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Abstract

Recently, the extended shift-splitting iteration method is proposed for the non-
singular symmetric saddle point problem [J. Comput. Appl. Math., 313(2017),
70—81]. In this paper, the extended shift-splitting iteration method is applied for
solving nonsymmetric generalized saddle point problems. We prove the conver-
gence and semi-convergence of the extended shift-splitting iteration method to
solve the nonsingular and singular nonsymmetric generalized saddle point prob-
lems, respectively.

1 Introduction

In many areas of scientific computing and engineering applications, we need to solve
the following large sparse nonsymmetric generalized saddle point problems

Au ≡
[

A BT

−B C

] [
x
y

]
=

[
f
g

]
≡ b, (1)

where A ∈ Rn×n is nonsymmetric positive definite, C ∈ Rm×m is symmetric positive
semi-definite, B ∈ Rm×n (m ≤ n) is a rectangular matrix of rank r, f ∈ Rn and g ∈ Rm
are given vectors. Since the (1, 1) block matrix A of A is nonsingular, the generalized
saddle point matrix A can be decomposed into

A =

[
I 0

−BA−1 I

] [
A 0
0 C +BA−1BT

] [
I A−1BT

0 I

]
. (2)

It readily follows from the block decomposition (2) that the generalized saddle point
matrix A is nonsingular if and only if C + BA−1BT is nonsingular. If B has full
row rank, that is r = m, then the generalized saddle point matrix A is nonsingular
and the saddle point problem (1) has a unique solution (see [1]). However, in many
applications, the matrix B is rank deficient, that is r < m. For such case, C+BA−1BT

is invertible if and only if null(C)∩null(BT ) = {0} (null(·) denotes the null space of the
corresponding matrix). Therefore, if null(C) ∩ null(BT ) 6= {0}, then the generalized
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saddle point matrix A is singular, at the moment, we call (1) a singular saddle point
problem. Moreover, in such case, we suppose that the singular saddle point problem
(1) is consistent, i.e., b ∈ R(A), the range of A. For an overview of its applications, we
refer to [4] and references therein.
In view of its property of sparsity, it may be attractive to use iteration methods (see

[2,4] for a general introduction to the different solution methods). Recently, based on
the shift-splitting (SS) iteration method [3], a class of the shift-splitting type methods
received wide attention and obtained considerable achievements. For example, Cao et
al. [8,9] applied the shift-splitting iteration method to solve nonsingular saddle point
problems with symmetric and nonsymmetric positive definite matrix A, full row rank
matrix B and zero matrix C. Shen and Shi generalized the shift-splitting iteration
method and proposed the generalized shift-splitting (GSS) iteration method in [17]

1

2

[
αI +A BT

−B βI + C

] [
xk+1
yk+1

]
=

1

2

[
αI −A −BT
B βI − C

] [
xk
yk

]
+

[
f
g

]
, (3)

where α and β are two positive real parameters, and I is the identity matrix with ap-
propriate dimension. Theoretical analysis in [17] showed that the GSS iteration method
converges to the solution of the nonsymmetric generalized saddle point problem. Beik
in [5] investigated the convergence of the MS method for nonsymmetric generalized sad-
dle point problem. For the nonsingular generalized saddle point problems (1), where
A is symmetric positive definite, B is of full row rank and C is symmetric positive
semi-definite, Salkuyeh et al. [12] proved that the GSS iteration method is convergent
unconditionally. Salkuyeh et al. in [13] considered the semi-convergence of the MGSS
method for solving singular saddle point problems, where A is nonsymmetric positive
definite, B is rank deficient and the matrix C is equal to zero. For a class of singular
saddle point problems where A is symmetric positive definite, B is rank deficient and
C = 0, Chen and Ma [14] proved that the GSS iteration method is semi-convergent
to a solution if the singular linear system is consistent. For singular nonsymmetric
saddle point problems where A is nonsymmetric positive definite, B is rank deficient
and C = 0, the semi-convergence of the GSS iteration method was proved by Cao
and Miao in [10], where a unified analysis was also presented for solving nonsingular
nonsymmetric saddle point problems. Cao et al. in [11] studied a preconditioned gen-
eralized shift-splitting iteration method for solving saddle point problems and analyzed
eigenvalue distribution of the preconditioned saddle point matrix, where A is symmet-
ric positive definite, B is of full row rank and C = 0. Ren et al. in [15] investigated the
eigenvalue distribution of the shift-splitting preconditioned saddle point matrix and
showed that all eigenvalues having nonzero imaginary parts are located in an intersec-
tion of two circles and all real eigenvalues are located in a positive interval, where A is
symmetric positive definite, B is of full row rank and C = 0. Shi et al. in [18] provided
eigenvalue bounds for the nonzero eigenvalues of shift-splitting preconditioned singular
nonsymmetric saddle point matrices, where A is nonsymmetric positive definite, B is
a rectangular matrix and C = 0.
By further generalizing the GSS and the SS iteration methods, the extended shift-

splitting (ESS) iteration method is proposed for solving the nonsingular symmetric
saddle point problem in [19]. However, there is no discussion on the ESS iteration
method for the nonsymmetric generalized saddle point problem with nonsymmetric
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positive definite A and nonzero matrix C. In this paper, the ESS iteration method
is further studied for both the singular and the nonsingular nonsymmetric generalized
saddle point problems (1). It will be shown that the ESS iteration method is con-
vergent unconditionally for solving the nonsingular nonsymmetric generalized saddle
point problems and semi-convergent unconditionally for solving the singular nonsym-
metric generalized saddle point problems. It should be noted that our results are quite
general, including as particular cases almost all the results given in recent literatures.
The remainder of this paper is organized as follows. In Sections 2 and 3, the

convergence and the semi-convergence of the ESS iteration method for solving the
nonsingular and singular generalized saddle point problems are studied, respectively.
Finally, we end this paper with a few concluding remarks in Section 4.

2 The ESS IterationMethod and Convergence Analy-
sis

In this section, we will give the ESS iteration method and study its convergence for
solving the nonsingular generalized saddle point problems (1), where A is nonsymmetric
positive definite, B is of full row rank and C is symmetric positive semi-definite.
By introducing a block preconditioning matrix

Ω =

[
P 0
0 Q

]
,

where P ∈ Rn×n and Q ∈ Rm×m are symmetric positive definite matrices, we make
the following ESS splitting for the generalized saddle point matrix A

A = P −Q =
1

2
(Ω +A)− 1

2
(Ω−A)

=
1

2

[
P +A BT

−B Q+ C

]
− 1

2

[
P −A −BT
B Q− C

]
.

Then the ESS iteration method for solving generalized saddle point problem (1) is
defined as follows:

METHOD 1. (ESS iteration method) Given an initial guess [x(0); y(0)], for k =
1, 2, · · · , until [x(k); y(k)] converges, compute

1

2

[
P +A BT

−B Q+ C

] [
x(k+1)

y(k+1)

]
=

1

2

[
P −A −BT
B Q− C

] [
x(k)

y(k)

]
+

[
f
g

]
. (4)

The above ESS iteration can be written as follows

u(k+1) = Γu(k) + c, k = 0, 1, · · · , (5)

where
Γ = P−1Q = (Ω +A)−1(Ω−A), (6)
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is the iteration matrix of the ESS iteration method and c = P−1b. The splitting
preconditioner that corresponds to the ESS iteration (4) is given by

P =
1

2

[
P +A BT

−B Q+ C

]
, (7)

which is called the ESS preconditioner for the saddle point matrix A.
In what follows, we will study the convergence of the ESS iteration method (4) or

(5) for solving nonsingular generalized saddle point problem (1). Let σ(·), ρ(·) denote
the spectral set and the spectral radius of a given matrix, respectively. Then the ESS
iteration method (4) or (5) converges if and only if ρ(Γ) < 1 ([6]).
To get the convergence property of the ESS iteration method, we first present

a lemma, which describes the eigenvalue distribution of the generalized saddle point
matrix A.

LEMMA 1 ([7]). Assume that A ∈ Rn×n is nonsymmetric positive definite, B ∈
Rm×n(m ≤ n) has full row rank and C ∈ Rm×m is symmetric positive semi-definite.
Then the generalized saddle point matrix A is positive stable, i.e., Re(λ) > 0 for all
λ ∈ σ(A).

THEOREM 1. Assume that A ∈ Rn×n is nonsymmetric positive definite, B ∈
Rm×n(m ≤ n) has full row rank and C ∈ Rm×m is symmetric positive semi-definite,
P ∈ Rn×n and Q ∈ Rm×m are symmetric positive definite matrices. Let the ESS
iteration matrix Γ be defined as in (6). Then it holds that

ρ(Γ) < 1,

i.e., the ESS iteration method converges to the unique solution of the nonsingular
nonsymmetric generalized saddle point problem (1).

PROOF. The iteration matrix Γ can be rewritten as

Γ = (Ω +A)−1(Ω−A) = (I + Ω−1A)−1(I − Ω−1A).

Let λ and µ be an arbitrary eigenvalue of the matrix Ω−1A and the iteration matrix
Γ, respectively, then it holds that

µ =
1− λ
1 + λ

, (8)

and
Ap = λΩp, (9)

where p is the eigenvector corresponding to the eigenvalue λ. The generalized eigenvalue
problem (9) is equivalent to

Ω−
1
2AΩ−

1
2 p̄ = λp̄ with p̄ = Ω

1
2 p.
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By direct computation, we have

Ω−
1
2AΩ−

1
2 =

(
P−

1
2AP−

1
2 P−

1
2BTQ−

1
2

−Q− 1
2BP−

1
2 Q−

1
2CQ−

1
2

)
.

The matrix Ω−
1
2AΩ−

1
2 can also be regarded as a generalized saddle point matrix.

Then by Lemma 1, we have Re(λ) > 0. Then from (8) and the fact that the function
λ −→ µ = 1−λ

1+λ maps the half-plane {λ ∈ C : Re(λ) > 0} into the open circle {µ ∈ C :
|µ| < 1}, we know that

ρ(Γ) < 1,

i.e., the ESS iteration method converges to the unique solution of the nonsingular
nonsymmetric generalized saddle point problem (1).

Theorem 1 shows the unconditional convergent property of the ESS iteration method
for solving the nonsingular generalized saddle point problem (1).

3 Semi-Convergence of the Extended Shift-Splitting
Method

When the generalized saddle point matrix A is nonsingular, from Section 2 we know
that the ESS iteration scheme (4) or (5) converges to the exact solution of (1) for any
initial vector unconditionally, that is ρ(Γ) < 1 holds. But for the singular nonsymmetric
generalized saddle point matrix A, we have 1 ∈ σ(Γ) and ρ(Γ) ≥ 1. For such case, only
the semi-convergence of the ESS iteration scheme (4) is required.
In this section, we investigate the semi-convergence analysis of the ESS iteration

method. Let λ is an eigenvalue of the iteration matrix Γ and u = [x∗; y∗] be the
corresponding eigenvector. Hence, we have Qu = λPu or equivalently{

(P −A)x−BT y = λ(P +A)x+ λBT y,
Bx+ (Q− C)y = −λBx+ λ(Q+ C)y.

(10)

LEMMA 2. Assume that A ∈ Rn×n is nonsymmetric positive definite, C ∈ Rm×m
is symmetric positive semi-definite and B ∈ Rm×n(m ≤ n) is rank-deficient, P ∈ Rn×n
and Q ∈ Rm×m are symmetric positive definite and null(C) ∩ null(BT ) 6= {0}. If λ is
an eigenvalue of the matrix Γ, then λ 6= −1.

PROOF. If λ = −1, from Eq. (10), we obtain u = 0 which is a contradiction,
because u 6= 0 and Ω is nonsingular.

LEMMA 3. Assume that A ∈ Rn×n is nonsymmetric positive definite, C ∈ Rm×m
is symmetric positive semi-definite and B ∈ Rm×n(m ≤ n) is rank-deficient, P ∈ Rn×n
and Q ∈ Rm×m are symmetric positive definite and null(C) ∩ null(BT ) 6= {0}. then
λ = 1 if and only if x = 0 and Cy = 0.

PROOF. If λ = 1, from Eq. (10), we obtain{
−2Ax− 2BT y = 0,
2Bx− 2Cy = 0.

(11)
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Multiplying both sides of the first equality of Eq. (11) by xT , we gain xTAx+(Bx)T y =
xTAx + yTCy = 0 that xTAx = 0 and yTCy = 0. Since A is positive definite and C
is positive semi-definite, this implies that x = 0 and Cy = 0.
If x = 0 and Cy = 0, from the second equality of (11) we obtain (Q − C)y =

λ(Q+ C)y, which yields λ = 1 since y 6= 0.

Firstly, we give the following definition and lemma about semi-convergence proper-
ties of singular generalized saddle point problems:

DEFINITION 1 ([16]). The iteration method (4) is semi-convergent for any initial
guess [xT0 ; yT0 ], if the iteration sequence [xTk ; yTk ] produced by (4) converges to a solution
[xT∗ ; yT∗ ] of linear systems Ax = b. Moreover, it holds(

x∗
y∗

)
= (I − Γ)Dc+ (I − γ)

(
x0
y0

)
, with γ = (I − Γ)(I − Γ)D,

where I is the identity matrix and (I − Γ)D denotes the Drazin inverse of I − Γ.

LEMMA 4 ([16]). The iteration scheme (5) is semi-convergent if and only if the
following two conditions are satisfied:

(1). The elementary divisors of the iteration matrix Γ associated with λ = 1 ∈ σ(Γ)
are linear, i.e., rank(I − Γ)2 = rank(I − Γ), or equivalently, the index of matrix
I − Γ is 1;

(2). The pseudo-spectral radius satisfies

ϑ(Γ) = max{|λ| , λ ∈ σ(Γ), λ 6= 1} < 1.

In what follows, we investigate the two conditions in Lemma 2 for the ESS iteration
method (4) or (5).

THEOREM 2. Assume that A ∈ Rn×n is nonsymmetric positive definite, C ∈
Rm×m is symmetric positive semi-definite and B ∈ Rm×n(m ≤ n) is rank-deficient, P ∈
Rn×n and Q ∈ Rm×m are symmetric positive definite and null(C)∩null(BT ) 6= {0}. Let
Γ be the iteration matrix of the ESS iteration method, then rank(I−Γ)2 = rank(I−Γ).

PROOF. Since Γ = P−1Q = I − P−1A, rank(I − Γ)2 = rank(I − Γ) holds if

null
(
(P−1A)2

)
= null(P−1A).

It is obvious that null
(
(P−1A)2

)
⊇ null(P−1A). Now, we only need to show

null
(
(P−1A)2

)
⊆ null(P−1A). (12)

Without loss of generality, we assume that p = [pT1 ; pT2 ] ∈ null
(
(P−1A)2

)
with p1 ∈ Rn,

and p2 ∈ Rm. Then, it must be satisfied (P−1A)2p = 0, which is equivalent to
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AP−1Ap = 0. Assuming q = [qT1 ; qT2 ] = P−1Ap, with q1 ∈ Rn, and q2 ∈ Rm, we
have Aq = 0. which is equivalent to{

Aq1 +BT q2 = 0,
−Bq1 + Cq2 = 0.

(13)

Multiplying both sides of the first equation in (13) by qT1 , we get q
T
1 Aq1 + qT1 B

T q2 =
qT1 Aq1+(Bq1)

T q2 = 0. Thus, using the second equality of (13), it follows from qT1 Aq1+
qT2 Cq2 = 0 that qT1 Aq1 = 0 and qT2 Cq2 = 0. Since A is positive definite and C is
positive semidefinite, this implies that q1 = 0 and Cq2 = 0. Substituting q1 = 0 into
first relation of Eq. (13) gives BT q2 = 0.
On the other hand, from q = P−1Ap, we have Pq = Ap which equivalent to[

P +A BT

−B Q+ C

] [
0
q2

]
= 2

[
A BT

−B C

] [
p1
p2

]
,

which can be written as {
BT q2 = 2Ap1 + 2BT p2,
(Q+ C)q2 = −2Bp1 + 2Cp2.

(14)

Solving p1 from the first equality of (14) and substituting it into the second equality
of (14) gives

q2 = 2(Q+Q−1C)−1(C +BA−1BT )p2.

Owing to the positive definiteness of the matrix A−1 and q2 ∈ null(C)
⋂
null(BT ), we

have (C +BA−1BT )T q2 = 0 and

2pT2 (C +BA−1BT )T (Q+Q−1C)−1(C +BA−1BT )p2 = 0,

which implies (C +BA−1BT )p2 = 0. Therefore q2 = 0.
In summary, we obtain q = [qT1 ; qT2 ] = 0. Thus, the proof is completed.

THEOREM 3. Assume that A ∈ Rn×n is nonsymmetric positive definite, C ∈
Rm×m is symmetric positive semi-definite and B ∈ Rm×n(m ≤ n) is rank-deficient,
P ∈ Rn×n andQ ∈ Rm×m are symmetric positive definite and null(C)∩null(BT ) 6= {0}.
Let ϑ(Γ) be the pseudo-spectral radius of the ESS iteration matrix Γ. Then it holds
that

ϑ(Γ) < 1.

PROOF. Without loss of generality let ‖x‖2P = x∗Px = 1. Multiplying both sides
of the first equation in (10) by x∗ yields

1− λ
1 + λ

= x∗Ax+ (Bx)∗y. (15)

Also from the second equation in (10) we have

Bx = ωQy + Cy, with ω =
λ− 1

λ+ 1
. (16)
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Substituting Eq. (16) in (15) yields

ω = −x∗Ax− ω̄y∗Qy − y∗Cy. (17)

Therefore, we have <(ω) = −<(x∗Ax)−<(ω)y∗Qy − y∗Cy. Hence, we deduce that

<(ω) =
−<(x∗Ax)− y∗Cy

1 + y∗Qy
≤ 0. (18)

On the other hand, we have ω = λ−1
λ+1 , which is equivalent to

λ =
1 + ω

1− ω =
1 + <(ω) + i=(ω)

1−<(ω)− i=(ω)
.

Then

|λ| =

√
(1 + <(ω))2 + (=(ω))2

(1−<(ω))2 + (=(ω))2
. (19)

From Eqs. (18) and (19), we get |λ| ≤ 1. To complete the proof we need to prove that
if |λ| = 1, then λ = 1. If |λ| = 1, then it follows from Eq. (19) that <(ω) = 0. This,
together with Eq. (18) gives <(x∗Ax) = 0 and y∗Cy = 0. Since A is nonsymmetric
positive definite and C is symmetric positive semi-definite, it eventuates x = 0 and
Cy = 0. Therefore, from Lemma 3 we conclude that λ = 1. Thus, the proof is
completed.

Theorems 2 and 3 show that the two conditions in Lemma 4 are satisfied naturally
for the ESS iteration method (4) or (5). Thus, the ESS iteration method is semi-
convergent unconditionally for solving the singular generalized saddle point problem
(1).

4 Conclusion

In this paper, we discuss the ESS method for solving the nonsymmetric generalized
saddle point problem (1). The convergence properties of the ESS method for nonsin-
gular case and the semi-convergence property of the ESS method for singular case are
studied.

Acknowledgment. Authors thank referee for his/her suggestions which help us
to improve this paper.
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