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Abstract

Let X be a minimum dominating set of a graph G. The application of primary
data streaming from an external system into a graph G can be efficient if the
primary streaming is limited to the vertices v ∈ X only, then followed by a
secondary data streaming protocol from each neighbourhood head v to N(v). If
certain weighted concepts ci, 1 ≤ i ≤ ` have to find residence with the vertices of
X under minimum or maximum constraints the concepts of minimin, maximin,
minimax and maximax sums of weights can be considered. This paper reports on
some interesting introductory results.

1 Introduction

For general notation and concepts in graphs and digraphs see [1, 2, 6, 11]. Unless
mentioned otherwise, all graphs are simple, finite, connected and undirected graphs.
Recall that the minimum and maximum vertex degrees of a graph G are denoted by
δ(G) and ∆(G) respectively. Also the order and size of G are denoted ν(G) and ε(G),
respectively.

We recall that the domination number of a graph G, denoted by γ(G), is the number
of vertices in a minimum dominating set say, X ⊆ V (G). A vertex v ∈ X can be viewed
as a neighbourhood head of the closed neighbourhood N [v]. It is possible to have v 6= u
and v ∈ N [u] ⇔ u ∈ N [v]. It is also important to note that either N(v) ∩ N(u) = ∅
or N(v) ∩N(u) 6= ∅. Also,

⋃
v∈X

N [v] = V (G). Finding a minimum dominating set of a

graph G in general is hard. A few linear algorithms such as the algorithms for finding a
minimum dominating set for trees, cactus graphs and parallel-series graphs are known
(see [4, 7, 8]). The inherent limitation of these algorithms is that they converge to
a minimum dominating set but not all minimum dominating sets are obtained. This
study requires all minimum dominating sets of a graph G to determine the range of
the sum of weights.

The application of primary data streaming from an external system into a graph
G can be efficient if the primary streaming is limited to the vertices v ∈ X only, then
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52 Dominating Chromatic Weights of Graphs

followed by a secondary data streaming protocol from each neighbourhood head v to
N(v).

For a graph G, consider the set of weighted conceptsW = {ci : 1 ≤ i ≤ `, ` ≥ χ(G)}.
Weighted concepts could be budget allocation, further ICT types or other response
units or other. If all vertices v ∈ X have to be residence to some and hence not necessary
all, of the different weighted concepts ci, with the proviso that the number of distinct
ci allocated must be minimum, without two or more similar weighted concepts being
adjacent, the initial allocation is a minimum proper colouring (chromatic colouring)
problem in respect of G. Thereafter, all colouring of vertices V (G)−X is cancelled.

2 Preliminary Results for Certain Graphs

Without loss of generality, consider the weighted concepts, c1 ≤ c2 ≤ c3 ≤ · · · ≤
c`. Further criteria are to minimize the sum of weights or to maximise the sum of
weights. Henceforth a weighted concept ci will be called the colour ci. In all colour-
ing, we follow the Rainbow Colouring Convention which is described as follows: Let
C = {c1, c2, c3, . . . , cχ(G)} be a minimal colouring of G. Colour the maximum number
of vertices with the colour c1, then colour maximum possible number of remaining
uncoloured vertces with colour c2 and until all vertices are coloured. Some very good
algorithms to find the chromatic number of a graph have been described in [3, 5]. In
particular, the algorithm described in [3] provides a chromatic colouring in accordance
with the Rainbow Colouring Convention and is called an optimal independent colour-
ing. In our application, the colouring will be in the order of increasing consecutive
subscripts.

The chromatic number χ(G) ≥ 1 of a graph G is the minimum number of distinct
colours that allow a proper colouring of G. Such colouring is called a chromatic colour-
ing. In [10], the non-zero number of times a colour cj have been allocated is defined
as the colour weight, θ(cj) ≥ 1. Hence, the colours can be partitioned into non-empty
colour classes Ci, 1 ≤ i ≤ χ(G) with each colour class say, Cj = (cj , cj , cj , . . . , cj︸ ︷︷ ︸

θ(cj)

).

Similar to set theory notation, let C =
⋃

1≤i≤χ(G)

Ci, and be called a colour cluster. It

is easy to see that for χ(G) ≥ 2 a graph GC with max ε(GC) that requires the colour
cluster C to allow exactly a chromatic colouring (minimum proper colouring) is the
complete χ(G)-partite graph Kθ(c1),θ(c2),...,θ(cχ(G)) or in other words, the complete `-

partite graph with vertex partitioning Vi(G
C), 1 ≤ i ≤ ` such that |Vi(GC)| = |Ci| and⋃

1≤i≤`
Vi(G

C) = V (GC).

Let χ(G) = t and consider any t-subset ofW. Clearly, allocating all the permissible
chromatic colourings using {c1, c2, c3, . . . , ct} will provide a range of minimum sum of
weights and some chromatic colourings will provide minimin sum of weights whilst some
others will provide maximin sum of weights. Similarly, allocating all the permissible
chromatic colourings from {ct−1, ct, ct+1, . . . , c`} will provide a range of maximum sum
of weights, some of which will provide minimax sum and maximax sum of weights
respectively. These extremal values are called dominating chromatic weights and will
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be denoted by Φ(−,−)(G), Φ(+,−)(G), Φ(−,+)(G) and Φ(+,+)(G) respectively.

To illustrate the principles we consider the path P5 = v1v2v3v4v5 with minimum
dominating sets {v1, v4}, {v2, v4}, {v2, v5}. By using the reference chromatic colourings
c(v1) = c1, c(v2) = c2, c(v3) = c1, c(v4) = c2, c(v5) = c1 and c(v1) = c2, c(v2) = c1,
c(v3) = c2, c(v4) = c1, c(v5) = c2, we obtain the minimum sum of weights to be c1 +c2,
2c2, c2 + c1, c2 + c1, 2c1, c1 + c2. Therefore, Φ(−,−)(P5) = 2c1 and Φ(+,−)(P5) = 2c2.
Obviously, it follows that Φ(−,+)(P5) = 2c`−1 and Φ(+,+)(P5) = 2c`.

THEOREM 2.1. For all complete graphs Kn and W = {ci : 1 ≤ i ≤ `, ` ≥ n}, we
have Φ(−,−)(Kn) = c1, Φ(+,−)(Kn) = cn, Φ(−,+)(Kn) = c`−1 and Φ(+,+)(Kn) = c`.

PROOF. For ∀n ∈ N, we have γ(Kn) = 1. Hence, the results follows immediately.

We now present the results for certain well-known graph classes.

PROPOSITION 2.2. For all paths Pn, n ∈ N and W = {ci : 1 ≤ i ≤ `, ` ≥ 2}, we
have

(i) Φ(−,−)(P1) = Φ(+,−)(P1) = c1 and Φ(−,+)(P1) = Φ(+,+)(P1) = c`.

(ii) For n = 2, 3, Φ(−,−)(Pn) = c1; Φ(+,−)(Pn) = c2; Φ(−,+)(Pn) = c`−1; Φ(+,+)(Pn) =
c`.

(iii) For n = 4, 5, Φ(−,−)(Pn) = 2c1; Φ(+,−)(Pn) = 2c2; Φ(−,+)(Pn) = 2c`−1; Φ(+,+)(Pn) =
2c`.

(iv) Let n ≥ 6, n ≡ 0(mod 3). Then

(a) If n is even, then

Φ(−,−)(Pn) = Φ(+,−)(Pn) =
n

2
(c1 + c2),

Φ(−,+)(Pn) = Φ(+,+)(Pn) =
n

2
(c`−1 + c`).

(b) If n is odd, then

Φ(−,−)(Pn) = dn
2
ec1 + bn

2
cc2,

Φ(+,−)(Pn) = bn
2
cc1 + dn

2
ec2,

Φ(−,+)(Pn) = dn
2
ec`−1 + bn

2
cc`,

Φ(+,+)(Pn) = bn
2
cc`−1 + dn

2
ec`.



54 Dominating Chromatic Weights of Graphs

(v) If n ≥ 6 and n ≡ 1, 2(mod 3) and γ(Pn) = t, then

Φ(−,−)(Pn) = d t
2
ec1 + b t

2
cc2

Φ(+,−)(Pn) = b t
2
cc1 + d t

2
ec2,

Φ(−,+)(Pn) = d t
2
ec`−1 + b t

2
cc`,

Φ(+,+)(Pn) = b t
2
cc`−1 + d t

2
ec`.

PROOF.

(i) This part of the result is straight forward from the fact that γ(P1) = 1 and
χ(P1) = 1.

(ii) This part immediately follows from the fact that γ(P2) = γ(P3) = 1 and χ(P2) =
χ(P3) = 2.

(iii) This part of the proposition follows as a direct consequence of the facts that
γ(P2) = γ(P3) = 2 and χ(P2) = χ(P3) = 2.

(iv) Let t = ` − (i − 1). Note that the rotation colour mapping c1 7→ ci, c2 7→ ci+1,
c3 7→ ci+2, · · · , ct 7→ c`, ct+1 7→ c1, ct+2 7→ c2, · · · , c` 7→ ci−1, 1 ≤ i ≤ ` always
results in a chromatic colouring which provides the full range of minimum sum
of weights. Therefore, Φ(−,−)(Pn) and Φ(+,−)(Pn) follow easily by colouring with
(c1, c2). Finally, by colouring with (c`−1, c`) and utilising the rotation colour
mapping the values, Φ(−,+)(Pn) and Φ(+,+)(Pn) follow similarly.

(v) The proof is exactly the same as that of Part (iv) written above.

PROPOSITION 2.3. For all cycles Cn; n ≥ 3 and W = {ci : 1 ≤ i ≤ `}, we have

(i) Φ(−,−)(C3) = c1, Φ(+,−)(C3) = c3, Φ(−,+)(C3) = c`−1 and Φ(+,+)(C3) = c`.

(ii) Φ(−,−)(C4) = 2c1; Φ(+,−)(C4) = 2c2; Φ(−,+)(C4) = 2c`−1 and Φ(+,+)(C4) = 2c`

(iii) Φ(−,−)(C5) = 2c1; Φ(+,−)(C5) = 2c3; Φ(−,+)(C5) = 2c`−1 and Φ(+,+)(C5) = 2c`.

(iv) For n ≥ 6, n ≡ (mod 0) and

(a) if n is even, then

Φ(−,−)(Cn) = Φ(+,−)(C3n) =
n

2
(c1 + c2),

Φ(−,+)(Cn) = Φ(+,+)(C3n) =
n

2
(c`−1 + c`).
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(b) if n is odd, then

Φ(−,−)(Cn) = dn
2
ec1 + bn

2
cc2,

Φ(+,−)(Cn) = bn
2
cc2 + dn

2
ec3,

Φ(−,+)(Cn) = dn
2
ec`−2 + bn

2
cc`−1,

Φ(+,+)(Cn) = bn
2
cc`−1 + dn

2
ec`.

(v) For n ≥ 6, n ≡ (mod 0) and

(a) if n is even and if γ(Cn) = t, then

Φ(−,−)(Cn) = d t
2
ec1 + b t

2
cc2,

Φ(+,−)(Cn) = b t
2
cc1 + d t

2
ec2,

Φ(−,+)(Cn) = d t
2
ec`−1 + b t

2
cc`,

Φ(+,+)(Cn) = b t
2
cc`−1 + d t

2
ec`.

(b) if n is odd and if γ(Cn) = t, then

Φ(−,−)(Cn) = d t
2
ec1 + b t

2
cc2,

Φ(+,−)(Cn) = b t
2
cc2 + d t

2
ec3,

Φ(−,+)(Cn) = d t
2
ec`−2 + b t

2
cc`−1,

Φ(+,+)(Cn) = b t
2
cc`−1 + d t

2
ec`.

PROOF. As C3 = K3, this part of the result follows by Theorem 2.1. W have
γ(Pn) = γ(Cn) and the addition of edge v1vn results in χ(Cn) = χ(Pn) + 1 if n is odd
and χ(Cn) = χ(Pn) if n is even. Then, the results follow directly from the corresponding
results of Proposition 2.2., by substituting the colour c3 and c`−2 accordingly. The
rotation colour mapping allows this substitution.

THEOREM 2.4. For any tree T of order n ≥ 1 we have

c1 ≤Φ(−,−)(T ) ≤Φ(−,−)(Pn),

c2 ≤Φ(+,−)(T ) ≤Φ(+,−)(Pn),

c`−1 ≤Φ(−,+)(T ) ≤Φ(−,+)(Pn),

c` ≤Φ(+,+)(T ) ≤Φ(+,+)(Pn).
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PROOF. Note that K1,0 = K1. Then the result follows directly from the fact that
γ(K1,(n−1)) ≤ γ(T ) ≤ γ(Pn).

PROPOSITION 2.5. For the Petersen graph PG and W = {ci : 1 ≤ i ≤ `, ` ≥ 3},
we have

Φ(−,−)(PG) = 2c1 + c2,

Φ(+,−)(PG) = c2 + 2c3,

Φ(−,+)(PG) = 2c`−2 + c`−1,

Φ(+,+)(PG) = c`−1 + 2c`.

PROOF. Consider the Petersen graph given below which depicts both a chromatic
colouring and a minimum dominating set (see solid dots in the following figure).

c1

c2

c3c1

c3

c2

c1

c1c3

c2

By symmetry and up to isomorphism the minimum dominating set depicted, results in
Φ(−,−)(PG) = 2c1 + c2. Utilising rotation colour mapping, all other results follow.

3 Finite Linear Jaco Graphs

For the terms and definitions on the family of trivial finite linear Jaco Graphs, see [9].
The linear Jaco graphs and directed graphs are derived from the infinite linear Jaco
graph called, the x -root digraph. Note that the underlying graph will be denoted J∗n(x)
and if the context is clear, both the directed and undirected graph are referred to as a
linear Jaco graph. Similarly, the difference between arc and edge will be understood.

The following are some of the definitions provided in [9], which are relevant in our
present study.

DEFINITION 3.1 ([9]). For x ∈ N, the infinite linear Jaco Graph, denoted by
J∞(x), is the graph with vertex set is V (J∞(x)) = {vi : i ∈ N} such that two vertices
vi and vj are adjacent in Jn(x) if and only if 2i − d−(vi) ≥ j. (That is, the edge set
(arc set) of J∞(x) denoted by A(J∞(x)) ⊆ {(vi, vj) : 2i− d−(vi) ≥ j, i < j}).
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DEFINITION 3.2 ([9]). The family of finite linear Jaco Graphs is defined by
{Jn(x) ⊆ J∞(x) : n, x ∈ N}. A member of the family is referred to as the Jaco
Graph, Jn(x).

Although linear Jaco graphs are complex in respect of many graph parameters, the
family has surprisingly simple results for domination chromatic weights. Note that
vertex labeling v1, v2, v3, . . . , vn is well defined. For ease of reference we recall three
more important definitions.

DEFINITION 3.3 ([9]). A vertex of the linear Jaco graph which attains the max-
imum degree ∆(Jn(x)) is called a Jaconian vertex of the graph Jn(x). The set of all
Jaconian vertices of a linear Jaco graph Jn(x) is called the Jaconian set of Jn(x). The
Jaconian set of Jn(x) is denoted by J(Jn(x)) or Jn(x) for brevity.

DEFINITION 3.4 ([9]). The lowest numbered (subscripted) Jaconian vertex is
called the prime Jaconian vertex of a linear Jaco Graph.

DEFINITION 3.5 ([9]). If vi is the prime Jaconian vertex of a linear Jaco Graph
Jn(x), the complete subgraph on vertices vi+1, vi+2, . . . , vn is called the Hope subgraph1

or Hope graph of a linear Jaco graph and is denoted by H(Jn(x)) or Hn(x) for brevity.

We now state an important lemma to assist in the proof of the main result of this
section.

LEMMA 3.1 The vertices of a linear Jaco graph J∗n(x) can be coloured such that
all vertices in a minimum dominating set X have identical colours.

PROOF. The basis of the proof through induction is the fact that linear Jaco graphs
are well defined in respect of vertex labeling, number of vertices, existence of arcs and
the orientation of arcs. It means that Jn+i(x) can be obtained recursively from Jn(x),
n ∈ N, i = 1, 2, 3, . . . Therefore, J∗n(x) is well defined.

Without loss of generality, let the identical colour to be considered be, c1. Clearly
for J∗1≤n≤4(x) the linear Jaco graphs are paths so the result is trivial. For J∗5 (x) the
set {v1, v3} is a minimum dominating set and both vertices may be coloured c1 since
edge v1v3 does not exist. Assume the result holds for J∗t (x), 1 ≤ t ≤ k. Now, consider
the linear Jaco graph J∗k+1(x). Let the highest subscript of a vertex in X be s.

If the edge vsvk+1 exists in Jk+1(x) then X is a minimum dominating set for Jk+1(x)
as well and the result holds. If not, colour c(vk+1) = c1 and note that no conflict of
chromatic colouring arises because of the existence of a Hope graph. Also note that
X ∪ {vk+1} is a minimum dominating set of Jk+1(x). Therefore, the result for Jn(x),
n ∈ N.

THEOREM 3.2. For a linear Jaco graph Jn(x), n ∈ N , we have

1Named after the first author’s loving mommy, Hope Kok.
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(i) Φ(−,−)(J∗n(x)) =

{
[(n− i) + 1]c1, if and only if the edge vivn exists,

(n− i)c1, otherwise.

(ii) Φ(+,−)(J∗n(x)) =

{
[(n− i) + 1]c[(n−i)+1], if and only if the edge vivn exists,

(n− i)cn−i, otherwise.

(iii) Φ(−,+)(J∗n(x)) =

{
[(n− i) + 1]c`−(n−i), if and only if the edge vivn exists,

(n− i)c`−(n−i−1), otherwise.

(iv) Φ(+,+)(J∗n(x)) =

{
[(n− i) + 1]c`, if and only if the edge vivn exists,

(n− i)c`, otherwise.

PROOF. It is known that:

χ(J∗n(x)) =

{
(n− i) + 1, if and only if the edge vivn exists,

n− i, otherwise.

Therefore, by Lemma 3.1, colour all vertices in the minimum dominating set X
either c1 or cn−i or c[(n−i)+1] or c`−(n−i) or c`−(n−i−1) or c`, respectively in accordance
to each subcase.

The observation made for linear Jaco graphs leads to the next general result. The
result may be found to be very useful for further research.

3.1 Further Observations

It is important to note that by convention ci ≥ cj ⇔ i ≥ j. However, there is no
relationship defined between ci + cj and ci+j .

THEOREM 3.3. For any connected graph G and any minimum dominating set X
of G, we have that 1 ≤ χ(〈X〉) ≤ γ(G).

PROOF. The lower bound is obvious. Clearly, if χ(〈X〉) = 1 then 〈X〉 is a null
graph (edgeless). Also since χ(G) ≤ ν(G), it follows that χ(〈X〉) ≤ |X| = γ(G).

THEOREM 3.4. Consider a connected graph G with γ(G) = t, χ(G) = q and
W = {ci : 1 ≤ i ≤ `, ` ≥ q}. Then,

Φ(−,−)(G) ≥ tc1,

Φ(+,−)(G) ≤ tcq,

Φ(−,+)(G) ≥ tc`−(q−1),

Φ(+,+)(G) ≤ tc`.

PROOF. All bounds follow from the fact that if there exists a minimum dominating
set X for G for which 〈X〉 is a null graph, then all vertices v ∈ X may possibly (not
necessarily for all G) be coloured the same colour.
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Since it is possible to find a chromatic colouring for a connected graph G such that
θ(c1) ≥ θ(c2) ≥ θ(c3) ≥ · · · ≥ θ(cq) and χ(G) = q, the following proposition discusses
dominating chromatic weights for the corona of graphs G and H.

THEOREM 3.5 If a connected graph G has ν(G) = p, χ(G) = q and θ(c1) ≥
θ(c2) ≥ θ(c3) ≥ · · · ≥ θ(cq) and W = {ci : 1 ≤ i ≤ `, ` ≥ q} and any other graph H,
then we have

Φ(−,−)(G ◦H) =

q∑
i=1

θ(ci)ci,

Φ(+,−)(G ◦H) =

q∑
i=1

θ(ci)cq−(i−1),

Φ(−,+)(G ◦H) =

q∑
i=1

θ(cq−(i−1))c`−(i−1),

Φ(+,+)(G ◦H) =

q∑
i=1

θ(ci)c`−(i−1).

PROOF. In the corona G◦H the set V (G) is a minimum dominating set. Therefore
γ(G ◦ H) = p. Since G is not necessary complete, θ(ci) ≥ 1, ∀i. Hence, the results
follows directly from the definitions of the dominating chromatic weights.

The following result discusses dominating chromatic weights of the join of two
graphs.

PROPOSITION 3.6. If a graph G has χ(G) = q1 and θ(c1) ≥ θ(c2) ≥ θ(c3) ≥ . . . ≥
θ(cq1) and a graph H has χ(H) = q2 and θ′(c1) ≥ θ′(c2) ≥ θ′(c3) ≥ . . . ≥ θ′(cq2) and
W = {ci : 1 ≤ i ≤ `, ` ≥ q1 + q2}, then for the join G+H, we have

(i) if at least χ(G) = 1, then

Φ(−,−)(G+H) = c1,

Φ(+,−)(G+H) = cq1+q2 ,

Φ(−,+)(G+H) = c`−(q1+q2−1),

Φ(+,+)(G+H) = c`.

(ii) if without loss of generality, χ(G) ≥ χ(H) ≥ 2, then

Φ(−,−)(G+H) = c1 + c2,

Φ(+,−)(G+H) = cq1+q2−1 + cq1+q2 ,

Φ(−,+)(G+H) = c`−(q1+q2−1) + c`−(q1+q2−2),

Φ(+,+)(G+H) = c`−1 + c`.
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PROOF. Case 1: If at least say, χ(G) = 1 then γ(G + H) = 1 and the re-
sults are immediate. Case 2: If without loss of generality, χ(G) ≥ χ(H) ≥ 2, then
γ(G + H) = 2. Because all minimum dominating sets have two adjacent vertices
the minimin dominating chromatic weight must be c1 + c2. Also since smallest W
is the set {c1, c2, c3, . . . , cq1+q2}, the maximin dominating chromatic weight must be
cq1+q2−1 + cq1+q2 . The last two results follow by similar reasoning for the colours
c`−(q1+q2−1), c`−(q1+q2)+2, c`−1 and c`.

4 Conclusion

The paper is an introduction to dominating chromatic weight(s) of a graph. Clearly,
there is a wide scope for further research in that many families of graphs remain open.
Graph operations should be studied as well as other known variations of domination
in graphs.

An interesting observation is that for the path P3, we have γ(P3) = 1 and χ(P3) = 2
while for the power graph P 2

3 we have γ(P 2
3 ) = 1 and χ(P 2

3 ) = 3. Generally, it is ex-
pected that the chromatic number increases for higher powers of G whereas the domi-
nation number decreases. This could be an interesting study in respect of dominating
chromatic weights.

Perhaps, the greatest challenge is to efficiently find all distinct minimum dominat-
ing sets of a graph G. Let these minimum dominating sets be X1, X2, . . . , Xs. Then,
finding chromatic colourings for the induced subgraphs 〈X1〉, 〈X2〉, . . . , 〈Xs〉 will pro-
vide the result Φ(−,−)(G) = min{Φ(−,−)(〈Xi〉)}, 1 ≤ i ≤ s. Similarly, the results
Φ(+,−)(G) = max{Φ(−,−)(〈Xi〉)}, Φ(−,+)(G) = min{Φ(−,+)(〈Xi〉)} and Φ(+,+)(G) =
max{Φ(+,+)(〈Xi〉)} for 1 ≤ i ≤ s will follow through rotation colour mapping.

All the above mentioned facts highlight that there is a wide scope for further inves-
tigations in this area.
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