More Results On 3-Step Hamiltonicity Of Graphs And Its Line Graphs*

Noor A’lawiah Abd Aziz ${ }^{\dagger}$, Roslan Hasni ${ }^{\ddagger}$, Hailiza Kamarulhaili ${ }^{\S}$, Gee-Choon Lau ${ }^{『}$, Sin-Min Lee ${ }^{\|}$

Received 22 January 2018

Abstract

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A (p, q)-graph $G=(V, E)$ is said to be $A L(k)$-traversal if there exists a sequence of vertices $\left(v_{1}, v_{2}, \ldots, v_{p}\right)$ such that for each $i=1,2, \ldots, p-1$, the distance between v_{i} and v_{i+1} is k. We call a graph G a k-step Hamiltonian graph (or say it admits a k-step Hamiltonian cycle) if it has an $A L(k)$-traversal in G and $d\left(v_{p}, v_{1}\right)=k$. In this paper, we give several construction of some families of graphs and its line graphs which admit a 3 -step Hamiltonian cycle.

1 Introduction

Throughout this paper, we will consider only simple undirected graph $G=(V(G), E(G))$. The distance between two vertices u and v in G denoted by $d(u, v)$ is the length of a shortest u, v-path in G. The line graph $L(G)$ of a graph G has $E(G)$ as its vertex set and two vertices are adjacent in $L(G)$ if and only if they are adjacent as edges in G. A matching in a graph G is a set $M \in E(G)$ such that no edges in M have common endpoints. For a vertex $u \in V(G)$, we say u is saturated by a matching M if u is the endpoint of an edge of M, otherwise u is unsaturated by M. A matching M is called a perfect matching in a graph G if M saturates each vertex of G. For terminologies and notations which are not explained here, please refer West [8].

A graph G is said to be Hamiltonian if it contains a Hamiltonian cycle, i.e a spanning cycle that traverses each vertex of G exactly once. Determining whether such cycle exists in a given graph is one of the major classical problems in graph theory. There is no exact characterization to check the existence and non-existence of Hamiltonian cycle for a given graph. A good reference for recent development and open problems related to Hamiltonicity of graphs, please see [2]. This concept of Hamiltonicity is then

[^0]extended by Lau et al. in [3] to k-step Hamiltonicity. They introduced the concept of $A L(k)$-traversal and k-step Hamiltonian graph as follows: For an integer $k \geq 1$, a (p, q)-graph G with p vertices and q edges is said to admit an $A L(k)$-traversal if the p vertices of G can be arranged as $v_{1}, v_{2}, \ldots, v_{p}$ such that $d\left(v_{i}, v_{i+1}\right)=k$ for each $i=1,2, \ldots, p-1$. A graph G is k-step Hamiltonian(or just k-SH) if G admits an $A L(k)$ traversal and $d\left(v_{1}, v_{p}\right)=k$. The sequence of vertices $v_{1}, v_{2}, \ldots, v_{p}, v_{1}$ is then called a k-SH cycle of G. Clearly, 1-SH graphs are Hamiltonian. The distance-k graph, $D_{k}(G)$ is a graph generated from a graph G such that $V\left(D_{k}(G)\right)=V(G)$ and $u v \in E\left(D_{k}(G)\right)$ if and only if $d(u, v)=k$ in G. The following important results obtained by Lau et al. in [3] will be needed in our results.

LEMMA 1. A graph G is k-SH or admits an $A L(k)$-traversal if and only if $D_{k}(G)$ is Hamiltonian or has a Hamiltonian path, respectively.

LEMMA 2. A bipartite graph does not admit a k-SH cycle for even $k \geq 2$.
Lau et al. in [4] obtained the following necessary and sufficient condition for cycles C_{n} to be k-SH.

THEOREM 1. The cycle graph $C_{n}, n \geq 3$ admits a k-SH cycle for $k \geq 2$ if and only if $n \geq 2 k+1$ and $\operatorname{gcd}(n, k)=1$.

Several classes of k-SH graphs including trees, tripartite graphs, cycles, grid graphs, cubic graphs and subdivision of cycles, have been studied, see [3, 4, 5, 6, 7]. In [1], the authors investigated some families of graphs and its line graphs which admit a 3-SH cycle. In this paper, we extend the results in [1] and give new construction of some families of graphs and its line graphs which admit a $3-\mathrm{SH}$ cycle.

2 Main Results

In [3], we know that the complete bipartite graph $K_{m, n}$ is not k-SH for all m, n and $k \geq 2$. Note that the line graph of complete bipartite graph $K_{m, n}$ is a graph obtained from a grid graph $P_{m} \times P_{n}$ such that vertices of the same horizontal (respectively vertical) path are also adjacent to each other. We denote (a, b) as the vertex on row a and column b of $P_{m} \times P_{n}$ for $1 \leq a \leq m, 1 \leq b \leq n$. Two vertices (a, b) and (c, d) in $L\left(K_{m, n}\right)$ are of distance 2 if $a \neq c$ and $b \neq d$. Otherwise, they are of distance 1. Therefore, we conclude that $L\left(K_{m, n}\right)$ is not k-SH for all $k \geq 3$.

It is interesting to know about the k-step Hamiltonicity of the complete bipartite graph $K_{m, n}$ if some edges are deleted. But, from Lemma 2, we know that the graph, say G obtained from $K_{m, n}$ by deleting some edges is not k-SH for even $k \geq 2$ and the k-step Hamiltonicity of G for odd $k \geq 3$ is not studied yet.

We now check the 3-step Hamiltonicity of some graphs obtained from the complete bipartite graph $K_{m, n}$ by deleting two disjoint perfect matchings S and T. But here, we will consider only $K_{n, n}, n \geq 2$ since $K_{m, n}$ for $m \neq n$ does not have perfect matching. Let $V=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $W=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$ be the partite sets of $K_{n, n}$ such
that $E\left(K_{n, n}\right)=\left\{a_{i} a_{j}^{*}: 1 \leq j \leq n\right\}$. We then obtain the following results. Note that all subscripts are to be read modulo n.

LEMMA 3. For $S=\left\{a_{i} a_{i}^{*}: 1 \leq i \leq n\right\}$ and $T=\left\{a_{i} a_{i+1}^{*}: 1 \leq i \leq n\right\}$, the graph $G=K_{n, n}-\{S, T\}$ is 3 -SH if and only if $n \geq 4$.

PROOF. It is obvious that G is disconnected when $n=2$ and $n=3$ so that G does not admit a 3 -SH cycle. For $n \geq 4$, observe that $d\left(a_{i}^{*}, a_{i+1}\right)=d\left(a_{i}, a_{i+2}^{*}\right)=1$ and $d\left(a_{i}, a_{i-1}\right)=d\left(a_{i}^{*}, a_{i-1}^{*}\right)=2$ for $1 \leq i \leq n$. Since a_{i}^{*} is not adjacent to a_{i} and a_{i} is not adjacent to a_{i+1}^{*}, we have $d\left(a_{i}^{*}, a_{i}\right)=d\left(a_{i}, a_{i+1}^{*}\right)=3$. Therefore, the sequence $a_{1}^{*}, a_{1}, a_{2}^{*}, a_{2}, \ldots, a_{n-1}^{*}, a_{n-1}, a_{n}^{*}, a_{n}, a_{1}^{*}$ is a possible $3-$ SH cycle of G.

LEMMA 4. For $S=\left\{a_{i} a_{i+1}^{*}: 1 \leq i \leq n\right\}$ and $T=\left\{a_{i} a_{i-1}^{*}: 1 \leq i \leq n\right\}$, the graph $G=K_{n, n}-\{S, T\}$ is 3 -SH if and only if $n \geq 5$ is odd.

PROOF. We need $n \geq 3$ because when $n=2$, we have $S=T$. For $n=3$ and $n=4$, graph G is disconnected and thus is not 3-SH. For $n \geq 6$ is even, $D_{3}(G)$ consists of 2 components each of size n so that $D_{3}(G)$ is not Hamiltonian. By Lemma 1, G is not 3 -SH.

Now, consider odd $n \geq 5$. Note that for $1 \leq i \leq n, d\left(a_{i}, a_{i}^{*}\right)=1$ and $d\left(a_{i}^{*}, a_{i+1}^{*}\right)=$ $d\left(a_{i}, a_{i+1}\right)=2$. Since a_{i} is not adjacent to a_{i+1}^{*} and a_{i}^{*} is not adjacent to a_{i+1}, we have $d\left(a_{i}, a_{i+1}^{*}\right)=d\left(a_{i}^{*}, a_{i+1}\right)=3$. A 3 -SH cycle is then given by $a_{1}, a_{2}^{*}, a_{3}, a_{4}^{*}, \ldots, a_{n-1}^{*}$, $a_{n}, a_{1}^{*}, a_{2}, a_{3}^{*}, \ldots, a_{n-1}, a_{n}^{*}, a_{1}$.

LEMMA 5. For $S=\left\{a_{i} a_{i}^{*}: 1 \leq i \leq n\right\}$ and $T=\left\{a_{i} a_{i+3}^{*}: 1 \leq i \leq n\right\}$, the graph $G=K_{n, n}-\{S, T\}$ is 3 -SH if and only if $n \geq 4, n \not \equiv 0(\bmod 3)$.

PROOF. We consider only $n=2$ and $n \geq 4$ because when $n=3$, we have $S=T$. It is obvious that G is disconnected when $n=2$ and thus G is not 3 -SH. Suppose $n \geq 6$, $n \equiv 0(\bmod 3)$. We can observe that $D_{3}(G)$ consists of 3 components each of size $\frac{2 n}{3}$ and so $D_{3}(G)$ is not Hamiltonian. By Lemma $1, G$ is not 3 -SH. Suppose now $n \geq 4$, $n \not \equiv 0(\bmod 3)$. Note that $d\left(a_{i}^{*}, a_{i+1}\right)=d\left(a_{i}, a_{i+1}^{*}\right)=1$ and $d\left(a_{i}, a_{i-1}\right)=d\left(a_{i}^{*}, a_{i+2}^{*}\right)=2$ for $1 \leq i \leq n$. Since a_{i}^{*} is not adjacent to a_{i} and a_{i} is not adjacent to a_{i+3}^{*}, we have $d\left(a_{i}^{*}, a_{i}\right)=d\left(a_{i}, a_{i+3}^{*}\right)=3$. Then, G is 3 -SH by choosing the sequence $a_{1}^{*}, a_{1}, a_{4}^{*}, a_{4}, \ldots, a_{n-3}^{*}, a_{n-3}, a_{n}^{*}, a_{n}, a_{3}^{*}, a_{3}, a_{6}^{*}, a_{6}, \ldots, a_{n-1}^{*}, a_{n-1}, a_{2}^{*}, a_{2}, a_{5}^{*}, a_{5}, \ldots, a_{n-2}^{*}$, a_{n-2}, a_{1}^{*} for $n \equiv 1(\bmod 3)$ and the sequence $a_{1}^{*}, a_{1}, a_{4}^{*}, a_{4}, \ldots, a_{n-1}^{*}, a_{n-1}, a_{2}^{*}, a_{2}, a_{5}^{*}, a_{5}$ $, \ldots, a_{n-3}^{*}, a_{n-3}, a_{n}^{*}, a_{n}, a_{3}^{*}, a_{3}, a_{6}^{*}, a_{6}, \ldots, a_{n-2}^{*}, a_{n-2}, a_{1}^{*}$ for $n \equiv 2(\bmod 3)$ as the $3-\mathrm{SH}$ cycle.

LEMMA 6. For $S=\left\{a_{i} a_{i}^{*}: 1 \leq i \leq n\right\}$ and $T=\left\{a_{i} a_{i+4}^{*}: 1 \leq i \leq n\right\}$, the graph $G=K_{n, n}-\{S, T\}$ is 3 -SH if and only if $n \geq 5$ is odd.

PROOF. We consider only $n=3$ and $n \geq 5$ because when $n=2$ and $n=4$, we have $S=T$. It is also obvious that G is disconnected when $n=3$ so that G is not 3 -SH. Suppose $n \geq 6$ is even. Observe that for $n \equiv 0(\bmod 4), D_{3}(G)$ consists of 4 components each of size $\frac{n}{2}$ and for $n \equiv 2(\bmod 4), D_{3}(G)$ consists of 2 components each

Figure 1: A Hamiltonian cycle of $D_{3}(G)$ when $n=7$.

Figure 2: A Hamiltonian cycle of $D_{3}(G)$ when $n=9$.
of size n. Therefore, for each case $D_{3}(G)$ is not Hamiltonian and thus by Lemma $1, G$ is not 3 -SH. Suppose now $n \geq 5$ is odd. In Figure 1 and Figure 2, we give a labeling of Hamiltonian cycle for graph $D_{3}(G)$ when $n=7$ and $n=9$, respectively. Note that for all odd $n \geq 5$ such that $n \equiv 1(\bmod 4)$, a Hamiltonian cycle of $D_{3}(G)$ can be obtained in a similar way to the labeling in Figure 2 and for all odd $n \geq 7$ such that $n \equiv 3(\bmod 4)$, a labeling for Hamiltonian cycle follows those in Figure 1. By Lemma 1, we know that all these graphs G are 3-SH such that the Hamiltonian cycle in $D_{3}(G)$ is a 3 -SH cycle of G.

As we can see from these 4 lemmas, we can get a 3 -SH graph from the complete bipartite graph $K_{n, n}$ by deleting a set of edges. It is difficult to solve the 3 -step Hamiltonicity of $G=K_{n, n^{-}}\{S, T\}$ in general because there are n ! perfect matchings of $K_{n, n}$. There are a lot more cases that should be considered. We then propose the following problems.

PROBLEM 1. Solve the 3-step Hamiltonicity of $G=K_{n, n}-\{S, T\}$ for all cases of S and T.

PROBLEM 2. Study the 3-step Hamiltonicity of complete bipartite graph $K_{m, n}$ with more edges deleted.

Next, consider a graph G with n vertices. The corona product of G and any graph H, denoted by $G \odot H$, is a graph obtained by taking one copy of G and n copies $H_{1}, H_{2}, \ldots, H_{n}$ of H, and then joining the i-th vertex of G to every vertex in H_{i}.

Suppose G is a graph of order n that admits a Hamiltonian cycle given by the sequence $u_{1}, u_{2}, \ldots, u_{n}, u_{1}$ and 3 -SH cycle given by $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ such that $v_{1}=u_{1}$
and $v_{n}=u_{n-2}$.

THEOREM 2. The corona product of graph G described above and empty graph O_{m} of order m is 3 -SH for all $m \geq 1$.

PROOF. We know that the graph $G \odot O_{m}$ is obtained from G by adding $n m$ more vertices and $n m$ more edges. Without loss of generality, we let the $n m$ pendant vertices be $u_{i, 1}, u_{i, 2}, \ldots, u_{i, m}$ such that the added edges are $u_{i} u_{i, 1}, u_{i} u_{i, 2}, \ldots, u_{i} u_{i, m}$ for $i=$ $1, \ldots, n$. We can see that the sequence $v_{1}=u_{1}, v_{2}, \ldots, v_{n}=u_{n-2}, u_{n, 1}, u_{1,1}, u_{2,1}, \ldots$, $u_{n-1,1}, u_{n, 2}, u_{1,2}, u_{2,2}, \ldots, u_{n-1,2}, u_{n, 3}, \ldots, u_{n, m}, u_{1, m}, u_{2, m}, \ldots, u_{n-1, m}, u_{1}$ is a 3 -SH cycle of $G \odot O_{m}$.

The corona product $C_{n} \odot K_{1}$, in particular, is the graph consisting of a cycle C_{n}, $n \geq 3$ (with edges $u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{n-1} u_{n}, u_{n} u_{1}$), n more pendant vertices $v_{1}, v_{2}, \ldots, v_{n}$ and n more edges $u_{i} v_{i}$ for $i=1,2, \ldots, n$. We call this graph the sun graph S_{n}.

THEOREM 3. The sun graph S_{n} is 3 -SH if and only if $n \geq 5$.
PROOF. Observe that all u_{i} are isolated in $D_{3}\left(S_{n}\right)$ if $n=3$ and of degree 1 if $n=4$ so that $D_{3}\left(S_{n}\right)$ cannot be Hamiltonian and thus S_{3} and S_{4} are not 3 -SH. Suppose $n \geq 5$. We consider 2 cases.

Case 1. $n \equiv 0(\bmod 3)$.
A 3-SH cycle is given by the sequence $v_{1}, u_{3}, u_{6}, \ldots, u_{n}, v_{2}, u_{4}, u_{7}, \ldots, u_{n-2}, u_{1}, v_{3}, u_{5}, u_{8}$, $\ldots, u_{n-1}, u_{2}, v_{4}, v_{5}, \ldots, v_{n}, v_{1}$. In Figure 3 , we give a 3 -SH cycle for S_{9}.

Figure 3: A 3-step Hamiltonian cycle for S_{9}.

Case 2. $n \not \equiv 0(\bmod 3)$.
If $n=5$, the sequence of vertices $v_{1}, u_{3}, v_{5}, u_{2}, v_{4}, u_{1}, v_{3}, u_{5}, v_{2}, u_{4}, v_{1}$ is a possible 3-SH cycle in S_{5}. For $n \geq 7$, since cycle C_{n} is 3 -SH by Theorem 1 , a possible 3 -SH cycle in S_{n} is given in the proof of Theorem 2.
This completes the proof.

THEOREM 4. The line graph of S_{n} is 3 -SH if and only if $n \geq 6$.
PROOF. We denote the vertices of $G=L\left(S_{n}\right)$ by $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}$. Then, the edge set is $\left\{u_{i} u_{i+1}, u_{n} u_{1}: i=1, \ldots, n-1\right\} \cup\left\{u_{i} v_{i}: i=1, \ldots, n\right\} \cup$ $\left\{v_{i} u_{i+1}, v_{n} u_{1}: i=1, \ldots, n-1\right\}$. See Figure 4 for graph $L\left(S_{5}\right)$.

Figure 4: Graph $L\left(S_{5}\right)$.
Clearly, if $n=3$, every vertex of G is a distance at most 2 from each other so that G is not 3 -SH. Note that for $n=4$ and $n=5$, there exist isolated or pendant vertices in $D_{3}(G)$. Hence $D_{3}(G)$ is not Hamiltonian and thus G is not 3-SH. Next we assume $n \geq 6$. We consider 2 cases.

Case 1. n is odd. We consider 2 subcases.
(i) $n \equiv 0(\bmod 3)$.

A 3 -SH cycle is given by $v_{1}, v_{3}, \ldots, v_{n-2}, u_{1}, u_{4}, \ldots, u_{n-2}, v_{n}, u_{3}, u_{6}, \ldots, u_{n}, v_{2}, u_{5}$, $u_{8}, \ldots, u_{n-1}, u_{2}, v_{4}, v_{6}, \ldots, v_{n-1}, v_{1}$.
(ii) $n \not \equiv 0(\bmod 3)$.

A 3 -SH cycle is given by $v_{1}, v_{3}, v_{5}, \ldots, v_{n}, v_{2}, v_{4}, \ldots, v_{n-1}$ followed by $u_{2}, u_{5}, \ldots, u_{n-1}$ such that $\{2,5,8, \ldots, n-1\}(\bmod n)$ is a set of distinct integers and it is clear that u_{n-1} is a distance 3 to v_{1}.

Case 2. n is even. We consider 3 subcases.
(i) $n \equiv 0(\bmod 3)$.

A 3 -SH cycle is given by $v_{1}, v_{3}, \ldots, v_{n-3}, u_{n}, v_{2}, v_{4}, \ldots, v_{n-2}, u_{1}, u_{4}, \ldots, u_{n-2}, v_{n}, u_{3}$, $u_{6}, \ldots, u_{n-3}, v_{n-1}, u_{2}, u_{5}, \ldots, u_{n-1}, v_{1}$. Figure 5 shows the graph $L\left(S_{6}\right)$ with a 3 -SH labeling in it.
(ii) $n \equiv 1(\bmod 3)$.

A 3 -SH cycle is given by $v_{1}, v_{3}, \ldots, v_{n-1}, u_{2}, u_{5}, \ldots, u_{n-2}, u_{1}, u_{4}, \ldots, u_{n}, v_{2}, v_{4}, \ldots, v_{n}$, $u_{3}, u_{6}, \ldots, u_{n-1}, v_{1}$.
(iii) $n \equiv 2(\bmod 3)$.

A 3 -SH cycle is given by $v_{1}, v_{3}, \ldots, v_{n-1}, u_{2}, u_{5}, \ldots, u_{n}, v_{2}, v_{4}, \ldots, v_{n}, u_{3}, u_{6}, \ldots, u_{n-2}$, $u_{1}, u_{4}, \ldots, u_{n-1}, v_{1}$.

Figure 5: A 3-step Hamiltonian cycle for $L\left(S_{6}\right)$.

This completes the proof.
THEOREM 5. The corona product $C_{n} \odot P_{2}$ is 3 -SH if and only if $n \geq 4$.
PROOF. Let the vertex set and edge set of $C_{n} \odot P_{2}$ be $\left\{u_{i}, u_{i, 1}, u_{i, 2}: 1 \leq i \leq n\right\}$ and $\left\{u_{1} u_{n}, u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i, 1} u_{i, 2}, u_{i} u_{i, 1}, u_{i} u_{i, 2}: 1 \leq i \leq n\right\}$, respectively. If $n=3$, it is obvious that all u_{i} are a distance at most 2 from all other vertices of $C_{n} \odot P_{2}$ so that $C_{n} \odot P_{2}$ is not 3 -SH. We now assume that $n \geq 4$. In Figure 6 , we give a 3-SH labeling for graphs $C_{4} \odot P_{2}$ and $C_{5} \odot P_{2}$. For $n \geq 6$, we consider 2 cases:

Figure 6: 3-SH labeling for $C_{4} \odot P_{2}$ and $C_{5} \odot P_{2}$.
Case 1. $n \equiv 0(\bmod 3)$.
A sequence of vertices $u_{1,1}, u_{2,1}, \ldots, u_{n, 1}, u_{2}, u_{5}, \ldots, u_{n-1}, u_{1,2}, u_{3}, u_{6}, \ldots, u_{n}, u_{2,2}, u_{4}$, $u_{7}, \ldots, u_{n-2}, u_{1}, u_{3,2}, u_{4,2}, \ldots, u_{n, 2}, u_{1,1}$ is a 3 -SH cycle of graph $C_{n} \odot P_{2}$.

Case 2. $n \not \equiv 0(\bmod 3)$.
A possible 3 -SH cycle is given by $u_{1,1}, u_{2,1}, \ldots, u_{n, 1}, u_{1,2}, u_{2,2}, \ldots, u_{n, 2}$ followed by $u_{2}, u_{5}, u_{8}, \ldots, u_{n-1}$ such that $\{2,5,8, \ldots, n-1\}(\bmod n)$ is a set of distinct integers and we can see that $d\left(u_{1,1}, u_{n-1}\right)=3$.
This completes the proof.

THEOREM 6. The line graph of the corona product $C_{n} \odot P_{2}$ is 3-SH if and only if $n \geq 5$.

PROOF. Let $G=L\left(C_{n} \odot P_{2}\right)$ with $V(G)=\left\{u_{i}, u_{i, j}: 1 \leq i \leq n, 1 \leq j \leq 3\right\}$ and $E(G)=\left\{u_{1} u_{n}, u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i, j} u_{i, j+1}, u_{i, 1} u_{i, 3}: 1 \leq i \leq n, 1 \leq\right.$ $j \leq 2\} \cup\left\{u_{i} u_{i, 1}, u_{i+1} u_{i, 1}, u_{i} u_{i, 3}, u_{i+1} u_{i, 3}: 1 \leq i \leq n\right.$ and $i+1$ is taken modulo n\}. See Figure 7 for graph $L\left(C_{3} \odot P_{2}\right)$. We consider 2 cases:

Figure 7: Graph $L\left(C_{3} \odot P_{2}\right)$.

Case 1. n is odd.
For $n=3$, note that all u_{i} are of degree 1 in $D_{3}(G)$ so that $D_{3}(G)$ is not Hamiltonian and thus G is not 3 -SH. For $n=5$, a $3-\mathrm{SH}$ cycle is given by the sequence $u_{1,2}, u_{2,1}, u_{5}, u_{3,2}, u_{4,1}, u_{2}, u_{5,2}, u_{1,1}, u_{4}, u_{2,2}, u_{3,1}, u_{1}, u_{4,2}, u_{5,1}, u_{3}, u_{5,3}, u_{3,3}, u_{1,3}, u_{4,3}$, $u_{2,3}, u_{1,2}$. For $n \geq 7$, we consider 2 subcases:

Subcase 1.1. $n \equiv 0(\bmod 3)$.
A 3 -SH cycle is given by the sequence $u_{1,1}, u_{4}, u_{7}, \ldots, u_{n-2}, u_{1}, u_{2,2}, u_{3,1}, u_{6}, u_{9}, \ldots$, $u_{n}, u_{3}, u_{4,2}, u_{5,1}, u_{8}, u_{11}, \ldots, u_{n-1}, u_{2}, u_{5}, u_{6,2}, u_{7,1}, u_{8,2}, u_{9,1}, \ldots, u_{n-1,2}, u_{n, 1}, u_{1,2}, u_{2,1}$, $u_{3,2}, u_{4,1}, \ldots, u_{n-1,1}, u_{n, 2}, u_{1,3}, u_{3,3}, u_{5,3}, \ldots, u_{n-2,3}, u_{n, 3}, u_{2,3}, u_{4,3}, \ldots, u_{n-3,3}, u_{n-1,3}$, $u_{1,1}$.

Subcase 1.2. $n \not \equiv 0(\bmod 3)$.
A possible 3 -SH cycle is started with subsequence $u_{1,2}, u_{2,1}, u_{3,2}, u_{4,1}, \ldots, u_{n-1,1}, u_{n, 2}$, $u_{1,1}, u_{2,2}, u_{3,1}, u_{4,2}, \ldots, u_{n-1,2}, u_{n, 1}, u_{2,3}, u_{4,3}, u_{6,3}, \ldots, u_{n-1,3}, u_{1,3}, u_{3,3}, u_{5,3}, \ldots, u_{n-2,3}$, $u_{n, 3}$. We then completed the 3 -SH cycle by traversing the vertices of cycle C_{n} in the sequence $u_{3}, u_{6}, u_{9}, \ldots, u_{n}$ such that $\{3,6,9, \ldots, n\}(\bmod n)$ is a set of distinct integers. Clearly the last vertex u_{n} is a distance 3 from $u_{1,2}$.

Case 2. n is even.
For $n=4$, observe that all vertices in $\left\{u_{i}, u_{i, 2}: 1 \leq i \leq 4\right\}$ are of degree 2 in $D_{3}(G)$, which by themselves forming a non-spanning cycle C_{8}, a contradiction. Hence, $D_{3}(G)$ is not Hamiltonian and thus G is not 3 -SH. For $n \geq 6$, we consider 3 subcases:

Subcase 2.1. $n \equiv 0(\bmod 3)$.
A 3-SH cycle is given by the sequence $u_{1,2}, u_{2,1}, u_{3,2}, u_{4,1}, \ldots, u_{n-1,2}, u_{n, 1}, u_{3}, u_{6}, \ldots$, $u_{n}, u_{2,3}, u_{5}, u_{8}, \ldots, u_{n-1}, u_{1,1}, u_{2,2}, u_{3,1}, u_{4,2}, \ldots, u_{n-1,1}, u_{n, 2}, u_{1,3}, u_{4}, u_{7}, \ldots, u_{n-2}, u_{1}$,

Figure 8: A 3-SH cycle for $L\left(C_{6} \odot P_{2}\right)$.
$u_{3,3}, u_{5,3}, \ldots, u_{n-1,3}, u_{2}, u_{4,3}, u_{6,3}, \ldots, u_{n-2,3}, u_{n, 3}, u_{1,2}$. In Figure 8 , we give a $3-\mathrm{SH}$ labeling for $L\left(C_{6} \odot P_{2}\right)$.

Subcase 2.2. $n \equiv 1(\bmod 3)$.
A 3-SH cycle is given by the sequence $u_{1,2}, u_{2,1}, u_{3,2}, u_{4,1}, \ldots, u_{n-1,2}, u_{n, 1}, u_{2,3}, u_{4,3}$, $u_{6,3}, \ldots, u_{n, 3}, u_{3}, u_{6}, \ldots, u_{n-1}, u_{n, 2}, u_{1,1}, u_{2,2}, u_{3,1}, u_{4,2}, \ldots, u_{n-2,2}, u_{n-1,1}, u_{2}, u_{5}, \ldots$, $u_{n-2}, u_{1}, u_{3,3}, u_{5,3}, u_{7,3}, \ldots, u_{n-1,3}, u_{1,3}, u_{4}, u_{7}, \ldots, u_{n}, u_{1,2}$.

Subcase 2.3. $n \equiv 2(\bmod 3)$.
A 3 -SH cycle is given by the sequence $u_{1,2}, u_{2,1}, u_{3,2}, u_{4,1}, \ldots, u_{n-1,2}, u_{n, 1}, u_{2,3}, u_{4,3}$, $u_{6,3}, \ldots, u_{n, 3}, u_{3}, u_{6}, \ldots, u_{n-2}, u_{1}, u_{2,2}, u_{3,1}, u_{4,2}, u_{5,1}, \ldots, u_{n-1,1}, u_{n, 2}, u_{1,1}, u_{4}, u_{7}, \ldots$, $u_{n-1}, u_{2}, u_{5}, \ldots, u_{n-3}, u_{n-1,3}, u_{1,3}, u_{3,3}, u_{5,3}, \ldots, u_{n-3,3}, u_{n}, u_{1,2}$. This completes the proof.

Let G be a graph and $G_{1}, G_{2}, \ldots, G_{n}, n \geq 2$ be n copies of graph G. Then, the graph obtained by adding an edge from G_{i} to $G_{i+1}, i=1,2, \ldots, n-1$ is called path union of G such that the added edges connecting the same pair of vertices from G_{i} to G_{i+1}. We denote path union of n copies of G by $P(G ; n)$.

We now consider n copies of cycle $C_{m}, m \geq 3$ with $C_{i, m}=\left(u_{i, 1}, u_{i, 2}, \ldots, u_{i, m}\right)$ be the i-th copy of C_{m} for $1 \leq i \leq n$. The path union of n copies of C_{m} denoted by $P\left(C_{m} ; n\right), n \geq 2$ is obtained by joining the first vertex of the i-th copy of C_{m} to the last vertex of the $(i+1)$-th copy of C_{m} for $i=1,2, \ldots, n-1$. See Figure 9 for graph $P\left(C_{6} ; 2\right)$.

Figure 9: Graph $P\left(C_{6} ; 2\right)$.

THEOREM 7. For any $m \geq 3$ and $n \geq 2, P\left(C_{m} ; n\right)$ is not 3 -SH.

PROOF. Obviously the vertex set of $P\left(C_{m} ; n\right)$ is $\bigcup_{i=1}^{n} V\left(C_{i, m}\right)$ and the edge set is $\bigcup_{i=1}^{n} E\left(C_{i, m}\right) \cup\left\{u_{i, 1} u_{i+1, m}: 1 \leq i \leq n-1\right\}$.

Suppose $m=3$. Note that for all $n \geq 2$, any possible 3 -SH cycle in $P\left(C_{m} ; n\right)$ must contain the sequence $u_{1,2}, u_{2,2}, u_{1,3}, u_{2,1}, u_{1,2}$, a contradiction. Thus, $P\left(C_{m} ; n\right)$ is not 3 -SH.

Suppose $4 \leq m \leq 6$. Observe that, in $D_{3}\left(P\left(C_{m} ; n\right)\right)$, there exist 2 or 4 pendant vertices so that it does not have any Hamiltonian cycle and thus $P\left(C_{m} ; n\right)$ is not 3 -SH.

Suppose $m \geq 7$. We consider 2 cases:
Case 1. $\quad m \equiv 0(\bmod 3)$.
Note that the vertices $u_{1,4}, u_{1,7}, \ldots, u_{1, n-2}$ and $u_{n, 3}, u_{n, 6}, \ldots, u_{n, m-3}$ are of degree 2 in $D_{3}\left(P\left(C_{m} ; n\right)\right)$ so that any possible Hamiltonian cycle in $D_{3}\left(P\left(C_{m} ; n\right)\right)$ necessarily contains the edges $u_{1,1} u_{1,4}, u_{1,4} u_{1,7}, \ldots, u_{1, n-5} u_{1, n-2}, u_{1, n-2} u_{1,1}$ and $u_{n, 3} u_{n, 6}, u_{n, 6} u_{n, 9}, \ldots$, $u_{n, m-3} u_{n, m}, u_{n, m} u_{n, 3}$, forming 2 different cycles which is a contradiction. So we conclude that $D_{3}\left(P\left(C_{m} ; n\right)\right)$ is not Hamiltonian and thus $P\left(C_{m} ; n\right)$ is not 3 -SH.

Case 2. $m \not \equiv 0(\bmod 3)$.
For all $n \geq 2$, the following observations hold:
(i) All the vertices in the sets $\left\{u_{1,4}, u_{1,5}, \ldots, u_{1, m-2}\right\},\left\{u_{n, 3}, u_{n, 4}, \ldots, u_{n, m-3}\right\}$ and $\left\{u_{i, 4}, u_{i, 5}, \ldots, u_{i, m-3}: i \neq 1, n\right\}$ (when $n \geq 3$) are of degree 2 in $D_{3}\left(P\left(C_{m} ; n\right)\right)$.
(ii) The vertices $u_{i, 3}, 1 \leq i \leq n-1$ and $u_{1, m-1}$ are of degree 3 in $D_{3}\left(P\left(C_{m} ; n\right)\right)$ with $u_{1,3}$ and $u_{1, m-1}$ having a common neighbor $u_{2, m}$.
(iii) In any possible Hamiltonian cycle of $D_{3}\left(P\left(C_{m} ; n\right)\right), u_{1,1}$ and $u_{n, m}$ have been traversed and no more visits available. Moreover, in $D_{3}\left(P\left(C_{m} ; n\right)\right.$), each $u_{i, 3}, 1 \leq i \leq$ $n-1$, is adjacent to both $u_{i, m}$ (which has one more visit available in any Hamiltonian cycle of $D_{3}\left(P\left(C_{m} ; n\right)\right)$) and $u_{i+1, m}$.

From (i), (ii) and (iii), it is clear that $u_{n, m}$ is not available for $u_{n-1,3}$ so that the remaining 2 edges incident with $u_{n-1,3}$ are required to form Hamiltonian cycle in $D_{3}\left(P\left(C_{m} ; n\right)\right)$. The same result is then continuously applied to all other $u_{i, 3}$, $i=n-2, n-3, \ldots, 1$. Finally, as vertex $u_{2, m}$ is no more available for $u_{1, m-1}$, any possible Hamiltonian cycle in $D_{3}\left(P\left(C_{m} ; n\right)\right)$ must necessarily contain a non-spanning cycle $u_{1,2}, u_{1,5}, u_{1,8}, \ldots, u_{1, m-2}, u_{1,1}, u_{1,4}, \ldots, u_{1, m}, u_{1,3}, u_{1,6}, \ldots, u_{1, m-1}, u_{1,2}$ for every $m \equiv$ $1(\bmod 3)$, or a cycle $u_{1,2}, u_{1,5}, u_{1,8}, \ldots, u_{1, m}, u_{1,3}, u_{1,6}, \ldots, u_{1, m-2}, u_{1,1}, u_{1,4}, \ldots, u_{1, m-1}$, $u_{1,2}$ for every $m \equiv 2(\bmod 3)$, a contradiction. Therefore, $D_{3}\left(P\left(C_{m} ; n\right)\right)$ is not Hamil-
tonian and thus $P\left(C_{m} ; n\right)$ is not $3-\mathrm{SH}$.
This completes the proof.
From Theorem 1, we know that the cycle C_{m} when $m \not \equiv 0(\bmod 3)$ admits a 3SH cycle. Therefore, Case 2 in the above theorem shows that the path union of any $n(n \geq 2)$ copies of 3 -SH graph is not necessarily 3 -SH. But, we can construct a 3-SH graph from two graphs as follows: Suppose H_{1} (respectively H_{2}) is a graph of order n (respectively m) with an $A L(3)$-traversal given by $u_{1}, u_{2}, \ldots, u_{n}$ (respectively $\left.v_{1}, v_{2}, \ldots, v_{m}\right)$ such that $d\left(u_{1}, u_{n}\right)=d\left(v_{1}, v_{m}\right)=2$. We join the vertex u_{1} to v_{1} to form a 3 -SH graph with the vertex sequence $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{m}, u_{1}$ as the 3-SH cycle.

THEOREM 8. Let G be a graph of order n with an $A L(3)$-traversal $u_{1}, u_{2}, \ldots, u_{n}$ such that $d\left(u_{1}, u_{n}\right)=2$. Then, there exists a path union of two copies of $G, P(G ; 2)$ which admits a 3 -SH cycle.

Suppose G is a graph of order p with a 3 -SH cycle given by $u_{1}, u_{2}, \ldots, u_{p}, u_{1}$ and H is a graph of order q with an $A L(3)$-traversal $v_{1}, v_{2}, \ldots, v_{q}$ such that $d\left(v_{1}, v_{q}\right)=1$. Since G is $3-\mathrm{SH}$, there exists a $u_{p}-u_{1}$ path of length 3 , say u_{p}, a, b, u_{1}. Denote by $G_{a v_{q}}$ the graph obtained from G and H by joining the vertex a to v_{q}.

THEOREM 9. The graph $G_{a v_{q}}$ of order $p+q$ is $3-\mathrm{SH}$.
PROOF. Observe that $d\left(u_{p}, v_{1}\right)=d\left(v_{q}, u_{1}\right)=3$ and thus the vertex sequence u_{1}, $u_{2}, \ldots, u_{p}, v_{1}, v_{2}, \ldots, v_{q}, u_{1}$ is a 3 -SH cycle of $G_{a v_{q}}$.

THEOREM 10. Let G be the line graph of $P\left(C_{m} ; n\right)$, then
(i) G is not 3 -SH for $3 \leq m \leq 5$ and all $n \geq 2$;
(ii) G is not 3 -SH for $m \geq 6, m \equiv 0(\bmod 3)$ and $n=2$;
(iii) G is 3 -SH for $m \geq 7, m \not \equiv 0(\bmod 3)$ and $n \geq 3$.

PROOF. Let $V(G)=\left\{u_{i}, v_{j}: 1 \leq i \leq n, 1 \leq j \leq n-1\right\} \cup\left\{u_{i, j}: 1 \leq i \leq\right.$ $n, 1 \leq j \leq m-1\}$ and $E(G)=\left\{u_{i} u_{i, 1}, u_{i, j} u_{i, j+1}, u_{i} u_{i, m-1}: 1 \leq i \leq n, 1 \leq j \leq\right.$ $m-2\} \cup\left\{u_{i} v_{i}, v_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{i} u_{i, 1}, v_{i} u_{i+1, m-1}: 1 \leq i \leq n-1\right\}$. Figure 10 shows the line graph $L\left(P\left(C_{4} ; 3\right)\right)$.
(i) Suppose $m=3$. Clearly for $n=2$, vertex v_{1} is a distance at most 2 to all other vertices of G so that G is not 3 -SH. For all $n \geq 3$, any possible 3 -SH cycle in G must consist of the subcycle $u_{1,1}, v_{2}, u_{1}, u_{2,1}, u_{1,1}$, a contradiction. Thus, G is not 3 -SH. Suppose $m=4$. For all $n \geq 2$, observe that the set of vertices $\left\{u_{1,3}, u_{2}, u_{1,2}, u_{2,3}\right\}$ induce a cycle in any possible 3 -SH cycle of G so that G is not 3 -SH. Suppose $m=5$. For all $n \geq 2$, there exist exactly 2 pendant vertices in $D_{3}(G)$, from the first and last copy of C_{m}, respectively. Hence, $D_{3}(G)$ is not Hamiltonian and thus G is not $3-\mathrm{SH}$.

Figure 10: Graph $L\left(P\left(C_{4} ; 3\right)\right)$.
(ii) Observe that v_{1} is a cut-vertex in $D_{3}(G)$ so that it is not Hamiltonian. Hence, G is not $3-\mathrm{SH}$.
(iii) A 3-SH labeling for $L\left(P\left(C_{8} ; 5\right)\right)$ and $L\left(P\left(C_{7} ; 6\right)\right)$ are given in Figure 11 and in Figure 12, respectively. For $m \geq 7$ and odd $n \geq 3$, a 3 -SH cycle can be constructed in a way similar to that in $L\left(P\left(C_{8} ; 5\right)\right)$ whereas we can get a 3-SH labeling for $m \geq 7$ and even $n \geq 4$ by referring to the labeling pattern in $L\left(P\left(C_{7} ; 6\right)\right)$.

This completes the proof.

Figure 11: A 3-SH cycle for $L\left(P\left(C_{8} ; 5\right)\right)$.

Figure 12: A 3-SH cycle for $L\left(P\left(C_{7}: 6\right)\right)$.

From Theorem 10, we pose the following open problem.
PROBLEM 3. Solve the 3-step Hamiltonicity of line graph of $P\left(C_{m} ; n\right)$ for all $m \geq 3$ and $n \geq 2$.

Acknowledgment. The authors would like to thank the referee for his/her suggestions that improved the paper.

References

[1] N. A. A. Aziz, H. Kamarulhaili, G. C. Lau and R. Hasni, On 3-steps Hamiltonicity of certain graphs, AIP Conference Proceedings 1974, (2018); doi: 10/1.5041652.
[2] R. Gould, Advances on the Hamiltonian Problem: A Survey, Graphs Comb., 19(2003), 7-52.
[3] G. C. Lau, S. M. Lee, K. Schaffer, S. M. Tong and S. Lui, On k-step Hamiltonian graphs, J. Combin. Math. Combin. Comput., 90(2014), 145-158.
[4] G. C. Lau, S. M. Lee, K. Schaffer and S. M. Tong, On k-step Hamiltonian bipartite and tripartite graphs, Malaya J. Math., 2(2014), 180-187.
[5] G. C. Lau, Y. S. Ho, S. M. Lee and K. Schaffer, On 3-step Hamiltonian trees, J. Graph Labeling, 1(2015), 41-53.
[6] S. M. Lee and H. H. Su, The 2-steps Hamiltonion subdivision graphs of cycles with a chord, J. Combin. Math. Combin. Comput., 98(2016), 109-123.
[7] Y. S. Ho, S. M. Lee and B. Lo, On 2-steps Hamiltonion cubic graphs, J. Combin. Math. Combin. Comput., 98(2016), 185-199.
[8] D. B. West, Introduction to Graph Theory, 2nd Edition, Prentice Hall, Inc., United States of America, 2001.

[^0]: *Mathematics Subject Classifications: 05C78, 05C25.
 ${ }^{\dagger}$ School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
 \ddagger School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
 §Same postal address as the first author
 ${ }^{\top}$ Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 85009 Segamat, Johor, Malaysia
 $\|^{1} 34803$, Hollyhock Street, Union City, CA94587, USA

