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Abstract

We show the existence of two traveling wave solutions in a time-delayed pop-
ulation system with stage structure by using the cross-iteration method.

1 Introduction

This work is a sequel to [1], we continue study the existence of traveling wave solutions
for the two-species Lotka-Volterra competition model with age structure in the form

2
% — dy T4 + oy fy Gr()ult — 71,2 — y)dy — mu® — pyuv,
(1)

2
S = dg% + ag fR Ga(y)v(t — 12, 7 — y)dy — n2v? — pauv.

Here u(t,z) and v(t, z) represent densities of adult members of two species v and v at
time ¢ and point x, respectively. d; > 0 (d2 > 0) is the diffusion coefficient of the adult
population u (v). a; (a2) is made up of two factors, the per capita birth rate and the
survival rate of immature for the population u (v) during the immature stage. The
two probability kernels G; and G2 are given by

e*yz/4di(u)7'1 e*yz/4di(v)7'2
Gi(y) = —F———, G2(y) =

VaArd) T ’ VATd;y T2 '

For more details of model (1) see [1] and the references cited therein.
Model (1) has the trivial equilibrium Ey = (0, 0), the mono-culture equilibria E, =
(u*,0) and E, = (0,v*) with
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Table 1: Summary of local stability of system (1)

| Steady state | Criteria for existence | Criteria for asymptotic stability |
Ey always exists unstable
E, always exists a1p2 > QM
E, always exists Q2p1 > Q1”2
Qz2p1 < QiN20ap2 < QoM
E aipe < agny and agpr < @
+ or Qigp1 > Q1M2i1p2 > Q2M1 P2 2 201 L2

and the coexistence equilibrium E; = (e, e2) with
Q2P1 — Q172 Q1p2 — 271
L =", €= ———"—"".
P1p2 — M2 Pip2 —mmnz

E, exists if and only if aop; < a1m2 and a1pe < agng or aspy > a1z and ayps > asn.
We showed that if a1ps < agm and asp; < aing, then the unique coexistence F
is globally asymptotically stable. We summarized the stability of the equilibria in
Table 1.1. A traveling wave solution of (1) connecting Ey to F; takes the form of
u(t,z) = ¢z + ct), v(z,t) = Y(x + ct), where (¢,1) € C*(R,R?) with ¢(£) and (€)
satisfying

06" (€) — cd/(€) + o / Ga(w)b(E — y — er)dy — md*(E) — P& =0, (2)

o (§) — ¥’ () + az/R 2(Y)Y(E —y — em)dy — 129 (§) — p20 ()Y (§) =0, (3)
gg@mw(&), ¥(§)) = Ep and  lim (¢(§),9(E)) = E.

£—o0

We substitute ¢(&) = e*¢ and (&) = €¢ into the linearization equation of (2)—(3) to
obtain the characteristic equations as follows

Ai(\ €) i= di\? — eh 4 ae” AT / Gi(y)e Mdy, i=1,2.
R

Then it is easy to verify the following properties:
i A(0,¢) = o [ Gi(y)e *vdy > 0;
il limy— 00 As (A, ¢) = oo for all ¢ > 0;

i, ZA09 — 99, 5 0 and
OA; (A, ©)

S . . —Ay
9% A )\aln/RGl(y)e dy <0

for all A > 0;
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iv. lime_, o0 A;(A, ¢) = —oo for all A > 0 and A;(A,0) > 0.

By the properties of A;(A,c) we know that there exist ¢f > 0, ¢ = 1,2 such that
the following statements are valid.

i. If ¢ > ¢f, then there exist four positive numbers A;1, A2, ¢ = 1,2 (which are
independent on C) with Ail S A»L'Q such that Al (Aila C) = Ai(ArL’Q, C) =0.

ii. If ¢ < ¢f, then A;(A, ¢) > 0 for all A > 0.

ii. If ¢ = Cr, then Ail = A»L'Q; and if ¢ > Cr, then Ail < A»L'Q, Al()\,C) < 0 for all
AE (Aila A»L'Q), Al(>\, C) >0 for all A € [0, OO)\[AM, A12]

Define
¢ = max{c], 3 }.

By Liang and Zhao [2], ¢} may be viewed as the spreading speeds of species u if i = 1
and species v if ¢ = 2 in the absence of its rival. The existence of one traveling wave
solution has been studied in [1]. In this remark, we show the existence of two traveling
wave solutions by employing the cross-iteration method, which has been successfully
used in many literatures, see e.g., [1, 3, 4, 5] and the references cited therein.

Our main theorem is now in the following:

THEOREM 1. Suppose that aips < aoni, and asp; < aing in (1). Then for
¢ > ¢*, there exist two traveling wave solution (u(t, x), v(t,z)) = (¢(x + ct), (x + ct))
with

lim (95(5),1/)(5)) = (Oa O)a 51320((25(5)’1#(5)) = (615 62)5

£——o0

and
lim _ g(€)e™ ) = lim w()e’© =1,

£——o0

where A11(€) and Aoy (§) are small eigenvalues of Aj(A, ¢) and Ag(A, ¢), respectively.

2 Proofs

In [1], in order to prove the existence of traveling wave solutions for model (1), we

constructed two pairs of functions (4(£), ¥ (§)) and (¢(£), 1 (£)) as follows:
_ PPUSERS T _ eh21€ T
b(&) = { for £ < &, () = { for § < &,

e1 + ese™ for € > &, ex +eqe for € > &y,

efit — qremint for £ <&, eh2t — goemh s for £ < &,

9(5) = { el — 6167)\5, for 5 > 51, g(g) - { ey — 6267)\£ for 5 > 52,

where each ¢; > 1 is sufficiently large and A\ > 0 is sufficiently small.

We use the usual Banach space % := C(R,RR?) of bounded continuous functions
endowed with the maximum norm ||(¢, ¥)|| = supgeg(|9(€)| + [¥(§)]). For any ¢ > c*,
let

e ={(0,0) : (6, 9) € B, 8(€) < B(E) < B(E), V(&) <Y(E) <Y(6)}-
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Clearly, .7; is a bounded nonempty closed convex subset of 4.
Define the operator F' = (Fy, F3) : . — B by

Fi(¢,4)(§) := aa /R G1(y)o(§ —y — en)dy — me*(€) — p1o()Y(€) + L19(¢),

Fy(,¥)(€) := a2 /R Go(y)P(€ —y — em)dy — 29 (€) — p20(€)1(€) + B2y (),

where each §; is a large positive number. Then system (2)—(3) now can be rewritten

* { 0" (€) — b/ (€) — Bro(€) + Fa( 1) (€) =0,

do)"(&) — e’ (§) = Barp(€) + Fa(o, ¥)(€) = 0.
A 70—\/024—461611 A 7C—|— \/C2+461d1
11 — 2d1 ) 12 — 2d1 )

A 70—\/024—462612 A 7C—|— \/C2+462d2
21 — 22 — .

2ds ’ 2dy

(4)

Let

Clearly,
A1 <0< A2, Agp <0 < Ago,

di1A3; — cAiy — B = 0 and daA5; — cAgj — B2 = 0 for j = 1,2.
Define the operator @ = (Q1,Q2) : S — £ by

1

13
Qi(p,¥)(§) = m (/ eAll(gfs)Fl((bﬂ/))(S)dS

v [T IR o 0a) 6)

1

3
Q2(0,9)(&) = d20as — 1) (/ A E) Py (¢, ) (s)ds

b [T e o)) (6)

It is easily verified that the operator @ is well defined for (¢, ) € ., and
{ d1Q1(8,¥)"(€) — cQ1(9, %) (&) — B1Q1 (¢, ¥)(§) + F1(¢, ¥)(§) =0,

d2Q2(9,¥)"(§) — cQ2(d,1)' (§) — F2Q2(9, ¥)(§) + Fa(, ¥)(&) = 0.
Thus the fixed of @ is the solution of (4), which is the travelling solution of (1).

We showed that (¢(z),(2)) is an upper solution and (¢(z), % (z)) is a lower solution

of the operator @ defined by (5) and (6) in the sense that
Qu(d, ¥)(€) <€), Q2(¢,9)(2) < ¥(€), (7)
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Q1(,¥)(§) = 6(6), Q2(4,¥)(2) = ¥(€). (8)

We also showed that for any (¢, ) € %, Q1(¢, 1) is nondecreasing in ¢ and nonin-
creasing in ¥, and Q2(¢, 1) is nondecreasing in ¢ and nonincreasing in ¢. Define

(@, 9)(€) = (&, L) (©)s (,9)(€) = (Do, %0)(6),

6,(6) = Quldy, Bol(€), H1(6) = o, 1, )(€),
ﬂl (5) = QQ[(EOa ﬂo](f)a J)l (5) = Q2[905 J)O](g)
By (5)—(8), it follows that
(02 0,)(6) < (61, 9,)(E) < (B1, T)(E) < (Fo, Po)(E):

For general cases we define

{ 9k+1(§) = Ql[@ka J)k](g)a ngﬂLl(g) = Ql[(gka gk](é.%

V1 (6) = Qaldi 1), Prsa(€) = Qald,, Tl ©),
for k=0,1,2,.... The inductive method show that

(0,0 < (0, 110, )O) < (Brrr, Brsn)(©) < (B, Br)(E), (10)

for k=0,1,2,...and £ € R. B B
One can easily check that ¢, (£), ¥, (§), ¢x(§), and ¥, (£) equicontinuous for k =
0,1,2,... and £ € R. Furthermore, for ¢ € R, the monotonicity of function sequences

{8, (O} i0, {2, (o {6r()}, and {1(€)}2, implies that there exist two pairs
of continuous functions (¢4, ¥*)(€) and (¢*, 1¥,)(§) such that

klinéofk(g) = (&), klggoﬂk(ﬁ) =, (§),
Jim 64(6) = ¢°(0). lim $u(6) = ¥ (&)

convergence uniformly for all £ € R with respect to the super norm. In fact, for given

€ > 0, by the construction of (¢(£),¥(§)) and (4(€),9(£)) there exists M(e) > 0 such
that

sup |6(€) — 9(€) + ¥(§) — v(€)| <e.

1€1>M (e)

Since ¢ (&), Yr(£), ¢, (£), and ¢, (&) are equicontinuous, there exists N(g) > 0 such
that for any m,n > N (),

max {[6m(€) = Bn(©)] +[0,,(6) = 8, )] + [ (©) = u ()

[€I<T(¢)
[0, © v, @)} <

Hence,

sup { |6 (€) = Bn€)] + [2,,€) = £,(O)] + [ (©) — Bn(©)]
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+[e,.© - v, ©)|} <<

—m

It follows from the dominated convergence theorem and (9) that

9+(8) = Qu[p, ¥*](€), ¢*(&) = Qu[o™, ¥](8),

Pu(§) = Qa[0", ¥u](€), ¥ (§) = Qa[o4, ¥*1(E)
for all £ € R. By (10) we obtain that

(@, 9)(E) < (8x,9)(€) < (6%, 9")(€) < (6, 9)(€)-

The operator @ defined by (5) and (6), and (11) show that the wave system (2)—(3)
has two traveling wave solutions (¢, ¥*)(§) and (¢*, % )(§) between the super solution
(¢,%)(§) and the lower solution (¢, v)(§). Moreover, by the definitions of (¢,)(§) and
(¢,9)(§) one can see that the traveling waves have the following decay rate

lm_ . (R = _lim_.()Ra(6) = _lim_¢"(IRu(E) = lim v (:)Ra(€) = 1

with R1(€) = e 219 and Ry(€) = e 221(9)©), The proof for Theorem 1 is complete.
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