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Abstract

In this work, we have developed a sixth order Newton-type method for solving

system of nonlinear equations. New sixth order method is composed of three

steps with only one inverse of Jacobian matrix, namely, Newton iteration as the

first step and weighted Newton iteration as the second and third step. As an

application, we have tested the present methods on Chandrasekhar’s problem

and 1-D Bratu problem.

1 Introduction

The problem of finding a real zero of a system of nonlinear equations F (x) = 0, where

F (x) = (f1(x), f2(x), ..., fn(x))T , x = (x1, x2, ..., xn)T , fi : R
n → R,

∀i = 1, 2, . . . , n and F : D ⊂ R
n → R

n is a smooth map and D is an open and
convex set, where we assume that α = (α1, α2, ..., αn)

T is a zero of the system and

y = (y1, y2, ..., yn)
T

is an initial guess sufficiently close to α, is an often discussed
problem in many applications of science and technology. For example, problems of
the above type arises while solving boundary value problems for differential equations.
The differential equations is reduced to system of nonlinear equations which are in-turn
solved by the familiar Newton’s iteration method (NM) having convergence order two
[14], which is given by

x(k+1) = x(k) − [F ′(x(k))]−1F (x(k)), k = 0, 1, 2, ... (1)

where x(0) is initial guess and F ′(x(k)) is the Jacobian matrix of the function F (x(k))
evaluated for the kth iteration.

A lot of iterative methods for solving single non-linear equation are available in
the literature [16]. Whereas all these methods cannot be extended to solve nonlinear
system involving more than one variable. Even if some methods can be extended to
solve nonlinear system, certain decisive factors like efficiency indices, computational

∗Mathematics Subject Classifications: 65H10.
†Department of Mathematics, Holy Mary Institute of Technology and Science, Hyderabad - 501301,

India

221
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efficiency indices, number of functional evaluation, number of Frechet derivatives eval-
uation and number of inverse of Frechet derivatives are to be given due importance.
Moreover, when extending methods for single equation to solve system of nonlinear
equations, due to increase in computational complexity they have no practical value.
Chebyshev and Halley [1, 11] extended their methods to system of nonlinear equations
and proved cubic convergence where first and second Frechet derivatives are used. Due
to evaluation of second Frechet derivative, these methods are considered less practical
from a computational point of view. On the other hand, there has been considerable
attempts to derive methods free from second derivative having higher order of conver-
gence for single equation [3, 9, 15]. Extensions of these methods for system of nonlinear
equations are found in [4, 10, 7].

In this paper, we have presented new sixth order Newton-type method for solving
system of nonlinear equations. Rest of this paper as follows. Section 2 presented a new
method and discusses its convergence analysis in Section 3. In Section 4, Numerical
experiments including the applications on Chandrasekhar’s problem and 1-D bratu
problem are given to illustrate the efficiency of the new methods. A brief conclusion is
given in section 5.

2 Description of the Methods

In this section, we display a new method for solving nonlinear systems that we call M6

y(x(k)) = x(k) − [F ′(x(k))]−1F (x(k)), z(k) = y(x(k)) − τ [F ′(x(k))]−1F (y(x(k))),

x(k+1) = z(k) − τ [F ′(x(k)))]−1F (z(k)), τ = 2I − [F ′(x(k))]−1F ′(y(k)),
(2)

where I is the n × n identity matrix.
Another important aspect of this work is the comparative study of the efficiency of

the proposed method with well known high-order methods, such as Jarratt’s method
[12] and the one recently introduced by Wang et al. [17] which are given below,

Jarratt’s method (JM):

x(k+1) = x(k) − [6F ′(y(x(k)))) − 2F ′(x(k)))]−1[3F ′(y(x(k)))) + F ′(x(k))]

×[F ′(x(k))]−1F (x(k)),

y(x(k)) = x(k) −
2

3
[F ′(x(k))]−1F (x(k)).

Method of Wang et al. (Wang):

x(k+1) = z(x(k)) −

[

3

2
F ′(y(x(k)))−1 −

1

2
F ′(x(k))−1

]

F (z(x(k))),

z(x(k)) = x(k) − [6F ′(y(x(k))) − 2F ′(x(k))]−1[3F ′(y(x(k))) + F ′(x(k))]

×[F ′(x(k))]−1F (x(k)),

y(x(k)) = x(k) −
2

3
[F ′(x(k))]−1F (x(k)).
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3 Convergence Analysis

THEOREM 1. Let F : D ⊆ R
n −→ R

n be sufficiently Frechet differentiable at each
point of an open convex neighborhood D of α ∈ R

n, that is a solution of the system
F (x) = 0. Let us suppose that F ′(x) is continuous and nonsingular in x∗, and x(0) close
enough to x∗. Then the sequence {x(k)}k≥0 obtained using the iterative expression (2)
converges to x∗ with sixth order.

PROOF. Using Taylor’s expansion about x∗ we have

F (x(k)) = F ′(x∗)
[

e(k) + C2e
(k)2 + C3e

(k)3 + C4e
(k)4 + C5e

(k)5 + C6e
(k)6

]

+ O(e(k)7),

and

F ′(x(k)) = F ′(x∗)
[

I + 2C2e
(k) + 3C3e

(k)2 + 4C4e
(k)3 + 5C5e

(k)4 + 6C6e
(k)5

]

+O(e(k)6),

where Ck = (1/k!)[F ′(x∗))]−1F (k)(x∗), k = 2, 3, . . ., and e(k) = x(k) − x∗. We have

[F ′(x(k))]−1 =
[

I + X1e
(k) + X2e

(k)2 + X3e
(k)3 + X4e

(k)4 + X5e
(k)5

]

[F ′(x∗))]−1,

(3)
where

X1 = −2C2, X2 = 4C2
2 − 3C3, X3 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4,

X4 = −5C5 + 9C2
3 + 8C2C4 + 8C4C2 + 16C4

2 − 12C2
2C3 − 12C3C

2
2 − 12C2C3C2

and

X5 = −32C5
2 + 24C3C

3
2 + 24C2C3C

2
2 − 16C4C

2
2 + 24C2

2C3C2 − 18C2
3C2

−16C2C4C2 + 10C5C2 + 24C3
2C3 − 18C3C2C3 − 18C2C

2
3 + 12C4C3

−16C2
2C4 + 12C3C4 + 10C2C4 − 6C6.

Then

[F ′(x(k))]−1F (x(k)) = e(k) − C2e
(k)2 + 2(C2

2 − C3)e
(k)3 + (−3C4 − 4C3

2 + 4C2C3

+3C3C2)e
(k)4 + (6C2

3 + 8C4
2 − 8C2

2C3 − 6C2C3C2

−6C3C
2
2 + 6C2C4 + 4C4C2 − 4C5)e

(k)5 + (−5C6 − 2C2C5

−14C2
2C4 + 9C3C4 + 16C3

2C3 − 12C3C2C3 − 12C2C
2
3

+8C4C3 − 16C5
2 + 12C3C

3
2 + 12C2C3C

2
2 − 8C4C

2
2

+12C2
2C3C2 − 9C2

3C2 − 8C2C4C2 + 5C5C2 + 10C2C4)e
(k)6

+O(e(k)7),
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we have

y(k) = x∗ + C2e
(k)2 + 2(−C2

2 + C3)e
(k)3 + (3C4 + 4C3

2 − 4C2C3 − 3C3C2)e
(k)4

+(−6C2
3 − 8C4

2 + 8C2
2C3 + 6C2C3C2 + 6C3C

2
2 − 6C2C4 − 4C4C2

+4C5)e
(k)5 + (5C6 + 2C2C5 + 14C2

2C4 − 9C3C4 − 16C3
2C3

+12C3C2C3 + 12C2C
2
3 − 8C4C3 + 16C5

2 − 12C3C
3
2 − 12C2C3C

2
2

+8C4C
2
2 − 12C2

2C3C2 + 9C2
3C2 + 8C2C4C2 − 5C5C2 − 10C2C4)e

(k)6

+O(e(k)7). (4)

Using equ. (4) we have

F (y(k)) = F ′(x∗)
[

C2e
(k)2 + 2(−C2

2 + C3)e
(k)3 + (3C4 + 5C3

2 − 4C2C3

−3C3C2)e
(k)4 + (−6C2

3 − 12C4
2 + 12C2

2C3 + 6C2C3C2

+6C3C
2
2 − 6C2C4 − 4C4C2 + 4C5)e

(k)5 + (5C6 + 2C2C5

+14C2
2C4 − 9C3C4 − 16C3

2C3 + 12C3C2C3 + 12C2C
2
3

−8C4C3 + 16C5
2 − 12C3C

3
2 − 12C2C3C

2
2 + 8C4C

2
2 − 12C2

2C3C2

+9C2
3C2 + 8C2C4C2 − 5C5C2 − 10C2C4)e

(k)6
]

+ O(e(k)7), (5)

F ′(y(k)) = [F ′(x∗)]
[

I + P1e
(k)2 + P2e

(k)3 + P3e
(k)4

]

+ O(e(k)5), (6)

where P1 = 2C2
2 , P2 = 4C2C3 − 4C3

2 and P3 = 4C3
2 − 4C2C3 − 3C3C2 + 3C4 + 3C3C

2
2 .

Again, using eqs. (3) and (6) we have

τ (x(k)) = I + 2C2e
(k) − (6C2

2 − 3C3)e
(k)2 − (10C2C3 + 6C3C2 − 16C3

2

−4C4)e
(k)3 − (4C3

2 − 4C2C3 − 3C3C2 + 3C4 − 15C3C
2
2

−20C2
2C3 + 32C4

2 − 5C5 + 9C2
3 + 8C2C4 + 8C4C2

−12C2C3C2)e
(k)4 + O(e(k)5). (7)

From eqs. (3) and (5), we have

[F ′(x(k))]−1F (y(k)) = C2e
(k)2 + (2C3 − 4C2

2)e(k)3 + (13C3
2 − 8C2C3 − 6C3C2

+3C4)e
(k)4 + (−12C2

3 − 38C4
2 + 28C2

2C3 + 18C3C
2
2

−12C2C4 − 8C4C2 + 4C5)e
(k)5 + (5C6 − 6C2C5

+38C2
2C4 − 18C3C4 − 72C3

2C3 + 36C3C2C3 + 36C2C
2
3

−16C4C3 + 76C5
2 − 39C3C

3
2 − 36C2C3C

2
2 + 16C4C

2
2

−36C3
2C3C2 + 18C2

3C2 + 16C2C4C2 − 5C5C2 − 10C2C4)e
(k)6

+O(e(k)7). (8)
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Using eqs. (4), (7) and (8), we have

z(k) = x∗ + 5C3
2e(k)4 + (−36C4

2 + 8C2
2C3 + 28C2C3C2 + 6C3C

2
2)e(k)5

+(18C2
2C4 − 80C3

2C3 + 12C3C2C3 + 20C2C
2
3 + 190C5

2 − 51C3C
3
2

−64C2C3C
2
2 + 16C4C

2
2 − 48C2

2C3C2 + 18C2
3C2 + 16C2C4C2

−5C5C2 + 36C3
2C3C2 + 4C4

2 − 4C2C3C2 − 3C3C
2
2 + 3C4C2

−20C2
2C3C2)e

(k)6 + · · · . (9)

Then

F (z(k)) = F ′(x∗)
[

5C3
2e(k)4 + (−36C4

2 + 8C2
2C3 + 28C2C3C2 + 6C3C

2
2 )e(k)5

+(18C2
2C4 − 80C3

2C3 + 12C3C2C3 + 20C2C
2
3 + 190C5

2

−51C3C
3
2 − 64C2C3C

2
2 + 16C4C

2
2 − 48C2

2C3C2 + 18C2
3C2

+16C2C4C2 − 5C5C2 + 36C3
2C3C2 + 4C4

2 − 4C2C3C2 − 3C3C
2
2

+3C4C2 − 20C2
2C3C2)e

(k)6
]

+ · · · . (10)

Finally, using eqs. (3), (7), (9) and (10) in (2), we obtained

e(k+1) = 30C5
2e(k)6 + O(e(k)7).

4 Applications

4.1 Chandrasekhar’s Equation

Consider the quadratic integral equation related with Chandrasekhar’s work [6]

x(s) = f(s) + λx(s)

∫ 1

0

k(s, t)x(t)dt, (11)

which arises in the study of the radiative transfer theory, the transport of neutrons and
the kinetic theory of the gases. Equation (11) is also studied by Argyros [2] and along
with some conditions for the kernel k(s, t) in [8]. We consider the maximum norm for
the kernel k(s, t) as a continuous function in s, t ∈ [0, 1] such that 0 < k(s, t) < 1 and
k(s, t) + k(t, s) = 1. Moreover, we assume that f(s) ∈ C[0, 1] is a given function and
λ is a real constant. Note that finding a solution for (11) is equivalent to solving the
equation F (x) = 0, where F : C[0, 1] → C[0, 1] and

F (x)(s) = x(s) − f(s) − λx(s)

∫ 1

0

k(s, t)x(t)dt, x ∈ C[0, 1], s ∈ [0, 1].

In particular, we consider

F (x)(s) = x(s) − 1 −
x(s)

4

∫ 1

0

s

s + t
x(t)dt, x ∈ C[0, 1], s ∈ [0, 1], (12)
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Finally, we approximate numerically a solution for F (x) = 0, where F (x) is given in
(12) by means of a discretization procedure. We solve the integral equation (12) by
the Gauss-Legendre quadrature formula:

∫ 1

0

f(t)dt ≈
1

2

m
∑

j=1

βjf(tj),

where βj are the weights and tj are the knots tabulated in Table 1 for m = 8. Denote xi

for the approximations of x(ti), i = 1, 2, ...8, we obtain the following nonlinear system:

xi ≈ 1 +
1

8
xi

8
∑

j=1

aijxj, where aij =
tiβj

8(ti + tj)
, i = 1, ...8. (13)

We use the following stopping criterion for this problem errmin = ‖x(k+1) − x(k)‖2 <
10−13, the initial approximation assumed is x(0) = {1, 1, ..., 1}t for obtaining the solu-
tion of this problem, x∗ = {1.02171973146..., 1.07318638173..., 1.12572489365...,
1.16975331216..., 1.20307175130..., 1.22649087463..., 1.24152460059..., 1.24944851669...}t.
Table 2 shows that the proposed method M6 is better than NM .

Table 1: Weights and knots for the Gauss-Legendre formula (m = 8)

j tj βj

1 0.0198550717512... 0.101228536290...
2 0.101666761293... 0.222381034453...
3 0.237233795041... 0.313706645877...
4 0.408282678752... 0.362683783378...
5 0.591717321247... 0.362683783378...
6 0.762766204958... 0.31370664587...
7 0.898333238706... 0.222381034453...
8 0.980144928248... 0.101228536290...

Table 2: Comparison of iteration and error for Chandrasekhar’s problem

Methods M error
NM 5 3.1408e-016
JM 3 3.1218e-016

Wang 3 3.2401e-016
M6 3 2.2204e-016
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4.2 1-D Bratu Problem

The 1-D Bratu problem [5] is given by

d2U

dx2
+ λ exp U(x) = 0, λ > 0, 0 < x < 1, (14)

with the boundary conditions U(0) = U(1) = 0. The 1-D Planar Bratu problem has
two known, bifurcated, exact solutions for values of λ < λc, one solution for λ = λc

and no solutions for λ > λc. The critical value of λc is simply 8(η2 − 1), where η is
the fixed point of the hyperbolic cotangent function coth (x). The exact solution to eq.
(14) is known and can be presented here as

U(x) = −2 ln

[

cosh (x − 1
2 ) θ

2

cosh
(

θ
4

)

]

, (15)

where θ is a constant to be determined, which satisfies the boundary conditions and
is carefully chosen and assumed to be the solution of the differential equation (14).
Using a similar procedure as in ([13]), we show how to obtain the critical value of
λ. Substituting eq. (15) in (14), simplifying and collocating at the point x = 1

2
because it is the midpoint of the interval. Another point could be chosen, but low-
order approximations are likely to be better if the collocation points are distributed
somewhat evenly throughout the region. Then, we have

θ2 = 2λ cosh2

(

θ

4

)

. (16)

Differentiating eq. (16) with respect to θ and setting dλ
dθ

= 0, the critical value λc

satisfies

θ =
1

2
λc cosh

(

θ

4

)

sinh

(

θ

4

)

. (17)

By eliminating λ from eqs.(16) and (17), we have the value of θc for the critical λc

satisfying
θc

4
= coth

(

θc

4

)

(18)

for which θc = 4.798714560 can be obtained using an iterative method. We then get
λc = 3.513830720 from eq. (16). Figure 1 (a) illustrates this critical value of λ. The
finite dimensional problem using standard finite difference scheme is given by

Fj(Uj) =
Uj+1 − 2Uj + Uj−1

h2
+ λ exp Uj = 0, j = 1..N − 1 (19)

with discrete boundary conditions U0 = UN = 0 and the stepsize h = 1/N . There are
N − 1 unknowns (n = N − 1). The Jacobian is a sparse matrix and its typical number
of nonzero per row is three. It is known that the finite difference scheme converges
to the lower solution of the 1-D Bratu using the starting vector U (0) = (0, 0, .., 0)T.
We use N = 101 (n = 100) and test for 350 λ’s in the interval (0, 3.5] (interval width
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Table 3: Comparison of number of λ’s in different methods for 1-D Bratu problem

Method M = 2 M = 3 M = 4 M = 5 M > 5 Mλ

NM 0 12 114 143 81 4.92
JM 4 245 95 4 2 3.30

Wang 36 286 26 0 2 2.99
M6 48 266 33 2 1 2.98

0

5

10

15

20

0 0.5 1 1.5 2 2.5 3 3.5 4

θ

λ

Variation of θ with λ

λ
c

�

���

(a) (b)

Figure 1: (a) Variation of θ for λ, (b) Variation of number of iteration with λ
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= 0.01). For each λ, we let Mλ be the minimum number of iterations for which

‖U
(k+1)
j − U

(k)
j ‖2 < 1e − 13, where the approximation U

(k)
j is calculated correct to 14

decimal places. Let Mλ be the mean of iteration number for the 350 λ’s. Figure 1
(b) and table 3 give the results for 1-D Bratu problem, where M represents number
of iterations for convergence. It can be observed from the methods considered in table
3, as λ increases to its critical value, the number of iterations required for convergence
increase. However, as the order of method increases, the mean of iteration number
decreases. The M6 is the most efficient method among the compared methods because
it has the lowest mean iteration number and the highest number of λ’s points are
converging only in 2 iterations.

5 Conclusion

In this work, we have proposed an efficient new iterative method of order six for solving
system of nonlinear equations. The main advantage of the proposed schemes are: they
do not use second Frechet derivative, evaluate only one inverse of first Frechet deriva-
tive, evaluate less number of linear systems per iteration. To illustrate the proposed
new methods and to check the validity of the theoretical results we have tabulated
numerical results. The performance is compared with Newton’s method and some re-
cently developed methods and proposed method is to be superior over some existing
methods.

Acknowledgement. The authors would like to thank the referee for his helpful
comments and suggestions.
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