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Abstract

In this work, we study the semilocal convergence of the sixth order iterative
method by using the recurrence relations for solving nonlinear equation in Ba-
nach spaces. This scheme is finally used to estimate the solutions of systems of
nonlinear equations and so, the theoretical results are numerically checked. We
use this example to show the better effi ciency of the current method compared
with other existing ones, including Newton’s scheme.

1 Introduction

This paper is concerned with the problem of approximating a solution x∗ of nonlinear
equation F (x) = 0, where X and Y are Banach space, F : Ω ⊆ X → Y a nonlinear
twice Frechet differentiable operator in an open convex domain Ω, and this equation can
represent differential equations, integral equations, a system of nonlinear equations, etc.
One of the most well known method for solving nonlinear equation is Newton’s method
(NM) [9] which has convergence order two. Many papers have been written in a Banach
space setting for the Newton-Kantorovich method as well as Newton-type methods
and their applications. The semi-local convergence of Newton’s method in Banach
spaces was established by Kantorovich in [8]. Recently, the convergence of iterative
methods for solving nonlinear operator equation in Banach spaces is established from
the convergence of majorizing sequences. This technique has been used in order to
establish the order of convergence of the variants of Newton’s methods in the literature
[3, 4, 14]. In [11], Rall has suggested a different approach for the convergence of
these methods, based on recurrence relations. Recently, numerous variants of Newton’s
methods are developed by using this idea to prove the semilocal convergence for several
methods of different orders (see [1, 2, 5, 10, 12]).
In the present paper, we study the semilocal convergence of the sixth order method

(M6) proposed by K. Madhu [7]. The extension of this method in Banach spaces is
given by

yn = xn − ΓnF (xn), zn = yn − τ ΓnF (yn), xn+1 = zn − τ ΓnF (zn), (1)
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198 Semilocal Convergence of Sixth Order Method

where τ = 2I−ΓnF
′(yn) and Γn = [F ′(xn)]−1 for n ∈ N. Recurrence relations, consists

of generating a sequence of positive real numbers that guarantees the convergence
of the iterative scheme in Banach spaces, providing a suitable convergence domain.
This technique allows us to establish weak semilocal convergence conditions for new
iterative method with sixth-order convergence. Even more, we get a result of semilocal
convergence under the same conditions of Kantorovich Theorem for Newton’s method,
which has quadratic convergence. This allows us to apply the sixth-order convergence
method for solving nonlinear equations F (x) = 0 under the same conditions that assures
us the convergence of Newton’s method.
In section 2 we describe the recurrence relations. In section 3, we describe the

properties needed to prove the semilocal convergence of proposed method. In Section
4, numerical examples are given to illustrate the effi ciency of the iterative methods.

2 Recurrence Relations

Let X and Y be Banach space and F : Ω ⊆ X → Y be a nonlinear twice Frechet
differentiable operator in an open convex domain Ω. Let us assume that the inverse of
F ′ at x0, [F ′(x0)]

−1 = Γ0 ∈ L(Y,X) exists at some x0 ∈ Ω, where L(Y,X) is the set
of bounded linear operators from Y into X.

In the following conditions we will assume that y0, z0 ∈ Ω and

(i) ||Γ0|| ≤ β,

(ii) ||Γ0F (x0)|| ≤ η,

(iii) ||F ′(x)− F ′(y)|| ≤ K||x− y||, x, y ∈ Ω,

in order to obtain the recurrence relations that satisfy the steps that appear in the
iterative process (1). Note that these are the classical Kantorovich’s conditions [8] for
the semilocal convergence of Newton’s method.
Let us also denote by a0 = Kβη and define the sequence an+1 = anf(an)2g(an)

where
f(x) =

1

1− x(h(x) + 1)
, (2)

g(x) =
1

2
x+ (x+ 1)h(x) +

1

2
xh(x)2, (3)

and
h(x) =

3

2
x+

5

2
x2 +

13

8
x3 +

7

8
x4 +

3

8
x5 +

1

8
x6. (4)

To study the convergence of {xn} defined by (1) to a solution of F (x) = 0 in a Banach
space, we have to prove that {xn} is a Cauchy sequence. To do this, we need to analyze
some properties of sequence {an} and real functions described in (2)—(4) respectively.

LEMMA 1. Let f(x), g(x) and h(x) be the real functions described in (2)—(4).
Then

(i) f is increasing and f(x) > 1 for x ∈ (0, 0.4),
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(ii) h and g are increasing for x ∈ (0, 0.4).

LEMMA 2. Let f(x) and g(x) as before and a0 ∈ (0, 0.1799...). Then

(i) f(a0)
2g(a0) < 1,

(ii) f(a0)g(a0) < 1,

(iii) the sequence {an} is decreasing and an < 0.1799..., for n ≥ 0.

PROOF. (i) follows trivially. From (i) and f(a0) > 1, we obtain (ii). We are going
to prove (iii) by induction on n ≥ 0. Firstly, from (i) and the definition of a1, we have
that a1 < a0. Now, it is supposed that ak < ak−1, for k ≤ n. Then

an+1 = anf(an)2g(an) < an−1f(an)2g(an) < an−1f(an−1)
2g(an−1) = an,

as f and g are increasing and f(x) > 1. Finally, for all n ≥ 0, an < 0.1799..., since
{an} is a decreasing sequence and a0 < 0.1799.... Let us also note that a0 = 0.1799...
is the value of the solution of equation f(a0)

2g(a0)− 1 = 0. Using Taylor’s expansion
of F (y0) around x0,

z0 = y0 − (2− Γ0F
′(y0))Γ0F (y0),

z0 − x0 = y0 − x0 − (2− Γ0F
′(y0))Γ0F

′′(x0 + t(y0 − x0))(y0 − x0)2

= y0 − x0 − (2− Γ0F
′(y0))Γ0

∫ 1

0

F ′(x0 + t(y0 − x0))(y0 − x0)dt,

then

||z0 − x0|| ≤ ||y0 − x0||+
Γ0K

2
||y0 − x0||2 +

Γ20K
2

2
||y0 − x0||3.

We have

||z0 − y0|| ≤
Γ0Kη

2
||y0 − x0||+

Γ20K
2η2

2
||y0 − x0||,

≤ 1

2
(a0 + a20)||y0 − x0||.

By using Taylor’s expansion of F (z0) and (1), then we have

x1 = x0 − Γ0F (x0)−
(

2I − Γ0F
′(y0)

)
Γ0F (y0)−

(
2I − Γ0F

′(y0)
)

Γ0F (z0),
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‖x1 − x0‖

=

∥∥∥∥∥− Γ0

(
F (x0) +

(
2I − Γ0F

′(y0)
)
F (y0) +

(
2I − Γ0F

′(y0)
)
F (z0)

)∥∥∥∥∥
≤

∥∥∥∥∥− Γ0

(
F (x0) +

(
I + Γ0K||y0 − x0||

)
F (y0) +

(
I + Γ0K||y0 − x0||

)
F (z0)

)∥∥∥∥∥
≤

∥∥∥∥∥− Γ0

(
F (x0) +

(
I + Γ0K||y0 − x0||

)∫ y0

x0

(F ′(x)− F ′(x0))dx

−
(
I + Γ0K||y0 − x0||

)2 ∫ y0

x0

(F ′(x)− F ′(x0))dx

+
(
I + Γ0K||y0 − x0||

)∫ z0

x0

(F ′(x)− F ′(x0))dx
)∥∥∥∥∥

≤
∥∥∥∥∥− Γ0

(
F (x0) +

(
I + Γ0K||y0 − x0||

)1

2
K||y0 − x0||2

−
(
I + Γ0K||y0 − x0||

)2 1

2
K||y0 − x0||2 +

(
I + Γ0K||y0 − x0||

)1

2
K||z0 − x0||2

)∥∥∥∥∥
≤ ||y0 − x0||+

(
I + βK||y0 − x0||

)1

2
Kβ||y0 − x0||2

+
(
I + βK||y0 − x0||

)2 1

2
Kβ||y0 − x0||2 +

(
I + βK||y0 − x0||

)1

2
Kβ||z0 − x0||2

≤
(

1 +
3

2
a0 +

5

2
a20 +

13

8
a30 +

7

8
a40 +

3

8
a50 +

1

8
a60

)
η ≤ (1 + h(a0))η. (5)

Now assuming that a0 < 0.4 and applying assumptions (i)—(iii), we have

||I − Γ0F
′(x1)|| ≤ ||Γ0|| ||F ′(x1)− F ′(x0)|| ≤ βK||x1 − x0|| ≤ βKη(1 + h(a0))

≤ a0(1 + h(a0)) < 1,

by Banach Lemma, Γ1 exists and

Γ1 ≤
1

1− a0(1 + h(a0))
Γ0 = f(a0)||Γ0||.

Let us remark that we required a0 < 0.4 in order to guaranty a0(1 + h(a0)) < 1. Also
note that K||Γ0|| ||y0 − x0|| ≤ a0, so it can be deduced that x1 is well defined and

‖x1 − x0‖ ≤ ||Γ0||
∥∥∥∥∥F (x0) +

(
2I − Γ0F

′(y0)
)
F (y0) +

(
2I − Γ0F

′(y0)
)
F (z0)

∥∥∥∥∥
≤ (1 + h(a0))||Γ0F (x0)||. (6)

Then assuming that xn, yn, zn ∈ Ω and an < 0.4 for all n ≥ 1, the following inequalities
can be proved by induction on n ≥ 1:
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(In) ||Γn|| ≤ f(an−1) ||Γn−1||,

(IIn) ||yn − xn|| ≤ ||ΓnF (xn)|| ≤ f(an−1)g(an−1) ||yn−1 − xn−1||,

(IIIn) ||zn − yn|| ≤ βK
2 f(a0)

n (1 + βKf(a0)
n||yn − xn||) ||yn − xn||2,

(IVn) K||Γn|| ||yn − xn|| ≤ an,

(Vn) ||xn − xn−1|| ≤ (1 + h(an−1)) ||yn−1 − xn−1||.

Let us consider n = 1, so (I1) has been proved before.

(II1): Using Taylor’s formula

F (x1)

= F (y0) + (x1 − y0)F ′(y0) + F (x1)− F (y0)− (x1 − y0)F ′(y0)

= F (y0) + (x1 − y0)F ′(y0) +

∫ x1

y0

(F ′(x)− F ′(y0))dx

=

∫ 1

0

(
F ′(x0) + t(y0 − x0)− F ′(x0)

)
(y0 − x0)dt

−
(
F ′(y0)− F ′(x0) + F ′(x0)

)
Γ0(2I − Γ0F

′(y0))(F (y0) + F (z0))

−Γ0(2I − Γ0F
′(y0))(F (y0) + F (z0))

∫ 1

0

(
F ′(x0) + t(y0 − x0)− F ′(x0)

)
dt.(7)

On the other hand, from equ. (5) we have

||2I − Γ0F
′(y0)||

(
||F (y0) + F (z0)||

)
≤ ηh(a0)

β
.

Then from equ. (7)

||F (x1)|| ≤
1

2
Kη2 +Kη2h(a0) + η

h(a0)

β
+
K

2
η2h(a0)

2.

Therefore,

‖y1 − x1‖ ≤ Γ1 ‖F (x1)‖ ≤ f(a0)Γ0||F (x1)||

≤ f(a0)
(1

2
a0 + (1 + a0)h(a0) +

1

2
a0h(a0)

2
)
η

≤ f(a0)g(a0)||y0 − x0||.

(III1): It is clear that

‖z1 − y1‖ ≤ Γ1||2− Γ1F
′(y1)|| ‖F (y1)‖

≤ Γ1

(
||1 + Γ1||F ′(y1)− F ′(x1)||

)
||F (y1)||

≤
(

1 + f(a0)Γ0K||y1 − x1||
)
f(a0)Γ0

K

2
||y1 − x1||2

≤ βK

2
f(a0)

(
1 + βKf(a0)||y1 − x1||

)
||y1 − x1||2.
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(IV1): Using (I1) and (II1),

KΓ1||y1 − x1|| ≤ Kβηf(a0)
2g(a0) ≤ a0f(a0)

2g(a0) ≤ a1.

(V1): Has been shown in (6) that

||x1 − x0|| ≤ (1 + h(a0))||Γ0F (x0)|| ≤ (1 + h(a0))||y0 − x0||.

By considering that the induction hypothesis of items (In) to (Vn) are true for a fixed
n ≥ 1, it can be proved (In+1) to (Vn+1) in a similar way and the induction is complete.
Let us note that condition an < 0.4, for n ≥ 1, is necessary for the existence of operators
Γn, n ≥ 1. The above recurrence relations for proposed given in (1) allow us to establish
a new semilocal convergence result for this method M6 under mild conditions.

3 Semilocal Convergence Analysis

We are able to prove the semilocal convergence of method (1) under mild conditions
by using technical Lemmas 1 and 2 and recurrence relations.

THEOREM 1. Let X and Y be Banach space and F : Ω ⊆ X → Y be a nonlinear
twice Frechet differentiable operator in an open convex domain Ω. Let us assume that
Γ0 = [F ′(x0)]

−1 ∈ L(Y,X) exists at some x0 ∈ Ω and assumptions

(i) ‖Γ0‖ ≤ β,

(ii) ‖Γ0F (x0)‖ ≤ η,

(iii) ‖F ′(x)− F ′(y)‖ ≤ K ‖x− y‖ , x, y ∈ Ω,

are satisfied. Let us denote a0 = Kβη and suppose that a0 < 0.1799.... Then, if
B(x0, Rη) = {x ∈ X : ||x − x0|| < Rη} ⊂ Ω, where R = 1

2 (a0 + a20) + 1+h(a0)
1−f(a0)g(a0)

the sequence {xn} defined in (1) and starting at x0 converges to a solution x∗ of the
equation F (x) = 0. In that case, the solution x∗ and the iterates xn, yn and zn belong
to B(x0, Rη), and x∗ is the only solution of F (x) = 0 in B(x0,

2
Kβ −Rη) ∩ Ω.

PROOF. Let us recall that Γn exists for n ≥ 1, since a0 < 0.1799.... Moreover, we
are going to prove that yn and zn belong to B(x0, Rη) ⊂ Ω. By recurrence relation
(Vn), it is easy to observe that

‖x1 − x0‖ ≤ (1 + h(a0)) ‖y0 − x0‖ ,
‖x2 − x1‖ ≤ (1 + h(a0)) ‖y1 − x1‖ ≤ (1 + h(a0))f(a0)g(a0)||y0 − x0||,

...

‖xn − xn−1‖ ≤ (1 + h(a0))(f(a0)g(a0))
n−1||y0 − x0||,

adding above relations then we obtained

||xn − x0|| ≤ (1 + h(a0))||y0 − x0||
n−1∑
k=0

(f(a0)g(a0))
k.
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So

‖yn − x0‖ ≤ ||yn − xn||+ ||xn − x0||
≤ (1 + h(a0))(f(a0)g(a0))

n ||y0 − x0||

+(1 + h(a0))||y0 − x0||
n−1∑
k=0

(f(a0)g(a0))
k

< (1 + h(a0))η

n∑
k=0

f(a0)g(a0)

< (1 + h(a0))
1− (f(a0)g(a0))

n+1

1− f(a0)g(a0)
η < Rη, using geometric sequence.

By applying recurrence relations (In) and (IIn), we have

‖zn − yn‖ ≤ ||2I − ΓnF
′(yn)|| ||Γn|| ||F (yn)||

≤ βK

2
f(a0)

n
(

1 + βKf(a0)
n ||yn − xn||

)
||yn − xn||2

≤ a0
2

(
1 + a0(f(a0)

2g(a0))
n
)

(f(a0)
3g(a0)

2)n||y0 − x0||.

Therefore,

‖zn − x0‖ ≤ ||zn − yn||+ ||yn − x0||

≤ a0
2

(
1 + a0(f(a0)

2g(a0))
n
)

(f(a0)
3g(a0)

2)n||y0 − x0||

+(1 + h(a0))
1− (f(a0)g(a0))

n+1

1− f(a0)g(a0)
||y0 − x0||

<
(1

2
(a0 + a20) + (1 + h(a0))

1− (f(a0)g(a0))
n+1

1− f(a0)g(a0)

)
η < Rη.

In order to prove the convergence of the sequence {xn}, let us state that

|xn+1 − xn|| ≤ (1 + h(an)) ||yn − xn||
≤ (1 + h(an))f(an−1)g(an−1) ||yn−1 − xn−1||

≤ · · · ≤ (1 + h(an))

n−1∏
j=0

f(aj)g(aj) ||y0 − x0|| (8)

by (Vn) and (IIn). From (8) we have

‖xn+m − xn‖
≤ ||xn+m − xn+m−1||+ ||xn+m−1 − xn+m−2||+ · · ·+ ||xn+1 − xn||

≤ (1 + h(an+m−1))η

n+m−2∏
j=0

f(aj)g(aj)

+(1 + h(an+m−2))η

n+m−3∏
j=0

f(aj)g(aj) + · · ·+ (1 + h(an))η

n−1∏
j=0

f(aj)g(aj),
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as h is increasing and {an} is decreasing by Lemmas 1 and 2,

‖xn+m − xn‖ ≤ (1 + h(a0))η

m−1∑
l=0

(
n+l−1∏
j=0

f(aj)g(aj)

)

≤ (1 + h(a0))η

m−1∑
l=0

(
f(a0)g(a0)

)l+n
,

since functions f and g are also increasing. So, by applying the partial sum of a
geometric sequence,

‖xn+m − xn‖ ≤ (1 + h(a0))
(
f(a0)g(a0)

)n
η

m−1∑
l=0

(
f(a0)g(a0)

)l
≤ (1 + h(a0))

(
f(a0)g(a0)

)n 1− (f(a0)g(a0))
m

1− f(a0)g(a0)
η.

Then, we conclude that {xn} is a Cauchy sequence if f(a0)g(a0) < 1. In order to prove
that x∗ is a solution of F (x) = 0, we will start with the bound of ||F ′(xn)||,

||F ′(xn)|| ≤ ||F ′(x0)||+ ||F ′(xn)− F ′(x0)|
| ≤ ||F ′(x0)||+K||xn − x0|| ≤ ||F ′(x0)||+KRη, (9)

by applying hypothesis (iii) and Lemmas 1 and 2. Then by equ. (8),

‖F (xn)‖ ≤ ||F ′(xn)|| ||ΓnF (xn)|| ≤ ||F ′(xn)|| ||yn − xn||

≤ ||F ′(xn)||
n−1∏
j=0

f(aj)g(aj)η.

and as f and g are increasing and {an} is decreasing,

||F (xn)|| ≤ ||F ′(xn)||
(
f(a0)g(a0)

)n
η.

Since ||F ′(xn)|| is bounded (see (9)) and
(
f(a0)g(a0)

)n
tends to zero when n → ∞,

we conclude that ||F (xn)|| → 0. By continuity of F in Ω, F (x∗) = 0. Let us observe
that, if a0 ∈ (0, 0.1799...), 2

Kβ − Rη > 0. So, we are going to prove the uniqueness

of x∗ ∈ B
(
x0,

2
Kβ − Rη

)
∩ Ω. Let us assume that y∗ is a solution of F (x) = 0 in

B
(
x0,

2
Kβ −Rη

)
∩ Ω. Then, in order to prove that y∗ = x∗ and taking

0 = F (y∗)− F (x∗) =

∫ 1

0

F ′∗ + t(y∗ − x∗))dt(y∗ − x∗),

we must show that the operator
∫ 1
0
F ′∗ + t(y∗ − x∗))dt is invertible. So, by applying
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hypothesis (iii),

‖Γ0‖
∫ 1

0

||F ′∗ + t(y∗ − x∗))− F ′(x0)||dt

≤ Kβ

∫ 1

0

||x∗ + t(y∗ − x∗)− x0||dt

≤ Kβ

∫ 1

0

((1− t)||x∗ − x0||+ t||y∗ − x0)||)dt

≤ Kβ

2

(
||x∗ − x0||+ ||y∗ − x0)||

)
<

Kβ

2

(
Rη +

2

Kβ
−Rη

)
= 1

by the Banach Lemma, the integral operator is invertible and hence y∗ = x∗.
Another important aspect of this work is the comparative study of the effi ciency of

the proposed method with well known high-order methods, such as Jarratt’s method
[6] and the one recently introduced by Wang et al. [13] which are given below,
Jarratt’s method (JM):

x(k+1) = x(k) − [6F ′(y(x(k)))− 2F ′(x(k))]−1[3F ′(y(x(k))) + F ′(x(k))][F ′(x(k))]−1F (x(k)),

y(x(k)) = x(k) − 2

3
[F ′(x(k))]−1F (x(k)).

Method of Wang et al. (Wang):

x(k+1) = z(x(k))− [
3

2
F ′(y(x(k)))−1 − 1

2
F ′(x(k))−1]F (z(x(k))),

z(x(k)) = x(k) − [6F ′(y(x(k)))− 2F ′(x(k))]−1[3F ′(y(x(k))) + F ′(x(k))][F ′(x(k))]−1F (x(k)),

y(x(k)) = x(k) − 2

3
[F ′(x(k))]−1F (x(k)).

4 Numerical Examples

The numerical experiments have been carried out using Matlab software for the test
problems given below. The approximate solutions are calculated correct to 1000 digits
by using variable precision arithmetic. We use the following stopping criterion for the
iterations:

errmin = ‖x(k+1) − x(k)‖2 < 10−100.

We have used the approximated computational order of convergence pc given by

pc ≈
log (‖x(k+1) − x(k)‖2/‖x(k) − x(k−1)‖2)

log (‖x(k) − x(k−1)‖2/‖x(k−1) − x(k−2)‖2)
.

Let M be the number of iterations required for reaching the minimum residual errmin.
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Test Problem 1 (TP1) We consider the following system:
F (x1, x2) = 0, where F : (4, 6)× (5, 7)→ R2 and

F (x1, x2) = (x21 − x2 − 19, x32/6− x21 + x2 − 17).

The Jacobian matrix is given by

F ′(x) =

(
2x1 −1
−2x1

1
2x

2
2 + 1

)
.

The starting vector is x(0) = (5.1, 6.1)T and the exact solution is x∗ = (5, 6)T .

Test Problem 2 (TP2) We consider the following system:
cosx2 − sinx1 = 0,

xx13 −
1

x2
= 0,

expx1 − x23 = 0.

The solution is x∗ ≈ (0.909569, 0.661227, 1.575834)T . We choose the starting vector
x(0) = (1, 0.5, 1.5)T . The Jacobian matrix has 7 non-zero elements and it is given by

F ′(x) =

 − cosx1 − sinx2 0
xx13 lnx3 1/x22 xx13 x1/x3
expx1 0 −2x3

 .

Test Problem 3 (TP3) We consider the following system:

x2x3 + x4(x2 + x3) = 0,
x1x3 + x4(x1 + x3) = 0,
x1x2 + x4(x1 + x2) = 0,
x1x2 + x1x3 + x2x3 = 1.

We solve this system using the initial approximation x(0) = (0.5, 0.5, 0.5,−0.2)T . The
solution of this system is x∗ ≈ (0.577350, 0.577350, 0.577350,−0.288675)T . The Jaco-
bian matrix that has 12 non-zero elements is given by

F ′(x) =


0 x3 + x4 x2 + x4 x2 + x3

x3 + x4 0 x1 + x4 x1 + x3
x2 + x4 x1 + x4 0 x1 + x2
x2 + x3 x1 + x3 x1 + x2 0

 .

Table 1 shows the results for the test problems (TP1, TP2, TP3), from which we
conclude that M6 method is the most effi cient method out of the methods compared
with least number of iterations and residual error. Hence, proposed method M6 is
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preferable over some existing methods.

Table1: Comparison of different methods for system of nonlinear equations.

Methods TP1 TP2 TP3
M errmin pc M errmin pc M errmin pc

NM 10 1.0385e-103 1.99 8 3.9287e-145 2.00 9 8.9692e-179 1.99
JM 4 1.0270e-117 3.99 5 1.1522e-139 4.00 5 2.9883e-291 4.03
Wang 4 3.6801e-110 3.99 5 1.2669e-121 4.00 5 8.8962e-257 4.03
M6 3 5.0691e-054 5.88 5 5.5651e-280 6.00 4 3.8561e-175 6.11
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