, T ), (3)

where Γ is the fundamental solution of the Laplace operator in R
2 (see [7])

Γ(y) =
1

2π
log |y|, ∀y ∈ R

2.

Consequently, we derive the following estimate.

PROPOSITION 1. Let Hz,ε be a small geometric perturbation created inside the
domain Ω with a Dirichlet boundary condition on ∂Hz,ε. Then, the perturbed solution
φε satisfies the estimate

‖φε−φ−
1

log(ε)
Θ‖L∞(0,T ;L2(Ω\Hz,ε))

+‖φε−φ−
1

log(ε)
Θ‖L2(0,T ;H1(Ω\Hz,ε))

≤ c√− log ε
.

PROOF. The established estimate can be derived using Green formula, elliptic
inequality and Trace theorem. For more details and similar results, one can consult
[8].

3 Topological Sensitivity Analysis

In this section, we derive an asymptotic expansion describing the variation of S with
respect to the presence of a small geometric perturbation, valid for a large class of
shape functions S. More precisely, we will establish an asymptotic formula of the form

S(Ω\Hz,ε) = S(Ω) − 1

log ε
δS(z) + o(

−1

log ε
),
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valid for all shape function S having the form

S(Ω\Hz,ε) =

∫ T

0

Fε(φε(., t))dt,

where φε is the solution to (2) and Fε is a cost function defined on H1(Ω\Hz,ε) and
satisfying the following assumption:

Assumption (A). In the term DF0(φ(., t))(φε − φ), the solution φε is extended
by zero inside the domain Hz,ε.

Using the assumption (A), the variation of the shape function j reads

S(Ω\Hz,ε) − S(Ω) =

∫ T

0

DF0(φ)(φε − φ)dt− 1

log ε
δF(z) + o(

−1

log ε
).

Let ψ be the solution to the associated adjoint problem. It satisfies the following system







−∂ψ
∂t − div(c(x)∇ψ) = −DF0(φ) in Ω × (0, T ),

ψ = 0 on Σ × (0, T ),
ψ(., T ) = 0 in Ω.

(4)

With the help of the weak formulation of (4), the shape function variation can be
rewritten as

S(Ω\Hz,ε) − S(Ω) = −
∫ T

0

∫

Ω

∂(φε − φ)

∂t
ψdxdt−

∫ T

0

∫

Ω

c(x)∇(φε − φ).∇ψdxdt

− 1

log ε
δF(z) + o(

−1

log ε
).

From the fact that φε = 0 in Hz,ε, it follows

S(Ω\Hz,ε) − S(Ω) =

∫ T

0

∫

Hz,ε

∂φ

∂t
ψdxdt+

∫ T

0

∫

Hz,ε

c(x)∇φ.∇ψdxdt

−
∫ T

0

∫

Ω\Hz,ε

∂(φε − φ)

∂t
ψdxdt−

∫ T

0

∫

Ω\Hz,ε

c(x)∇(φε − φ).∇ψdxdt

− 1

log ε
δF(z) + o(

−1

log ε
).

Applying a Green formula, we obtain

S(Ω\Hz,ε) − S(Ω) =

∫ T

0

∫

Hz,ε

∂φ

∂t
ψdxdt+

∫ T

0

∫

Hz,ε

c(x)∇φ.∇ψdxdt

−
∫ T

0

∫

∂Hz,ε

c(x)∇(φε − φ).nψdsdt− 1

log ε
δF(z) + o(

−1

log ε
). (5)

We are now ready to present the main results of this section.
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THEOREM 1. Let Hz,ε = z+ εH be a small geometric perturbation created inside
the domain Ω. If Fε satisfies the assumption (A), then the shape function S admits
the following expansion

S(Ω\Hz,ε) = S(Ω) − 1

log ε
δS(z) + o

( −1

log ε

)

,

with the topological sensitivity function δS defined by

δS(x) = 2πc(x)

∫ T

0

φ(x, t)ψ(x, t)dt+ δF(x), ∀x ∈ Ω.

The term δF depends on the considered function Fε.

PROOF. The obtained asymptotic formula can be established with the help of
Proposition 1 and some Cauchy-Schwartz inequalities. The term −1

log ε follows from the
asymptotic behavior of the fundamental solution of the Laplace operator. We refer to
[8] for more details and similar results.

In the next section, we will present two numerical examples and we will calculate
the variations δF for two considered cost functions.

4 Numerical Experiments

This section is devoted to some numerical investigations. Based on the obtained the-
oretical result, we present in the next section a one-iteration detection algorithm for
solving the considered geometric inverse problem. The proposed algorithm will be
applied in sections 4.2 and 4.3 for solving two numerical examples.

4.1 Detection Procedure

To solve the inverse problem (Pinv), we propose a fast and efficient detection procedure.
The unknown domain D∗ will be located at spots where the topological sensitivity
function δS is most negative. The main steps of the proposed detection procedure are
summarized by the following one-iteration algorithm.

The one-iteration detection algorithm

• Compute the temperature field φ and the adjoint state ψ in the initial domain
Ω.

• Compute the topological sensitivity function δS(x), ∀x ∈ Ω.

• Determine ζ∗ ∈ [0, 1] such that S(Ω\Hζ∗) ≤ S(Ω\Hζ), ∀ζ ∈ [0, 1], where Hζ =
{x ∈ Ω; δS(x) < ζδmin} with δmin is the most negative value of the function δS
in Ω.
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Next, we will apply this algorithm for solving the geometric inverse problem (Pinv)
and we will present some numerical simulations. Two examples will be considered. The
first one concerns the quadratic boundary function (7). The second one is associated
with the H1-semi norm function (9). In all the numerical simulations, the solutions
φ and ψ are computed in the space domain Ω = [0, 3/2] × [0, 1], with the data time
T = 1.

4.2 First Numerical Example

This example concerns the detection of an unknown domain D∗ ⊂ Ω solution to

(P1
inv) min

D⊂Ω

∫ T

0

∫

Σ

|φD − ϕm|2dsdt, (6)

where ϕm is a measured boundary datum.
It is easy to see that this example is associated with the cost function Fε defined

on the exterior boundary Σ by

Fε(φ) =

∫

Σ

|φ− ϕm|2ds, ∀φ ∈ H1(Ω\Hz,ε). (7)

The function (7) satisfies the assumption (A) with

DF0(φ(., t))h = 2

∫

Σ

[φ(., t)− ϕm(., t)]hds, ∀h ∈ H1(Ω) and δF(x) = 0, x ∈ Ω.

From Theorem 1, one can deduce that the topological sensitivity function δS associated
to this geometric inverse problem is given by

δS(x) = 2π

∫ T

0

φ(x, t)ψ(x, t)dt, ∀x ∈ Ω.

Next, we will present some detection results obtained by the proposed numerical algo-
rithm.

In Figure 1, we present the detection result for an elliptical-shaped domain D∗.
As one can observe, the unknown domain D∗ is located at zone where the topological
sensitivity function δS is most negative. The boundary ∂D∗ of the unknown domain
(black line) is approximated by a level set curve of the scalar function δS: ∂D∗ =
{x ∈ Ω; δS(x) = ζδmin} .

In Figures 2 and 3, we consider the case where the unknown domain D∗ is composed
of two connected sub-domains. The detection result of two elliptical shaped-domains
is illustrated in Figure 2.

In Figure 3, we present the detection result for two circular-shaped domains located
near the corner.

From Figures 1–3, one can observe that the proposed algorithm gives a good de-
tection result for the unknown domains located close to the boundary Σ. But what
happens if the unknown domain D∗ is not close to the boundary? To discuss this case,
we apply our numerical algorithm for detecting a circular-shaped domain located at
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Figure 1: Detection result of an elliptical-shaped domain.

Figure 2: Detection of two elliptical-shaped domains.

the center of Ω. The obtained result is shown in Figure 4. As it is expected, the algo-
rithm cannot detect the unknown domain in this case. This can be explained by the
fact the topological sensitivity function δS has a poor information from the boundary
measured data. Such information comes from the term δF which is negligible for this
shape function example.

We consider in the next section a shape function example with significant variation
term δF .

4.3 Second Numerical Example

Here, we aim to detect the unknown domain D∗ solution to the following geometric
inverse problem

(P2
inv) min

D⊂Ω

∫ T

0

∫

Ω\D

|∇φD −∇ϕw|2dxdt, (8)

where ϕw is a given wanted state.
The associated cost function Fε is defined by the H1-semi-norm

Fε(φ) =

∫

Ω\Hz,ε

|∇φ−∇ϕw|2dx, ∀φ ∈ H1(Ω\Hz,ε). (9)
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Figure 3: Detection of two circular-shaped domains.

Figure 4: Detection result for a circular-shaped domain located away from the bound-
ary.

The function (9) satisfies the assumption (A) with

DF0(φ(., t))h = 2

∫

Ω

[∇φ(., t)−∇ϕw(., t)]∇hdx, ∀h ∈ H1(Ω),

δF(x) = 2πc(x)

∫ T

0

|φ(x, t)|2dt, x ∈ Ω.

From Theorem 1, it follows that the topological sensitivity function is given by

δS(x) = 2π

∫ T

0

[

φ(x, t)ψ(x, t) + |φ(x, t)|2
]

dt, ∀x ∈ Ω.

Next, we present some detection results for different size, shape and location domains
unknown.

We start this paragraph by the detection of unknown circular and elliptical shaped
domains D∗. The target domain D∗ and the iso-values of the topological sensitivity
function δS are described in Figures 5 and 6. As one can observe, the unknown domain
D∗ (black line) is approximated by a level set curve of δS. The last case is concerned
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Figure 5: Detection of a circular-shaped domain.

Figure 6: Detection of an elliptical-shaped domain.

with a singular geometric domain. We present in Figure 7, the detection result for a
square-shaped domain.

5 Conclusion

A topological asymptotic expansion is derived for a parabolic type operator. The es-
tablished asymptotic formula is valid for a large class of shape functions. The leading
term of the shape function variation is exploited for building a fast and simple detection
algorithm. The constructed numerical procedure is applied for solving two geometric
inverse problems. The obtained numerical simulations show that the proposed detec-
tion algorithm can successfully detect different size and unknown shaped domains.
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Figure 7: Detection of square-shaped domain.
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