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Abstract

In this paper we present some existence results of solutions for elliptic bound-
ary value problems on bounded domains of RN (N ≥ 1) depending on the behavior
of the nonlinear term. We mainly use fixed point arguments by means of Kras-
nosel’skii’s compression-expansion and Schauder’s fixed point theorems.

1 Introduction

Let us consider the problem {
−∆u = f (x, u) inΩ,
u = 0 on ∂Ω,

(1)

where Ω is a bounded domain of RN (N ≥ 1) with smooth boundary and f : Ω×R −→
R is a continuous function. Existence and uniqueness of solutions of this problem has
been investigated in many papers where different type of arguments were used (see
[5] and references therein). In [4, 5] the compression-expansion fixed point theorem
of Krasnosel’skii has been used as a basic tool to prove existence and localisation of
positive solutions of Problem (1). We mention that the role of Harnack type inequalities
for the application of Krasnosel’skii’s theorem in cones was first shown in [2]. In [4],
the authors reformulate the Problem (1) as a fixed point problem Tu = u on the space
of continuous functions where the operator is of the form T = (−∆)−1F with (−∆)−1

the reverse of the Laplace’s operator and F the Nemytskii operator. Inspired by [3]
and [4], we will prove existence theorems for the given elliptic boundary value problem
in the space of continuous functions according to the behavior of the nonlinear term.
In section 2, we prove existence of a classical positive solution under some assumptions
on f by using Krasnosel’skii’s compression-expansion fixed point theorem. In section
3, we will use Schauder’s fixed point theorem to prove existence of classical solutions
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when f satisfies suitable general growth conditions. Let us recall some definitions and
tools which are used in the sequel.

DEFINITION 1. By a positive solution of Problem (1) we mean a function u ∈
C1
(
Ω,R

)
which satisfies (1) (with ∆u in the sense of distributions), and u (x) > 0 for

all x ∈ Ω.

DEFINITION 2. A superharmonic function in a domain Ω ⊂ RN is a function
u ∈ C1(Ω,R) with ∆u ≤ 0 in the sense of distributions, i.e.,∫

Ω

∇u · ∇v ≥ 0 for every v ∈ C∞0 (Ω,R) satisfying v(x) ≥ 0 on Ω.

DEFINITION 3. By a cone in a Banach space E we mean a closed convex subset
C of E such that C 6= {0} , λC ⊂ C for all λ ∈ R+, and C ∩ (−C) = {0} .

THEOREM 1 (Krasnosel’skii’s compression-expansion theorem [1]). Let E be a
Banach space, C ⊂ E a cone and assume that T : C −→ C is a completely continuous
map such that for some numbers r and R with 0 < r < R, one of the following
conditions is satisfied:

(i) ‖Tu‖ ≤ ‖u‖ for ‖u‖ = r and ‖Tu‖ ≥ ‖u‖ for ‖u‖ = R,

(ii) ‖Tu‖ ≥ ‖u‖ for ‖u‖ = r and ‖Tu‖ ≤ ‖u‖ for ‖u‖ = R.

Then T has a fixed point u with r ≤ ‖u‖ ≤ R.

2 Existence of Positive Solution

To prove existence of a positive solution for the Problem (1), we give assumptions on
the nonlinear term which allows us to apply the Krasnosel’skii’s compression-expansion
fixed point theorem. Let E be the Banach space defined by

C0(Ω,R) = {u ∈ C(Ω,R) : u = 0 on ∂Ω}

endowed with the norm ‖u‖0 = sup
x∈Ω

|u(x)|. Let K a subset of Ω; for a function h : Ω→

R, by h|K we mean the function h|K (x) = h (x) if x ∈ K and h|K (x) = 0 if x ∈ Ω \K.
We shall assume that the following global weak Harnack inequality holds:

(H) There exist a compact set K ⊂ Ω and a number η > 0 such that u(x) ≥ η‖u‖0 for
all x ∈ K and every nonnegative superharmonic function u ∈ C1(Ω,R) with u =
0 on ∂Ω.

THEOREM 2. Assume that
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(S1) f : Ω × R+ −→ R+ is a continuous function and there exists σ > 0with σ 6= 1
such that

f(x, u) ≤ a(x) + b(x)uσ for (x, u) ∈ Ω× R+,

where a, b : Ω −→ R+ are continuous and positive functions.

(S2) there exists R > 0 such that

min
x∈K,u∈[Rη,R]

f(x, u) > R‖(−∆)−11|K‖−1
0 .

(S3)

M2(
1

σM2
)

σ
σ−1 − (

1

σM2
)

1
σ−1 +M1 < 0 when σ > 1,

where M1 = ‖(−∆−1)a‖0 and M2 = ‖(−∆−1)b‖0.

Then the Problem (1) has at least one positive solution.

PROOF. Let F : C0

(
Ω,R

)
−→ C

(
Ω,R

)
be the Nemytskii operator defined by

Fu(x) = f(x, u(x)) and T : C −→ C0(Ω,R) the operator given by Tu = (−∆)−1Fu,
where C is the cone defined by

C = {u ∈ C0(Ω,R) : u ≥ 0 on Ω and min
x∈K

u(x) ≥ η‖u‖0}.

One can see that u is a solution of Problem (1) if and only if

u = (−∆)−1Fu,

that is, a solution of the Problem (1) is a fixed point of the operator T . In order to show
that the operator T has a fixed point, we shall prove that the hypotheses of Theorem
1 are satisfied. It is clear that the operator T satisfies{

−∆(Tu) = f (x, u) in Ω,
Tu = 0 on ∂Ω.

Because Tu is superharmonic, then by the global weak Harnack inequality (H) we have
T (C) ⊂ C. Indeed if v ∈ T (C), there exists u ∈ C such that v = Tu. We have

min
x∈K

v(x) = min
x∈K

Tu(x) ≥ η ‖Tu‖0 ≥ η‖v‖0.

Moreover, because f is continuous, then by Ascoli-Arzéla compactness criterion, it is
easy to see that the operator T is compact.
Now, let r be a positive number which will be selected later and consider the two sets

S1 =
{
u ∈ C0(Ω,R) : ‖u‖0 < r

}
and S2 =

{
u ∈ C0(Ω,R) : ‖u‖0 < R

}
.
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Let u ∈ C∩∂S1, then using assumption (S1) and monotonicity of the operator (−∆)−1,
we have

‖Tu‖0 = ‖(−∆)−1Fu‖0 ≤ ‖(−∆)−1(a(.) + b(.)uσ)‖0
≤ ‖(−∆)−1a‖0 + ‖(−∆)−1b(.)uσ‖0
≤ ‖(−∆)−1a‖0 + ‖‖u‖σ0 (−∆)−1b‖0
≤ ‖(−∆)−1a‖0 + rσ‖(−∆)−1b‖0 ≤M1 + rσM2.

Note that when σ < 1, we have r −M1 − rσM2 −→ +∞ as r −→ +∞. Hence, if r
is chosen suffi ciently large (r > R), we get M1 + rσM2 < r. On the other hand, by
using (S3), we deduce that for σ > 1, there exists a suitable r > 0 which satisfies
M1 + rσM2 < r. Then, for any σ > 0, σ 6= 1, we have ‖Tu‖0 ≤ r = ‖u‖0.
Now, if u ∈ C ∩ ∂S2, by using assumption (S2) and by monotonicity of the operator

(−∆)−1, we get

‖Tu‖0 = ‖(−∆)−1Fu‖0 ≥ ‖(−∆)−1(Fu) |K‖0
≥ min

x∈K,y∈[Rη, R]
f(x, y) sup

x∈K
|(−∆)−11|K)|

≥ R‖(−∆)−11|K)‖−1
0 ‖(−∆)−11|K)‖0

= R = ‖u‖0.

Hence, ‖Tu‖0 ≥ ‖u‖0 for ‖u‖0 = R. Then, using Krasnosel’skii’s fixed point Theorem
1, the existence result holds.

3 General Existence Results

Now, we will use Schauder’s fixed point theorem to prove existence of solutions for the
Problem (1).

THEOREM 3. Assume that the nonlinear term f satisfies

|f(x, u)| ≤ H(x, |u|) for x ∈ Ω and u ∈ R,

where H : Ω× R+ −→ R+ satisfies

(A1) H is continuous, nondecreasing with respect to its second variable,

(A2) there exists M0 > 0 such that

H(x,M0) ≤ M0

‖(−∆)−11Ω‖0
for all x ∈ Ω.

Then the Problem (1) has at least one solution.

PROOF. Let

D = B(0,M0) =
{
u ∈ C0

(
Ω,R

)
: ‖u‖0 ≤M0

}
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and
T : D −→ C0

(
Ω,R

)
, Tu = (−∆)−1Fu.

T is compact and we have for every v ∈ T (D) there exists u ∈ D such that v = Tu.
By the monotonicity of (−∆)−1 and because H is nondecreasing with respect to its
second argument we have,

‖v‖0 = ‖Tu‖0 = ‖(−∆)−1Fu‖0 ≤ ‖(−∆)−1H(., |u|)‖0

≤ ‖(−∆)−1H(.,M0)‖0 ≤
∥∥∥∥(−∆)−1

(
M0

‖(−∆)−11Ω‖0

)∥∥∥∥
0

≤ M0

‖(−∆)−11Ω‖0
‖(−∆)−11Ω‖0 = M0,

meaning that v ∈ D, i.e., T (D) ⊂ D. By Schauder’s fixed point theorem, we deduce
that the operator T has a fixed point in D. The proof is complete.

THEOREM 4. Assume now that

(H1) There exist a nondecreasing function Φ ∈ C(R+,R+) and a function ψ ∈ C
(
Ω,R+

)
,

such that
|f(x, u)| ≤ ψ(x)Φ(|u|) for (x, u) ∈ Ω× R,

(H2) there exists R0 > 0 such that

Φ(R0) ≤ R0

‖(−∆)−1ψ‖0
.

Then the Problem (1) has at least one solution.

PROOF. Let’s consider the compact operator

T : D = B(0, R0) =
{
u ∈ C0

(
Ω,R

)
: ‖u‖0 ≤ R0

}
−→ C0

(
Ω,R

)
defined by

Tu = (−∆)−1Fu for u ∈ D.
We have T (D) ⊂ D. Indeed, v ∈ T (D) implies that there exists u ∈ C0

(
Ω,R

)
with

‖u‖ ≤ R0 and v = Tu. Using assumptions (H1), (H2) and the monotonicity of the
operator (−∆)−1 we get

‖v‖0 = ‖Tu‖0 = ‖(−∆)−1Fu‖0 ≤
∥∥(−∆)−1ψ(.)Φ(|u|)

∥∥
0

≤
∥∥(−∆)−1ψ(.)Φ(‖u‖0)

∥∥
0
≤
∥∥(−∆)−1ψ(.)Φ(R0)

∥∥
0

≤ Φ(R0)‖(−∆)−1ψ‖0 ≤ R0,

that is T (D) ⊂ D. Hence, by Schauder’s fixed point theorem, T has a fixed point, which
is a solution of the Problem (1).

REMARK 1. If in Theorems 3 and 4, we assume that there exists x0 ∈ Ω such that
f(x0, 0) 6= 0, then the solutions obtained are nontrivial.
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