Coefficient Bounds For Certain Subclasses Of Analytic Functions*

Ahmad Zireh ${ }^{\dagger}$, Saideh Hajiparvaneh ${ }^{\ddagger}$

Received 30 July 2016

Abstract

In this paper, we introduce and investigate a subclass of analytic and biunivalent functions in the open unit disk \mathbb{U}. Furthermore, we find upper bounds for the second and third coefficients for functions in this subclass. The results presented in this paper generalize and improve some recent works.

1 Introduction

Let \mathcal{A} be a class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Also \mathcal{S} denote the class of functions $f \in \mathcal{A}$ which are univalent in \mathbb{U}.

The Koebe one-quarter Theorem [5] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$. So every function $f \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1).

Determination of the bounds for the coefficients a_{n} is an important problem in geometric function theory as they give information about the geometric properties of

[^0]these functions. Recently there are interests to study the bi-univalent functions class Σ and obtain non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. For a brief history and interesting examples of functions in the class Σ, see [12] (also [1, 3, 4, 13]). Many interesting examples of functions which are in (or which are not in) the class Σ, together with various other properties and characteristics associated with the bi-univalent function class Σ (including also several open problems and conjectures involving estimates on the Taylor Maclaurin coefficients of functions in $\Sigma)$, can be found in recent literatures $[2,7,9,10,11,15]$. The coefficient estimate problem i.e. bound of $\left|a_{n}\right|(n \in \mathbb{N}-\{2,3\})$ for each $f \in \Sigma$ is still an open problem. More recently Frasin [6] introduced the following two subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in each of these subclasses.

DEFINITION 1 ([6]). Let $0<\eta \leq 1$ and $\lambda \geq 0$. A function $f(z)$ given by (1) is said to be in the class $H_{\Sigma}(\eta, \lambda)$ if the following conditions are satisfied

$$
f \in \Sigma, \quad\left|\arg \left(f^{\prime}(z)+\lambda z f^{\prime \prime}(z)\right)\right|<\frac{\eta \pi}{2}, \quad \text { and }\left|\arg \left(g^{\prime}(w)+\lambda w g^{\prime \prime}(w)\right)\right|<\frac{\eta \pi}{2}
$$

where the function g is given by (2).

THEOREM $1([6])$. Let $f(z)$ given by (1) be in the class $H_{\Sigma}(\eta, \lambda)$. Then

$$
\left|a_{2}\right| \leq \frac{2 \eta}{\sqrt{2(\eta+2)+4 \lambda(\eta+\lambda+2-\lambda \eta)}} \text { and }\left|a_{3}\right| \leq \frac{\eta^{2}}{(1+\lambda)^{2}}+\frac{2 \eta}{3(1+2 \lambda)}
$$

DEFINITION 2 ([6]). Let $0 \leq \beta<1$ and $\lambda \geq 0$. A function $f(z)$ given by (1) is said to be in the class $H_{\Sigma}(\beta, \lambda)$ if the following conditions are satisfied

$$
f \in \Sigma, \mathfrak{R e}\left(f^{\prime}(z)+\lambda z f^{\prime \prime}(z)\right)>\beta \text { and } \mathfrak{R e}\left(g^{\prime}(w)+\lambda w g^{\prime \prime}(w)\right)>\beta
$$

where the function g is given by (2).

THEOREM $2([6])$. Let $f(z)$ given by (1) be in the class $H_{\Sigma}(\beta, \lambda)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{3(1+2 \lambda)}} \text { and }\left|a_{3}\right| \leq \frac{(1-\beta)^{2}}{(1+\lambda)^{2}}+\frac{2(1-\beta)}{3(1+2 \lambda)}
$$

The purpose of our study is to investigate the bi-univalent function class $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$ introduced here in Definition 3 and derive coefficient estimates on the first two TaylorMaclaurin coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for a function $f \in \mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$ given by (1). Our results generalize and improve those in related works of several earlier authors.

2 The Subclass $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$

In this section, we introduce and investigate the general subclass $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$.
DEFINITION 3 . Let the analytic functions $h, p: \mathbb{U} \rightarrow \mathbb{C}$ satisfying that

$$
\min \{\mathfrak{R e}(h(z)), \mathfrak{R e}(p(z))\}>0 \quad(z \in \mathbb{U}) \text { and } h(0)=p(0)=1 .
$$

Let $\alpha \geqslant 0, \lambda \geqslant 0$ and $\gamma \in \mathbb{C} \backslash\{0\}$. A function $f \in \mathcal{A}$ given by (1) is said to be in the class $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$ if the following conditions are satisfied

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[(1-\alpha+2 \lambda) \frac{f(z)}{z}+(\alpha-2 \lambda) f^{\prime}(z)+\lambda z f^{\prime \prime}(z)-1\right] \in h(\mathbb{U}) \quad(z \in \mathbb{U}) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[(1-\alpha+2 \lambda) \frac{g(w)}{w}+(\alpha-2 \lambda) g^{\prime}(w)+\lambda w g^{\prime \prime}(w)-1\right] \in p(\mathbb{U}) \quad(w \in \mathbb{U}) \tag{4}
\end{equation*}
$$

where the function g is defined by (2).
REMARK 1. There are many choices of h and p which would provide interesting subclasses of class $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$. For example, if we take

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\eta} \quad(0<\eta \leq 1, \alpha \geqslant 0, \lambda \geqslant 0, \gamma \in \mathbb{C} \backslash\{0\}, z \in U),
$$

it is easy to verify that the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 3. If $f \in \mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$, then $f \in \Sigma$,

$$
\left|\arg \left(1+\frac{1}{\gamma}\left[(1-\alpha+2 \lambda) \frac{f(z)}{z}+(\alpha-2 \lambda) f^{\prime}(z)+\lambda z f^{\prime \prime}(z)-1\right]\right)\right|<\frac{\eta \pi}{2} \quad(z \in \mathbb{U}),
$$

and

$$
\left|\arg \left(1+\frac{1}{\gamma}\left[(1-\alpha+2 \lambda) \frac{g(w)}{w}+(\alpha-2 \lambda) g^{\prime}(w)+\lambda w g^{\prime \prime}(w)-1\right]\right)\right|<\frac{\eta \pi}{2} \quad(w \in \mathbb{U}) .
$$

Therefore in this case we have the following items:

1. For $\gamma=1, \alpha=1+2 \lambda$, the class $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$ reduce to class $H_{\Sigma}(\eta, \lambda)$ in Definition 1.
2. For $\gamma=1, \lambda=0$, the class $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$ reduce to class $B_{\Sigma}(\eta, \alpha)$ studied by Frasin and Aouf [7, Definition 2.1].
3. For $\gamma=1, \lambda=0, \alpha=1$, the class $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$ reduce to class H_{Σ}^{η} which studied by Srivastava [12, Definition 1].

If we take

$$
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1, \alpha \geqslant 0, \lambda \geqslant 0, \gamma \in \mathbb{C} \backslash\{0\}, z \in U),
$$

then the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 3. If $f \in \mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$, then
$f \in \Sigma, \quad \mathfrak{R e}\left(1+\frac{1}{\gamma}\left[(1-\alpha+2 \lambda) \frac{f(z)}{z}+(\alpha-2 \lambda) f^{\prime}(z)+\lambda z f^{\prime \prime}(z)-1\right]\right)>\beta \quad(z \in \mathbb{U})$,
and

$$
\mathfrak{R e}\left(1+\frac{1}{\gamma}\left[(1-\alpha+2 \lambda) \frac{g(w)}{w}+(\alpha-2 \lambda) g^{\prime}(w)+\lambda w g^{\prime \prime}(w)-1\right]\right)>\beta, \quad(w \in \mathbb{U})
$$

Therefore in this case we have the following items:

1. For $\gamma=1$ and $\alpha=1+2 \lambda$, the class $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$ reduce to class $H_{\Sigma}(\beta, \lambda)$ in Definition 2.
2. For $\gamma=1$ and $\lambda=0$, the class $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$ reduce to class $B_{\Sigma}(\beta, \alpha)$ studied by Frasin and Aouf [7, Definition 3.1].
3. For $\gamma=1, \lambda=0$ and $\alpha=1$, the class $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$ reduce to class $H_{\Sigma}(\beta)$ which studied by Srivastava [12, Definition 2].

3 Coefficient Estimates

Now, we obtain the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for subclass $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$.
THEOREM 3. Let $f(z)$ given by (1) be in the class $\mathcal{W}_{\Sigma}^{h, p}(\gamma, \lambda, \alpha)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{|\gamma|^{2}\left(\left|h^{\prime}\right|^{2}+\left|p^{\prime}\right|^{2}\right)}{2(1+\alpha)^{2}}}, \sqrt{\frac{|\gamma|\left(\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|\right)}{4(1+2 \alpha+2 \lambda)}}\right\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{|\gamma|^{2}\left(\left|h^{\prime}\right|^{2}+\left|p^{\prime}\right|^{2}\right)}{2(1+\alpha)^{2}}+\frac{|\gamma|\left(\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|\right)}{4(1+2 \alpha+2 \lambda)}, \frac{|\gamma|\left|h^{\prime \prime}(0)\right|}{2(1+2 \alpha+2 \lambda)}\right\} \tag{6}
\end{equation*}
$$

PROOF. First of all, we write the argument inequalities in (3) and (4) in their equivalent forms as follows

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[(1-\alpha+2 \lambda) \frac{f(z)}{z}+(\alpha-2 \lambda) f^{\prime}(z)+\lambda z f^{\prime \prime}(z)-1\right]=h(z) \quad(z \in \mathbb{U}) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[(1-\alpha+2 \lambda) \frac{g(w)}{w}+(\alpha-2 \lambda) g^{\prime}(w)+\lambda w g^{\prime \prime}(w)-1\right]=p(w) \quad(w \in \mathbb{U}) \tag{8}
\end{equation*}
$$

respectively, where functions h and p satisfy the conditions of Definition 3. Also, the functions h and p have the following Taylor-Maclaurin series expansions

$$
\begin{equation*}
h(z)=1+h_{1} z+h_{2} z^{2}+h_{3} z^{3}+\cdots, \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
p(w)=1+p_{1} w+p_{2} w^{2}+p_{3} w^{3}+\cdots \tag{10}
\end{equation*}
$$

Now, upon substituting from (9) and (10) into (7) and (8), respectively, and equating the coefficients, we get

$$
\begin{gather*}
(1+\alpha) a_{2}=\gamma h_{1} \tag{11}\\
(1+2 \alpha+2 \lambda) a_{3}=\gamma h_{2} \tag{12}\\
-(1+\alpha) a_{2}=\gamma p_{1} \tag{13}
\end{gather*}
$$

and

$$
\begin{equation*}
2(1+2 \alpha+2 \lambda) a_{2}^{2}-(1+2 \alpha+2 \lambda) a_{3}=\gamma p_{2} \tag{14}
\end{equation*}
$$

From (11) and (13), we get

$$
\begin{equation*}
h_{1}=-p_{1} \text { and } 2(1+\alpha)^{2} a_{2}^{2}=\gamma^{2}\left(h_{1}^{2}+p_{1}^{2}\right) \tag{15}
\end{equation*}
$$

Adding (12) and (14), we get

$$
\begin{equation*}
2(1+2 \alpha+2 \lambda) a_{2}^{2}=\gamma\left(p_{2}+h_{2}\right) \tag{16}
\end{equation*}
$$

Therefore, from (15) and (16), we have

$$
\begin{equation*}
a_{2}^{2}=\frac{\gamma^{2}\left(h_{1}^{2}+p_{1}^{2}\right)}{2(1+\alpha)^{2}} \quad \text { and } \quad a_{2}^{2}=\frac{\gamma\left(p_{2}+h_{2}\right)}{2(1+2 \alpha+2 \lambda)} \tag{17}
\end{equation*}
$$

respectively. Therefore, we find from the equations (17), that

$$
\left|a_{2}\right|^{2} \leq \frac{|\gamma|^{2}\left(\left|h^{\prime}\right|^{2}+\left|p^{\prime}\right|^{2}\right)}{2(1+\alpha)^{2}} \text { and }\left|a_{2}\right|^{2} \leq \frac{|\gamma|\left(\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|\right)}{4(1+2 \alpha+2 \lambda)}
$$

respectively. So we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (5).
Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, by subtracting (14) from (12), we get:

$$
\begin{equation*}
2(1+2 \alpha+2 \lambda) a_{3}-2(1+2 \alpha+2 \lambda) a_{2}^{2}=\gamma\left(h_{2}-p_{2}\right) \tag{18}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (17) into (18), it follows that

$$
a_{3}=\frac{\gamma^{2}\left(h_{1}^{2}+p_{1}^{2}\right)}{2(1+\alpha)^{2}}+\frac{\gamma\left(h_{2}-p_{2}\right)}{2(1+2 \alpha+2 \lambda)} .
$$

Therefore, we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\gamma|^{2}\left(\left|h^{\prime}\right|^{2}+\left|p^{\prime}\right|^{2}\right)}{2(1+\alpha)^{2}}+\frac{|\gamma|\left(\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|\right)}{4(1+2 \alpha+2 \lambda)} \tag{19}
\end{equation*}
$$

On the other hand, upon substituting the value of a_{2}^{2} from (17) into (18), it follows that

$$
a_{3}=\frac{\gamma\left(p_{2}+h_{2}\right)}{2(1+2 \alpha+2 \lambda)}+\frac{\gamma\left(h_{2}-p_{2}\right)}{2(1+2 \alpha+2 \lambda)}=\frac{\gamma h_{2}}{(1+2 \alpha+2 \lambda)}
$$

Therefore, we get:

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\gamma|\left|h^{\prime \prime}(0)\right|}{2(1+2 \alpha+2 \lambda)} \tag{20}
\end{equation*}
$$

So we obtain from (19) and (20) the desired estimate on the coefficient $\left|a_{3}\right|$ as asserted in (6). This completes the proof.

4 Conclusions

If we take

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\eta} \quad(0<\eta \leq 1, z \in \mathbb{U})
$$

in Theorem 3, we conclude the following result.
COROLLARY 1. Let the function $f(z)$ given by (1) be in the class $\mathcal{W}_{\Sigma}^{\eta}(\gamma, \lambda, \alpha)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2|\gamma| \eta}{\alpha+1}, \sqrt{\frac{2|\gamma|}{1+2 \alpha+2 \lambda}} \eta\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2|\gamma| \eta^{2}}{1+2 \alpha+2 \lambda}
$$

By setting $\gamma=1$ and $\alpha=1+2 \lambda$ in Corollary 1, we get the following corollary.
COROLLARY 2. Let the function f given by (1) be in the class $H_{\Sigma}(\eta, \lambda)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{\eta}{\lambda+1}, \sqrt{\frac{2}{3(2 \lambda+1)}} \eta\right\} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{2 \eta^{2}}{3(2 \lambda+1)}
$$

REMARK 2. Corollary 2 is a refinement of Theorem 1.
If we set $\lambda=0$ and $\gamma=1$ in Corollary 1 , then we have the following corollary.

COROLLARY 3. Let the function f given by (1) be in the class $B_{\Sigma}(\eta, \alpha)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \eta}{\alpha+1}, \sqrt{\frac{2}{2 \alpha+1}} \eta\right\} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{2 \eta^{2}}{2 \alpha+1}
$$

REMARK 3. Corollary 3 provides an improvement of a result which obtained by Frasin and Aouf [7, Theorem 2.2].

If we take $\alpha=1$ in Corollary 3 , we get
COROLLARY 4. Let the function f given by (1) be in the class H_{Σ}^{η}. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2}{3}} \eta \quad \text { and } \quad\left|a_{3}\right| \leq \frac{2}{3} \eta^{2}
$$

REMARK 4. Corollary 4 provides a refinement of a result which obtained by Srivastava [12, Theorem 1].

By setting

$$
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1, z \in \mathbb{U})
$$

in Theorem 3, we deduce the following result.

COROLLARY 5. Let the function f given by (1) be in the class $\mathcal{W}_{\Sigma}(\gamma, \lambda, \alpha, \beta)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2|\gamma|(1-\beta)}{\alpha+1}, \sqrt{\frac{2|\gamma|(1-\beta)}{1+2 \alpha+2 \lambda}}\right\} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{2|\gamma|(1-\beta)}{1+2 \alpha+2 \lambda}
$$

If we take $\gamma=1$ and $\alpha=1+2 \lambda$ in Corollary 5 , we get
COROLLARY 6. Let the function f given by (1) be in the class $H_{\Sigma}(\beta, \lambda)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{(1-\beta)}{\lambda+1}, \sqrt{\frac{2(1-\beta)}{3(2 \lambda+1)}}\right\} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{2(1-\beta)}{3(2 \lambda+1)}
$$

REMARK 5. Corollary 6 is a refinement of Theorem 2.

If we set $\lambda=0$ and $\gamma=1$ in Corollary 5 , then we have the following corollary.

COROLLARY 7. Let the function f given by (1) be in the class $B_{\Sigma}(\beta, \alpha)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{\alpha+1}, \sqrt{\frac{2(1-\beta)}{2 \alpha+1}}\right\} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{2(1-\beta)}{2 \alpha+1}
$$

REMARK 6. Corollary 7 provides a refinement of a result which obtained by Frasin and Aouf [7, Theorem 3.2].

If we take $\alpha=1$ in Corollary 7, then we get
COROLLARY 8. Let the function f given by (1) be in the class $H_{\Sigma}(\beta)$. Then

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{\frac{2(1-\beta)}{3}} & \text { for } 0 \leq \beta \leq \frac{1}{3}, \quad \text { and } \quad\left|a_{3}\right| \leq \frac{2(1-\beta)}{3} \\ (1-\beta), & \text { for } \frac{1}{3} \leq \beta<1,\end{cases}
$$

REMARK 7. Corollary 8 provides an improvement of a result which obtained by Srivastava [12, Theorem 2].

Acknowledgments. The authors wish to thank the referee, for the careful reading of the paper and for the helpful suggestions and comments.

References

[1] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions. Mathematical analysis and its applications (Kuwait, 1985), 53-60, KFAS Proc. Ser., 3, Pergamon, Oxford, 1988.
[2] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad. J. Math., 43(2013), 59-65.
[3] M. Caglar, H. Orhan and N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27(2013), 1165-1171.
[4] E. Deniz, Certain subclass of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2(2013), 49-60.
[5] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[6] B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., 43(2014), 383-389.
[7] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
[8] C. Y. Gao and S. Q. Zhou, Certain subclass of starlike functions, Appl. Math. Comput., 187(2007), 176-182.
[9] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Panamer. Math. J., 22(2012), 15-26.
[10] S. Hajiparvaneh and A. Zireh, Coefficient bounds for certain subclasses of analytic and bi-univalent functions, Ann. Acad. Rom. Sci. Ser. Math. Appl., 8(2016), 133144.
[11] S. Hajiparvaneh and A. Zireh, Coefficient estimates for subclass of analytic and bi-univalent functions defined by differential operator, Tbilisi Math. J., 10(2017), 91-102.
[12] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
[13] H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(2013), 831842.
[14] Q. H. Xu, Y. -C. Gui and H. M. Srivastava, Coefficient estimates for a Certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990994.
[15] Q. H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(2012), 11461-11465.

[^0]: *Mathematics Subject Classifications: 30C45, 30C50.
 ${ }^{\dagger}$ Corresponding author, Department of Mathematics, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran
 \ddagger Department of Mathematics, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran

