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Abstract

In the present paper, we introduce the concept of A-statistical relative uniform
convergence for double sequences of functions defined on a compact subset of the
real two-dimensional space. Based upon this definition, we prove Korovkin-type
approximation theorem. Finally, we compute the rate of convergence.

1 Introduction

Korovkin type approximation theorems are useful tools to check whether a given se-
quence (Ln) of positive linear operators on C [a, b] of all continuous functions on the
real interval [a, b] is an approximation process. That is, these theorems exhibit a vari-
ety of test functions which assure that the approximation property holds on the whole
space if it holds for them. Such a property was discovered by Korovkin in 1960 [17]
for the functions 1, x and x2 in the space C [a, b] as well as for the functions 1, cos
and sin in the space of all continuous 2π-periodic functions on the real line. Several
mathematicians have worked on extending or generalizing the Korovkin’s theorems in
many ways and to several settings, including function spaces, abstract Banach lattices,
Banach algebras, Banach spaces and so on. This theory is very useful in real analysis,
functional analysis, harmonic analysis, measure theory, probability theory, summability
theory and partial differential equations.
In recent years, Korovkin theory has been quite improved by some effi cient tools in

mathematics such as the concept of statistical convergence from summability theory,
the fuzzy logic theory, the complex functions theory, the theory of q-calculus, and the
theory of fractional analysis. E. H. Moore [18] introduced the notion of uniform conver-
gence of a sequence of functions relative to a scale function. Then, E. W. Chittenden
[5] gave the following definition of relatively uniform convergence is equivalent to the
definition given by Moore:
A sequence (fn) of functions, defined on any compact subset of the real space,

converges relatively uniformly to a limit function f if there exists a function σ (x) ,
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208 Statistical Relative Uniform Convergence

called a scale function σ (x) such that for every ε > 0 there exists an integer nε such
that for every n > nε the inequality

|fn (x)− f (x)| < ε |σ (x)|

holds uniformly in x. The sequence (fn) is said to converge uniformly relative to the
scale function σ or more simply, relatively uniformly.

It is observed that uniform convergence is the special case of relatively uniform
convergence in which the scale function is a non-zero constant (for more properties and
details, see also [4, 5, 6]).
Similarly, we can give the following definition for double sequences of functions:
A double sequence (fmn) of functions, defined on any compact subset of the real

two-dimensional space, converges relatively uniformly to a limit function f if there
exists a function σ (x, y) , called a scale function σ (x, y) such that for every ε > 0 there
is an integer nε such that for every n,m > nε the inequality

|fmn (x, y)− f (x, y)| < ε |σ (x, y)|

holds uniformly in (x, y). The double sequence (fmn) is said to converge uniformly
relative to the scale function σ or more simply, relatively uniformly.

EXAMPLE 1. For each (m,n) ∈ N2, define fmn : [0, 1]× [0, 1]→ R by

fmn(x, y) =
2nmxy

1 + n2m2x2y2
.

This sequence does not converge uniformly, but converges to f = 0 uniformly relative
to a scale function

σ (x, y) =

{ 1
xy if (x, y) ∈ (0, 1]× (0, 1],

1 if x = 0 or y = 0.

Let A = (ajkmn) be a four-dimensional summability method. For a given double
sequence x = (xmn), the A-transform of x, denoted by Ax := ((Ax)jk), is given by

(Ax)jk =

∞,∞∑
m,n=1,1

ajkmnxmn

provided the double series converges in the Pringsheim’s sense for (j, k) ∈ N2.
A two dimensional matrix transformation is said to be regular if it maps every

convergent sequence into a convergent sequence with the same limit. The well-known
characterization for two dimensional matrix transformations is known as Silverman-
Toeplitz conditions ([15]). In 1926 Robison [20] presented a four dimensional analog of
regularity for double sequences in which he added an additional assumption of bound-
edness. This assumption was made because a double sequence which is P -convergent
is not necessarily bounded. The definition and the characterization of regularity for
four dimensional matrices is known as Robison-Hamilton conditions, or briefly, RH-
regularity ([14], [20]).
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Recall that a four dimensional matrix A = (ajkmn) is said to be RH-regular if
it maps every bounded P -convergent sequence into a P -convergent sequence with the
same P -limit. The Robinson- Hamilton conditions state that a four dimensional matrix
A = (ajkmn) is RH-regular if and only if

(i) P − limj,k ajkmn = 0 for each m and n,

(ii) P − limj,k

∞,∞∑
m,n=1,1

ajkmn = 1,

(iii) P − limj,k

∞∑
m=1
|ajkmn| = 0 for each n ∈ N,

(iv) P − limj,k

∞∑
n=1
|ajkmn| = 0 for each m ∈ N,

(v)
∞,∞∑

m,n=1,1
|ajkmn| is P -convergent,

(vi) there exits finite positive integers A and B such that
∑

m,n>B

|ajkmn| < A holds

for every (j, k) ∈ N2.

Now let A = (ajkmn) be a nonnegative RH-regular summability matrix and let
K ⊂ N2 = N× N. Then A-density of K, denoted by δ2

(A)(K), is given by:

δ2
(A)(K) := P − lim

j,k

∑
(m,n)∈K

ajkmn

provided that the limit on the right-hand side exists in the Pringsheim sense. A real
double sequence x = (xmn) is said to be A-statistically convergent to L if, for every
ε > 0,

δ2
(A)({(m,n)N : |xmn − L| ≥ ε}) = 0.

In this case, we write st2(A) − limx = L ([19]).
Let f and fmn belong to C(D), which is the space of all continuous real valued

functions on a compact subsetD of the real two-dimensional space and ‖f‖C(D) denotes
the usual supremum norm of f in C(D).

DEFINITION 1 ([13]). (fmn) is said to be statistically pointwise convergent to f
on D if st2(A) − lim

m,n
fmn(x, y) = f(x, y) for each (x, y) ∈ D, i.e., for every ε > 0 and for

each (x, y) ∈ D,

δ2
(A)({(m,n) : |fmn (x, y)− f (x, y)| ≥ ε}) = 0.

Then, it is denoted by fmn → f (stat) on D.
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DEFINITION 2 ([13]). (fmn) is said to be statistically uniform convergent to f on
D if either

st2(A) − lim
m,n

sup
(x,y)∈D

|fmn(x, y)− f(x, y)| = 0,

or
δ2

(A)

({
(m,n) : ‖fmn − f‖C(D) ≥ ε

})
= 0

for every ε > 0. This limit is denoted by fmn ⇒ f (stat) on D.

DEFINITION 3. (fmn) is said to be statistically relatively uniform convergent to
f on D if there exists a function σ (x, y) , |σ (x, y)| > 0, called a scale function σ (x, y)
such that for every ε > 0,

δ2
(A)

({
(m,n) : sup

(x,y)∈D

∣∣∣∣fmn(x, y)− f(x, y)

σ(x, y)

∣∣∣∣ ≥ ε

})
= 0.

This limit is denoted by (st)
2
(A) − fmn ⇒ f (D;σ) .

Using the above definitions, the next result follows immediately.

LEMMA 1. fmn ⇒ f on D (in the ordinary sense) implies fmn ⇒ f (stat) on D,
which also implies (st)

2
(A) − fmn ⇒ f (D;σ).

However, one can construct an example which guarantees that the converses of
Lemma 1 are not always true. Such an example is presented as follows:

EXAMPLE 2. For each (m,n) ∈ N2, define gmn : [0, 1]× [0, 1]→ R by

gmn(x, y) =
2n2m2xy

1 + n3m3x2y2

Take A = C(1, 1), four dimensional Cesáro matrix. Then observe that

(st)
2
(C(1,1)) − gmn ⇒ g = 0([0, 1]× [0, 1];σ)

and

σ (x, y) =

{ 1
xy if (x, y) ∈ (0, 1]× (0, 1],

1 if x = 0 or y = 0.

However, (gmn) is not statistically (or ordinary) uniform convergent to the function
g = 0 on the interval [0, 1]× [0, 1].

The concept of statistical convergence for sequences of real numbers was introduced
by Fast [12] and Steinhaus [21] independently in the same year 1951. Some Korovkin-
type theorems in the setting of a statistical convergence were given by [2, 3, 7, 8,
9, 11, 16, 23]. In the present paper, using the Definition 3 we prove Korovkin-type
approximation theorem for double sequences of functions defined on a compact subset
of the real two-dimensional space.
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2 AKorovkin-Type Approximation Theorem for Dou-
ble Sequences

In this section we apply the notion of statistical uniform convergence of a double se-
quence of functions relative to a scale function to prove a Korovkin type approximation
theorem.
Let L be a linear operator from C (D) into itself. Then, as usual, we say that L is

positive provided that f ≥ 0 implies L (f) ≥ 0. Also, we denote the value of L (f) at
a point (x, y) ∈ D by L(f(u, v);x, y) or, briefly, L(f ;x, y).

First we recall the classical case of the Korovkin-type result for a double sequence
introduced in [22].

THEOREM 1. Let (Lmn) be a double sequence of positive linear operators acting
from C (D) into itself. Then, for all f ∈ C (D),

P − lim
m,n
‖Lmn (f)− f‖C(D) = 0

if and only if
P − lim

m,n
‖Lmn (ei)− ei‖C(D) = 0, (i = 0, 1, 2, 3),

where e0(x, y) = 1, e1(x, y) = x, e2(x, y) = y and e3(x, y) = x2 + y2.

Now we recall the statistical case of the Korovkin-type result introduced in [11],

THEOREM 2. Let A = (ajkmn) be a nonnegative RH-regular summability matrix
method. Let (Lmn) be a double sequence of positive linear operators acting from C (D)
into itself. Then, for all f ∈ C (D),

st2(A) − lim
m,n
‖Lmn (f)− f‖C(D) = 0

if and only if

st2(A) − lim
m,n
‖Lmn (ei)− ei‖C(D) = 0, (i = 0, 1, 2, 3),

where e0(x, y) = 1, e1(x, y) = x, e2(x, y) = y and e3(x, y) = x2 + y2.

Now we have the following main result.

THEOREM 3. Let A = (ajkmn) be a nonnegative RH-regular summability matrix
method. Let (Lmn) be a double sequence of positive linear operators acting from C (D)
into itself. Then, for all f ∈ C (D),

(st)
2
(A) − Lmn (f) ⇒ f (D;σ) (1)

if and only if
(st)

2
(A) − Lmn (ei) ⇒ ei (D;σi), i = 0, 1, 2, 3 (2)
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where σ (x, y) = max {|σi (x, y)| : i = 0, 1, 2, 3} , |σi (x, y)| > 0 and σi (x, y) is un-
bounded for i = 0, 1, 2, 3.

PROOF. Since each fi ∈ C(D), (i = 0, 1, 2, 3), the implication (1)→(2) is obvious.
We prove the converse part. By the continuity of f on compact set D, we can write

|f (x, y)| ≤ K

where K := ‖f‖C(D). Also, since f is continuous on D, we write that for every ε > 0,
there exists a number δ > 0 such that |f (u, v)− f (x, y)| < ε for all (u, v) ∈ D satisfying
|u− x| < δ and |v − y| < δ. Hence, putting ϕ (u, v) = (u− x)

2
+ (v − y)2, we get

|f (u, v)− f (x, y)| < ε+
2K

δ2 ϕ(u, v).

This means that

−ε− 2K

δ2 ϕ(u, v) < f (u, v)− f (x, y) < ε+
2K

δ2 ϕ(u, v).

Since Lmn(f ;x, y) is monotone and linear, we obtain

Lmn(e0;x, y)

(
−ε− 2K

δ2 ϕ(u, v)

)
< Lmn(e0;x, y) (f (u, v)− f (x, y))

< Lmn(e0;x, y)

(
ε+

2K

δ2 ϕ(u, v)

)
.

Note that x, y are fixed and so f(x, y) is a constant number. Therefore,

−εLmn(e0;x, y)− 2K

δ2 Lmn(ϕ;x, y) < Lmn(f ;x, y)− f (x, y)Lmn(e0;x, y)

< εLmn(e0;x, y) +
2K

δ2 Lmn(ϕ;x, y). (3)

Also

Lmn(f ;x, y)− f (x, y)

= Lmn(f ;x, y)− f (x, y)Lmn(e0;x, y) + f (x, y)Lmn(e0;x, y)− f (x, y)

= [Lmn(f ;x, y)− f (x, y)Lmn(e0;x, y)] + f (x, y) [Lmn(e0;x, y)− e0 (x, y)] . (4)

By (3) and (4), we get

Lmn(f ;x, y)− f (x, y)

< εLmn(e0;x, y) +
2K

δ2 {[Lmn(e3;x, y)− e3 (x, y)]

−2x [Lmn(e1;x, y)− e1 (x, y)]− 2y[Lmn(e2;x, y)− e2 (x, y)]

+(x2 + y2) [Lmn(e0;x, y)− e0 (x, y)]
}

+f (x, y) [Lmn(e0;x, y)− e0 (x, y)]
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= ε [Lmn(e0;x, y)− e0 (x, y)] + ε+
2K

δ2 {[Lmn(e3;x, y)− e3 (x, y)]

−2x [Lmn(e1;x, y)− e1 (x, y)] +−2y [Lmn(e2;x, y)− e2 (x, y)] +

(x2 + y2) [Lmn(e0;x, y)− e0 (x, y)]
}

+ f (x, y) [Lmn(e0;x, y)− e0 (x, y)]

It follows that

|Lmn (f ;x, y)− f(x, y)|

≤ ε+

(
ε+K +

2K ‖e3‖C(D)

δ2

)
|Lmn(e0;x, y)− e0(x, y)|

+
4K ‖e1‖C(D)

δ2 |Lmn(e1;x, y)− e1(x, y)|+
4K ‖e2‖C(D)

δ2 |Lmn(e2;x, y)− e2(x, y)|

+
2K

δ2 |Lmn(e3;x, y)− e3(x, y)|

≤ ε+M {|Lmn(e0;x, y)− e0(x, y)|+ |Lmn(e1;x, y)− e1(x, y)|
+ |Lmn(e2;x, y)− e2(x, y)|+ |Lmn(e3;x, y)− e3(x, y)|}

where

M = ε+K +
2K

δ2

(
‖e3‖C(D) + 2 ‖e2‖C(D) + 2 ‖e1‖C(D) + 1

)
.

We get

sup
(x,y)∈D

∣∣∣∣Lmn(f ;x, y)− f(x, y)

σ(x, y)

∣∣∣∣
≤ sup

(x,y)∈D

ε

|σ(x, y)| +M

{
sup

(x,y)∈D

∣∣∣∣Lmn(e0;x, y)− e0 (x, y)

σ0(x, y)

∣∣∣∣
+ sup

(x,y)∈D

∣∣∣∣Lmn(e1;x, y)− e1 (x, y)

σ1(x, y)

∣∣∣∣+ sup
(x,y)∈D

∣∣∣∣Lmn(e2;x, y)− e2 (x, y)

σ2(x, y)

∣∣∣∣
+ sup

(x,y)∈D

∣∣∣∣Lmn(e3;x, y)− e3 (x, y)

σ3(x, y)

∣∣∣∣
}

(5)

where σ(x) = max {|σi (x)| ; i = 0, 1, 2, 3} . Now, for a given r > 0, choose ε > 0 such
that sup

(x,y)∈D

ε
|σ(x,y)| < r. Then,

R :=

{
(m,n) : sup

(x,y)∈D

∣∣∣∣Lmn(f ;x, y)− f(x, y)

σ(x, y)

∣∣∣∣ ≥ r
}

and

Ri :=

(m,n) : sup
(x,y)∈D

∣∣∣∣Lmn(ei;x, y)− ei(x, y)

σi(x, y)

∣∣∣∣ ≥
r − sup

(x,y)∈D

ε
|σ(x,y)|

3M

 , i = 0, 1, 2, 3
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It follows from (5) that R ⊂
3⋃
i=0

Ri and so

∑
(m,n)∈R

ajkmn ≤
∑

(m,n)∈R1

ajkmn +
∑

(m,n)∈R2

ajkmn +
∑

(m,n)∈R3

ajkmn.

Then using the hypothesis (2), we get

(st)
2
(A) − Lmn (f) ⇒ f (D;σ),

where σ (x, y) = max {|σi (x, y)| : i = 0, 1, 2, 3} . This completes the proof of the theo-
rem.

Now let D = [0, 1] × [0, 1] ⊂ R2 and A = C (1, 1) := (cjkmn) , the double Cesaro
matrix, defined by

cjkmn =

{ 1
jk if 1 ≤ m ≤ j and 1 ≤ n ≤ k,
0 otherwise.

Consider the double Bernstein polynomials

Bmn(f ;x, y) =

m∑
s=0

n∑
t=0

f

(
s

m
,
t

n

)
xsyt (1− x)

m−s
(1− y)

n−t

on C(D). Using these polynomials, we introduce the following positive linear operators
on C(D) :

Pmn(f ;x, y) = (1 + gmn(x, y))Bmn(f ;x, y), (x, y) ∈ D and f ∈ C(D), (6)

where gmn(x, y) is given in Example 2. Then, we observe that

Pmn(e0;x, y) = (1 + gmn(x, y))e0(x, y),

Pmn(e1;x, y) = (1 + gmn(x, y))e1(x, y),

Pmn(e2;x, y) = (1 + gmn(x, y))e2(x, y),

Pmn(e3;x, y) = (1 + gmn(x, y))

[
e3(x, y) +

x− x2

m
+
y − y2

n

]
.

Since (st)
2
(A) − gmn ⇒ g = 0 (D;σ),

σ (x, y) =

{ 1
xy if (x, y) ∈ (0, 1]× (0, 1],

1 if x = 0 or y = 0,

we conclude that

(st)
2
(A) − Pmn (ei) ⇒ ei (D;σ) for each i = 0, 1, 2.

So, by Theorem 3, we immediately see that

(st)
2
(A) − Pmn (f) ⇒ f (D;σ) for all f ∈ C(D).
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However, since (gmn) is not statistically uniform convergent to the function g = 0 on the
compact set D, we can say that Theorem 2 does not work for our operators defined by
(6). Furthermore, since (gmn) is not uniformly convergent (in the ordinary sense) to the
function g = 0 on D, the classical Korovkin theorem does not work either. Therefore,
this application clearly shows that our Theorem 3 is a non-trivial generalization of the
classical and the statistical cases of the Korovkin results introduced in [22] and [11],
respectively.

3 Rates of Statistical Relative Uniform Convergence
in Theorem 3

In this section we study the rates of statistical relative uniform convergence of a se-
quence of positive linear operators defined on C(D) with the help of modulus of con-
tinuity. We now present the following definition.

DEFINITION 4. Let A = (ajkmn) be a non-negative RH-regular summability
matrix and let (αmn) be a positive non-increasing double sequence. A double sequence
(fmn) is said to converge statistically relatively uniform to the scale function σ (x, y) ,
|σ (x, y)| > 0, to f on D with the rate of o(αmn) if for every ε > 0,

P − lim
j,k

1

αjk

∑
(m,n)∈K(ε)

ajkmn = 0,

where

K(ε) =

{
(m,n) : sup

(x,y)∈D

∣∣∣∣fmn(x, y)− f(x, y)

σ (x, y)

∣∣∣∣ ≥ ε
}
.

In this case, it is denoted by

(st)2
(A) − (fmn − f) = o(αmn) (D;σ).

DEFINITION 5. Let A = (ajkmn) be a non-negative RH-regular summability
matrix and let (αmn) be a positive non-increasing double sequence. A double sequence
(fmn) is said to converge statistically relatively uniform to the scale function σ (x, y) ,
|σ (x, y)| > 0, to f on D with the rate of omn(αmn) if for every ε > 0,

P − lim
j,k

∑
(m,n)∈M(ε)

ajkmn = 0,

where

M(ε) =

{
(m,n) : sup

(x,y)∈D

∣∣∣∣fmn(x, y)− f(x, y)

σ (x, y)

∣∣∣∣ ≥ εαmn
}
.

In this case, it is denoted by

(st)2
(A) − (fmn − f) = omn(αmn) (D;σ).
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Then we first need the following lemma to get the rates of convergence in Theorem 3
by using Definition 4.

LEMMA 2. Let A = (ajkmn) be a nonnegative RH-regular summability matrix
method. Let (fmn) and (gmn) be function sequences belonging to C(D). Assume
that (st)2

(A) − (fmn − f) = o(αmn) (D;σ0) and (st)2
(A) − (gmn − g) = o(βmn)(D;σ1),

|σi (x, y)| > 0, i = 0, 1. Let γmn = max{αmn, βmn}. Then the following statements
hold:

(i) (st)2
(A) − (fmn + gmn)− (f + g) = o(γmn) (D; max {|σi (x, y)| ; i = 0, 1})

(ii) (st)2
(A) − (fmn − f)(gmn − g) = o(γmn) (D;σ0 (x, y)σ1 (x, y)),

(iii) (st)2
(A) − (λ(fmn − f)) = o(αmn) (D;σ0 (x, y)) for any real number λ,

(iv) (st)2
(A) −

√
|fmn − f | = o(αmn) (D;

√
|σ0 (x, y)|).

PROOF. (i) Assume that (st)2
(A) − (fmn − f) = o(αmn) (D;σ0) and that (st)2

(A) −
(gmn − g) = o(βmn)(D;σ1). Also, for every ε > 0 define the following sets:

Ψ : =

{
(m,n) : sup

(x,y)∈D

∣∣∣∣ (fmn + gmn) (x, y)− (f + g) (x, y)

σ (x, y)

∣∣∣∣ ≥ ε
}
,

Ψ1 : =

{
(m,n) : sup

(x,y)∈D

∣∣∣∣fmn (x, y)− f (x, y)

σ0 (x, y)

∣∣∣∣ ≥ ε

2

}
,

Ψ2 : =

{
(m,n) : sup

(x,y)∈D

∣∣∣∣gmn (x, y)− g (x, y)

σ1 (x, y)

∣∣∣∣ ≥ ε

2

}
,

where σ (x, y) = max {|σi (x, y)| ; i = 0, 1} . Then observe that

Ψ ⊂ Ψ1 ∪Ψ2. (7)

Therefore, since γmn = max{αmn, βmn}, we conclude that, for all (j, k) ∈ N2,

1

γjk

∑
(m,n)∈Ψ

ajkmn ≤
1

αjk

∑
(m,n)∈Ψ1

ajkmn +
1

βjk

∑
(m,n)∈Ψ2

ajkmn. (8)

Now by taking limit as j, k →∞ in (8) and using the hypotheses, we conclude that

P − lim
j,k

1

γjk

∑
(m,n)∈Ψ

ajkmn = 0,

which completes the proof of (i). Since the proofs of (ii)—(iv) are similar, we omit them.
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On the other hand, we recall that the modulus of continuity of a function f ∈ C(D)
is defined by

w(f, δ) = sup
{
|f(u, v)− f(x, y)| : (u, v), (x, y) ∈ D,

√
(u− x)2 + (v − y)2 ≤ δ

}
.

where δ > 0. Then we have the following result.

THEOREM 4. Let (Lmn) be a double sequence of positive linear operators acting
from C(D) into itself. Assume that the following conditions hold:

(a) (st)
2
(A) − (Lmn(e0)− e0) = o(αmn) (D;σ0),

(b) (st)
2
(A) − w(f, δmn) = o(βmn)(D;σ1) where δmn :=

√
‖Lmn(ϕ)‖C(D) with

ϕ(u, v) = ϕxy(u, v) = (u− x)2 + (v − y)2.

Then we have that, for all f ∈ C(D),

(st)
2
(A) − (Lmn(f)− f) = o(γmn)(D; |σ0(x, y)σ1(x, y)|)

and
σ (x, y) = max {|σ0 (x, y)| , |σ1 (x, y)| , |σ0 (x, y)σ1 (x, y)|} ,

where γmn = max{αmn, βmn}, |σi (x, y)| > 0 and σi (x, y) is unbounded for i = 0, 1.

PROOF. Let f ∈ C(D) and (x, y) ∈ D. Then it is well-known that

|Lmn(f ;x, y)− f(x, y)| ≤ w(f, δmn) |Lmn(e0;x, y)− e0(x, y)|
+2w(f, δmn) +M |Lmn(e0;x, y)− e0(x, y)|

where M = ‖f‖C(D) and (see, for instance, [1, 10]). This yields that

sup
(x,y)∈D

∣∣∣∣Lmn(f ;x, y)− f(x, y)

σ(x, y)

∣∣∣∣
≤ sup

(x,y)∈D

w(f, δmn)

|σ1(x, y)| sup
(x,y)∈D

∣∣∣∣Lmn(e0;x, y)− e0(x, y)

σ0(x, y)

∣∣∣∣+ 2 sup
(x,y)∈D

w(f, δmn)

|σ1(x, y)|

+M sup
(x,y)∈D

∣∣∣∣Lmn(e0;x, y)− e0(x, y)

σ0(x, y)

∣∣∣∣
Now given ε > 0, define the following sets:

K : =

{
(m,n) : sup

(x,y)∈D

∣∣∣∣Lmn(f ;x, y)− f(x, y)

σ(x, y)

∣∣∣∣ ≥ ε
}

K1 : =

{
(m,n) : sup

(x,y)∈D

w(f, δmn)

|σ1(x, y)| sup
(x,y)∈D

∣∣∣∣Lmn(e0;x, y)− e0(x, y)

σ0(x, y)

∣∣∣∣ ≥ ε

3

}
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K2 : =

{
(m,n) : sup

(x,y)∈D

w(f, δmn)

|σ1(x, y)| ≥
ε

6

}

K3 : =

{
(m,n) : sup

(x,y)∈D

∣∣∣∣Lmn(e0;x, y)− e0(x, y)

σ0(x, y)

∣∣∣∣ ≥ ε

3M

}
.

Then, it is easily see that K ⊂ K1 ∪K2 ∪K3. Also, defining

K4 : =

{
(m,n) : sup

(x,y)∈D

w(f, δmn)

|σ1(x, y)| ≥
√
ε

3

}

K5 : =

{
(m,n) : sup

(x,y)∈D

∣∣∣∣Lmn(e0;x, y)− e0(x, y)

σ0(x, y)

∣∣∣∣ ≥√ε

3

}
,

we haveK1 ⊂ K4∪K5, which yieldsK ⊆
5
∪
i=2
Ki. Therefore, since γmn = max{αmn, βmn},

we conclude that, for all (j, k) ∈ N2,

1

γjk

∑
(m,n)∈K

ajkmn ≤ 1

βjk

∑
(m,n)∈K2

ajkmn +
1

αjk

∑
(m,n)∈K3

ajkmn

+
1

βjk

∑
(m,n)∈K4

ajkmn +
1

αjk

∑
(m,n)∈K5

ajkmn. (9)

Letting j, k →∞ on both sides of (9), we get

P − lim
j,k

1

γjk

∑
(m,n)∈K

ajkmn = 0.

Therefore, the proof is completed.
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