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Abstract

We show the existence of two traveling wave solutions in a time-delayed pop-

ulation system with stage structure by using the cross-iteration method.

1 Introduction

This work is a sequel to [1], we continue study the existence of traveling wave solutions
for the two-species Lotka-Volterra competition model with age structure in the form







∂u
∂t = d1

∂2u
∂x2 + α1

∫

R
G1(y)u(t − τ1, x− y)dy − η1u

2 − p1uv,

∂v
∂t = d2

∂2v
∂x2 + α2

∫

R
G2(y)v(t − τ2, x− y)dy − η2v

2 − p2uv.

(1)

Here u(t, x) and v(t, x) represent densities of adult members of two species u and v at
time t and point x, respectively. d1 > 0 (d2 > 0) is the diffusion coefficient of the adult
population u (v). α1 (α2) is made up of two factors, the per capita birth rate and the
survival rate of immature for the population u (v) during the immature stage. The
two probability kernels G1 and G2 are given by

G1(y) =
e−y2/4di(u)τ1

√

4πdi(u)τ1
, G2(y) =

e−y2/4di(v)τ2

√

4πdi(v)τ2
.

For more details of model (1) see [1] and the references cited therein.
Model (1) has the trivial equilibrium E0 = (0, 0), the mono-culture equilibria Eu =

(u∗, 0) and Ev = (0, v∗) with

u∗ =
α1

η1
, v∗ =

α2

η2
,
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Table 1: Summary of local stability of system (1)

Steady state Criteria for existence Criteria for asymptotic stability

E0 always exists unstable

Eu always exists α1p2 > α2η1

Ev always exists α2p1 > α1η2

E+
α2p1 < α1η2α1p2 < α2η1

or α2p1 > α1η2α1p2 > α2η1
α1p2 < α2η1 and α2p1 < α1η2

and the coexistence equilibrium E+ = (e1, e2) with

e1 =
α2p1 − α1η2

p1p2 − η1η2
, e2 =

α1p2 − α2η1

p1p2 − η1η2
.

E+ exists if and only if α2p1 < α1η2 and α1p2 < α2η1 or α2p1 > α1η2 and α1p2 > α2η1.
We showed that if α1p2 < α2η1 and α2p1 < α1η2, then the unique coexistence E+

is globally asymptotically stable. We summarized the stability of the equilibria in
Table 1.1. A traveling wave solution of (1) connecting E0 to E+ takes the form of
u(t, x) = φ(x+ ct), v(x, t) = ψ(x + ct), where (φ, ψ) ∈ C2(R,R2) with φ(ξ) and ψ(ξ)
satisfying

d1φ
′′(ξ) − cφ′(ξ) + α1

∫

R

G1(y)φ(ξ − y − cτ1)dy − η1φ
2(ξ) − p1φ(ξ)ψ(ξ) = 0, (2)

d2ψ
′′(ξ) − cψ′(ξ) + α2

∫

R

G2(y)ψ(ξ − y − cτ1)dy − η2ψ
2(ξ) − p2φ(ξ)ψ(ξ) = 0, (3)

lim
ξ→−∞

(φ(ξ), ψ(ξ)) = E0 and lim
ξ→∞

(φ(ξ), ψ(ξ)) = E+.

We substitute φ(ξ) = eλξ and ψ(ξ) = eλξ into the linearization equation of (2)–(3) to
obtain the characteristic equations as follows

∆i(λ, c) := diλ
2 − cλ+ αie

−cλτi

∫

R

Gi(y)e
−λydy, i = 1, 2.

Then it is easy to verify the following properties:

i. ∆i(0, c) = αi

∫

R
Gi(y)e

−λydy > 0;

ii. limλ→∞ ∆i(λ, c) = ∞ for all c ≥ 0;

iii. ∂2∆i(λ,c)
∂λ2 = 2di > 0 and

∂∆i(λ, c)

∂c
= −λ − λαiτi

∫

R

Gi(y)e
−λydy < 0

for all λ > 0;
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iv. limc→∞ ∆i(λ, c) = −∞ for all λ > 0 and ∆i(λ, 0) > 0.

By the properties of ∆i(λ, c) we know that there exist c∗i > 0, i = 1, 2 such that
the following statements are valid.

i. If c ≥ c∗i , then there exist four positive numbers Λi1, Λi2, i = 1, 2 (which are
independent on c) with Λi1 ≤ Λi2 such that ∆i(Λi1, c) = ∆i(Λi2, c) = 0.

ii. If c < c∗i , then ∆i(λ, c) > 0 for all λ > 0.

iii. If c = c∗i , then Λi1 = Λi2; and if c > c∗i , then Λi1 < Λi2, ∆i(λ, c) < 0 for all
λ ∈ (Λi1,Λi2), ∆i(λ, c) > 0 for all λ ∈ [0,∞)\[Λi1,Λi2].

Define
c∗ = max{c∗1, c

∗
2}.

By Liang and Zhao [2], c∗i may be viewed as the spreading speeds of species u if i = 1
and species v if i = 2 in the absence of its rival. The existence of one traveling wave
solution has been studied in [1]. In this remark, we show the existence of two traveling
wave solutions by employing the cross-iteration method, which has been successfully
used in many literatures, see e.g., [1, 3, 4, 5] and the references cited therein.

Our main theorem is now in the following:

THEOREM 1. Suppose that α1p2 < α2η1, and α2p1 < α1η2 in (1). Then for
c > c∗, there exist two traveling wave solution (u(t, x), v(t, x)) = (φ(x+ ct), ψ(x+ ct))
with

lim
ξ→−∞

(φ(ξ), ψ(ξ)) = (0, 0), lim
ξ→∞

(φ(ξ), ψ(ξ)) = (e1, e2),

and
lim

ξ→−∞
φ(ξ)eΛ11(ξ) = lim

ξ→−∞
ψ(ξ)eΛ21(ξ) = 1,

where Λ11(ξ) and Λ21(ξ) are small eigenvalues of ∆1(λ, c) and ∆2(λ, c), respectively.

2 Proofs

In [1], in order to prove the existence of traveling wave solutions for model (1), we
constructed two pairs of functions (φ̄(ξ), ψ̄(ξ)) and (φ(ξ), ψ(ξ)) as follows:

φ̄(ξ) =

{

eΛ11ξ for ξ ≤ ξ3,

e1 + ε3e
−λξ for ξ ≥ ξ3,

ψ̄(ξ) =

{

eΛ21ξ for ξ ≤ ξ4,

e2 + ε4e
−λξ for ξ ≥ ξ4,

φ(ξ) =

{

eΛ11ξ − q1e
ηΛ11ξ for ξ ≤ ξ1,

e1 − ε1e
−λξ, for ξ ≥ ξ1,

ψ(ξ) =

{

eΛ21ξ − q2e
ηΛ21ξ for ξ ≤ ξ2,

e2 − ε2e
−λξ for ξ ≥ ξ2,

where each qi > 1 is sufficiently large and λ > 0 is sufficiently small.
We use the usual Banach space B := C(R,R2) of bounded continuous functions

endowed with the maximum norm ‖(φ, ψ)‖ = supξ∈R
(|φ(ξ)| + |ψ(ξ)|). For any c > c∗,

let
Sc =

{

(φ, ψ) : (φ, ψ) ∈ B, φ(ξ) ≤ φ(ξ) ≤ φ̄(ξ), ψ(ξ) ≤ ψ(ξ) ≤ ψ̄(ξ)
}

.
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Clearly, Sc is a bounded nonempty closed convex subset of B.
Define the operator F = (F1, F2) : Sc → B by

F1(φ, ψ)(ξ) := α1

∫

R

G1(y)φ(ξ − y − cτ1)dy− η1φ
2(ξ) − p1φ(ξ)ψ(ξ) + β1φ(ξ),

F2(φ, ψ)(ξ) := α2

∫

R

G2(y)ψ(ξ − y − cτ1)dy− η2ψ
2(ξ) − p2φ(ξ)ψ(ξ) + β2ψ(ξ),

where each βi is a large positive number. Then system (2)–(3) now can be rewritten
as







d1φ
′′(ξ) − cφ′(ξ) − β1φ(ξ) + F1(φ, ψ)(ξ) = 0,

d2ψ
′′(ξ) − cψ′(ξ) − β2ψ(ξ) + F2(φ, ψ)(ξ) = 0.

(4)

Let

λ11 =
c−

√

c2 + 4β1d1

2d1
, λ12 =

c+
√

c2 + 4β1d1

2d1
,

λ21 =
c−

√

c2 + 4β2d2

2d2
, λ22 =

c+
√

c2 + 4β2d2

2d2
.

Clearly,
λ11 < 0 < λ12, λ21 < 0 < λ22,

d1λ
2
1j − cλ1j − β1 = 0 and d2λ

2
2j − cλ2j − β2 = 0 for j = 1, 2.

Define the operator Q = (Q1, Q2) : Sc → B by

Q1(φ, ψ)(ξ) =
1

d1(λ12 − λ11)

(

∫ ξ

−∞

eλ11(ξ−s)F1(φ, ψ)(s)ds

+

∫ ∞

ξ

eλ12(ξ−s)F1(φ, ψ)(s)ds

)

(5)

Q2(φ, ψ)(ξ) =
1

d2(λ22 − λ21)

(

∫ ξ

−∞

eλ21(ξ−s)F2(φ, ψ)(s)ds

+

∫ ∞

ξ

eλ22(ξ−s)F2(φ, ψ)(s)ds

)

(6)

It is easily verified that the operator Q is well defined for (φ, ψ) ∈ Sc and






d1Q1(φ, ψ)′′(ξ) − cQ1(φ, ψ)′(ξ) − β1Q1(φ, ψ)(ξ) + F1(φ, ψ)(ξ) = 0,

d2Q2(φ, ψ)′′(ξ) − cQ2(φ, ψ)′(ξ) − β2Q2(φ, ψ)(ξ) + F2(φ, ψ)(ξ) = 0.

Thus the fixed of Q is the solution of (4), which is the travelling solution of (1).
We showed that (φ̄(z), ψ̄(z)) is an upper solution and (φ(z), ψ(z)) is a lower solution

of the operator Q defined by (5) and (6) in the sense that

Q1(φ̄, ψ)(ξ) ≤ φ̄(ξ), Q2(φ, ψ̄)(z) ≤ ψ̄(ξ), (7)
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Q1(φ, ψ̄)(ξ) ≥ φ(ξ), Q2(φ̄, ψ)(z) ≥ ψ(ξ). (8)

We also showed that for any (φ, ψ) ∈ Sc, Q1(φ, ψ) is nondecreasing in φ and nonin-
creasing in ψ, and Q2(φ, ψ) is nondecreasing in ψ and nonincreasing in φ. Define

(φ, ψ)(ξ) = (φ
0
, ψ

0
)(ξ), (φ̄, ψ̄)(ξ) = (φ̄0, ψ̄0)(ξ),

φ
1
(ξ) = Q1[φ0

, ψ̄0](ξ), φ̄1(ξ) = Q1[φ̄0, ψ0
](ξ),

ψ
1
(ξ) = Q2[φ̄0, ψ0

](ξ), ψ̄1(ξ) = Q2[φ0
, ψ̄0](ξ).

By (5)–(8), it follows that

(φ
0
, ψ

0
)(ξ) ≤ (φ

1
, ψ

1
)(ξ) ≤ (φ̄1, ψ̄1)(ξ) ≤ (φ̄0, ψ̄0)(ξ).

For general cases we define







φ
k+1

(ξ) = Q1[φk
, ψ̄k](ξ), φ̄k+1(ξ) = Q1[φ̄k, ψk

](ξ),

ψ
k+1

(ξ) = Q2[φ̄k, ψk
](ξ), ψ̄k+1(ξ) = Q2[φk

, ψ̄k](ξ),
(9)

for k = 0, 1, 2, .... The inductive method show that

(φ
k
, ψ

k
)(ξ) ≤ (φ

k+1
, ψ

k+1
)(ξ) ≤ (φ̄k+1, ψ̄k+1)(ξ) ≤ (φ̄k, ψ̄k)(ξ), (10)

for k = 0, 1, 2, ... and ξ ∈ R.
One can easily check that φ

k
(ξ), ψ

k
(ξ), φ̄k(ξ), and ψ̄k(ξ) equicontinuous for k =

0, 1, 2, ... and ξ ∈ R. Furthermore, for ξ ∈ R, the monotonicity of function sequences
{φ

k
(ξ)}∞k=0, {ψk

(ξ)}∞k=0, {φ̄k(ξ)}∞k=0, and {ψ̄k(ξ)}∞k=0 implies that there exist two pairs
of continuous functions (φ?, ψ

?)(ξ) and (φ?, ψ?)(ξ) such that

lim
k→∞

φ
k
(ξ) = φ?(ξ), lim

k→∞
ψ

k
(ξ) = ψ?(ξ),

lim
k→∞

φ̄k(ξ) = φ?(ξ), lim
k→∞

ψ̄k(ξ) = ψ?(ξ),

convergence uniformly for all ξ ∈ R with respect to the super norm. In fact, for given
ε > 0, by the construction of (φ̄(ξ), ψ̄(ξ)) and (φ(ξ), ψ(ξ)) there exists M(ε) > 0 such
that

sup
|ξ|>M(ε)

∣

∣φ̄(ξ) − φ(ξ) + ψ̄(ξ) − ψ(ξ)
∣

∣ < ε.

Since φ̄k(ξ), ψ̄k(ξ), φ
k
(ξ), and φ

k
(ξ) are equicontinuous, there exists N(ε) > 0 such

that for any m, n > N(ε),

max
|ξ|≤T (ε)

{

∣

∣φ̄m(ξ) − φ̄n(ξ))
∣

∣+
∣

∣

∣
φ

m
(ξ) − φ

n
(ξ))

∣

∣

∣
+
∣

∣ψ̄m(ξ) − ψ̄n(ξ))
∣

∣

+
∣

∣

∣
ψ

m
(ξ) − ψ

n
(ξ))

∣

∣

∣

}

< ε

Hence,

sup
ξ∈R

{

∣

∣φ̄m(ξ) − φ̄n(ξ))
∣

∣ +
∣

∣

∣
φ

m
(ξ) − φ

n
(ξ))

∣

∣

∣
+
∣

∣ψ̄m(ξ) − ψ̄n(ξ))
∣

∣
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+
∣

∣

∣
ψ

m
(ξ) − ψ

n
(ξ))

∣

∣

∣

}

< ε

It follows from the dominated convergence theorem and (9) that







φ?(ξ) = Q1[φ?, ψ
?](ξ), φ?(ξ) = Q1[φ

?, ψ?](ξ),

ψ?(ξ) = Q2[φ
?, ψ?](ξ), ψ

?(ξ) = Q2[φ?, ψ
?](ξ)

(11)

for all ξ ∈ R. By (10) we obtain that

(φ, ψ)(ξ) ≤ (φ?, ψ?)(ξ) ≤ (φ?, ψ?)(ξ) ≤ (φ̄, ψ̄)(ξ).

The operator Q defined by (5) and (6), and (11) show that the wave system (2)–(3)
has two traveling wave solutions (φ?, ψ

?)(ξ) and (φ?, ψ?)(ξ) between the super solution
(φ̄, ψ̄)(ξ) and the lower solution (φ, ψ)(ξ). Moreover, by the definitions of (φ̄, ψ̄)(ξ) and
(φ, ψ)(ξ) one can see that the traveling waves have the following decay rate

lim
z→−∞

φ?(z)R1(ξ) = lim
z→−∞

ψ?(z)R2(ξ) = lim
z→−∞

φ?(z)R1(ξ) = lim
z→−∞

ψ?(z)R2(ξ) = 1

with R1(ξ) = e−Λ11(c)(ξ) and R2(ξ) = e−Λ21(c)(ξ). The proof for Theorem 1 is complete.
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