Uniqueness Of Entire Functions Of Certain Difference Polynomials Sharing A Small Function *

Harina Pandit Waghamore ${ }^{\dagger}$, Sangeetha Anand ${ }^{\ddagger}$

Received 16 June 2016

Abstract

In this paper, we study the uniqueness problems of difference polynomials of entire functions sharing a small function α, using the concept of weakly weighted sharing and relaxed weighted sharing. Our results extend and generalise the results due to Pulak Sahoo and Himadri Karmakar [12].

1 Introduction and Main Results

In this paper, we mainly study the uniqueness of entire functions of certain difference polynomials sharing a small function. It is assumed that the reader is familiar with the standard notations of Nevanlinna theory such as $T(r, f), m(r, f), N(r, f), \bar{N}(r, f)$, $S(r, f)$ and so on (see $[4,7,14]$). A meromorphic function f means meromorphic in the whole complex plane. If no poles occur, then f is called an entire function. We say that the meromorphic function $\alpha(\not \equiv 0, \infty)$ is a small function of f, if $T(r, \alpha)=S(r, f)$.

Let k be a positive integer. Set $E(a, f)=\{z: f(z)-a=0\}$, where a zero point with multiplicity k is counted k times in the set. If these zero points are counted only once, then we denote the set by $\bar{E}(a, f)$. Let f and g be two non-constant meromorphic functions. If $E(a, f)=E(a, g)$, then we say that f and g share the value $a \mathrm{CM}$; if $\bar{E}(a, f)=\bar{E}(a, g)$, then we say that f and g share the value $a \mathrm{IM}$. We denote by $E_{k)}(a, f)$ the set of all a-points of f with multiplicities not exceeding k, where an a point is counted according to its multiplicity. Also we denote by $\bar{E}_{k)}(a, f)$ the set of distinct a-points of f with multiplicities not greater than k. We denote order of f by $\rho(f)$ (see $[7,14]$). We now explain the following definitions.

DEFINITION $1([6])$. Let $a \in \mathbb{C} \cup\{\infty\}$. We denote by $N(r, a ; f \mid=1)$ the counting function of simple a-points of f. For a positive integer k, we denote by $N(r, a ; f \mid \leq k)$ the counting function of those a-points of f (counted with proper multiplicities) whose multiplicities are not greater than k. By $\bar{N}(r, a ; f \mid \leq k)$ we denote the corresponding reduced counting function. Analogously, we can define $N(r, a ; f \mid \geq k)$ and $\bar{N}(r, a ; f \mid \geq$ $k)$.

[^0]DEFINITION 2 ([5]). Let k be a positive integer or infinity. We denote by $N_{k}(r, a ; f)$ the counting function of a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and k times if $m>k$. Then

$$
N_{k}(r, a ; f)=\bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geq 2)+\cdots+\bar{N}(r, a ; f \mid \geq k)
$$

Clearly $N_{1}(r, a ; f)=\bar{N}(r, a ; f)$.
Let $N_{E}(r, a ; f, g)\left(\bar{N}_{E}(r, a ; f, g)\right)$ be the counting function (reduced counting function) of all common zeros of $f-a$ and $g-a$ with the same multiplicities and $N_{0}(r, a ; f, g)$ $\left(\bar{N}_{0}(r, a ; f, g)\right)$ the counting function (reduced counting function) of all common zeros of $f-a$ and $g-a$ ignoring multiplicities. If

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{E}(r, a ; f, g)=S(r, f)+S(r, g),
$$

then we say that f and g share a "CM". On the other hand, if

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{0}(r, a ; f, g)=S(r, f)+S(r, g)
$$

then we say that f and g share a "IM".
DEFINITION 3 ([8]). Let f and g share a "IM" and k be a positive integer or infinity. $\bar{N}_{k)}^{E}(r, a ; f, g)$ denotes the reduced counting function of those a-points of f whose multiplicities are equal to the corresponding a-points of g and both of their multiplicities are not greater than $k . \bar{N}_{(k}^{0}(r, a ; f, g)$ denotes the reduced counting function of those a-points of f which are a-points of g and both of their multiplicities are not less than k.

The following is the definition of weakly weighted sharing which is a scaling between sharing IM and sharing CM.

DEFINITION 4 ([8]). For $a \in \mathbb{C} \cup\{\infty\}$, if k is a positive integer or infinity and

$$
\begin{gathered}
\bar{N}(r, a ; f \mid \leq k)-\bar{N}_{k)}^{E}(r, a ; f, g)=S(r, f), \\
\bar{N}(r, a ; g \mid \leq k)-\bar{N}_{k)}^{E}(r, a ; f, g)=S(r, g), \\
\bar{N}(r, a ; f \mid \geq k+1)-\bar{N}_{(k+1}^{0}(r, a ; f, g)=S(r, f), \\
\bar{N}(r, a ; g \mid \geq k+1)-\bar{N}_{(k+1}^{0}(r, a ; f, g)=S(r, g),
\end{gathered}
$$

or if $k=0$ and

$$
\bar{N}(r, a ; f)-\bar{N}_{0}(r, a ; f, g)=S(r, f), \quad \bar{N}(r, a ; g)-\bar{N}_{0}(r, a ; f, g)=S(r, g)
$$

then we say that f and g weakly share a with weight k. Here, we write f, g share " (a, k) " to mean that f, g weakly share a with weight k.

The following is the definition of relaxed weighted sharing, weaker than weakly weighted sharing.

DEFINITION 5 ([1]). We denote by $\bar{N}(r, a ; f|=p ; g|=q)$ the reduced counting function of common a-points of f and g with multiplicities p and q respectively.

DEFINITION 6 ([1]). Let f, g share a "IM". Also let k be a positive integer or infinity and $a \in \mathbb{C} \cup\{\infty\}$. If for $p \neq q$,

$$
\sum_{p, q \leq k} \bar{N}(r, a ; f|=p ; g|=q)=S(r)
$$

then we say that f and g share a with weight k in a relaxed manner. Here we write f and g share $(a, k)^{*}$ to mean that f and g share a with weight k in a relaxed manner.

In recent years, there has been an increasing interest in studying difference equations in the complex plane.

In 2014, C. Meng [10] proved the following results using the concept of weakly weighted sharing and relaxed weighted sharing.

THEOREM A. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0, \infty)$ be a small function with respect to both f and g. Suppose that c is a non-zero complex constant and $n \geq 7$ is an integer. If $f^{n}(z)(f(z)-1) f(z+c)$ and $g^{n}(z)(g(z)-1) g(z+c)$ share " $(\alpha, 2)$ ", then $f=g$.

THEOREM B. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0, \infty)$ be a small function with respect to both f and g. Suppose that c is a non-zero complex constant and $n \geq 10$ is an integer. If $f^{n}(z)(f(z)-1) f(z+c)$ and $g^{n}(z)(g(z)-1) g(z+c)$ share $(\alpha, 2)^{*}$, then $f=g$.

THEOREM C. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0, \infty)$ be a small function with respect to both f and g. Suppose that c is a non-zero complex constant and $n \geq 16$ is an integer. If

$$
\bar{E}_{2)}\left(\alpha(z), f^{n}(z)(f(z)-1) f(z+c)\right)=\bar{E}_{2)}\left(\alpha(z), g^{n}(z)(g(z)-1) g(z+c)\right)
$$

then $f=g$.
Recently, P. Sahoo [11] generalised the above theorems and obtained the following results.

THEOREM D. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0, \infty)$ be a small function with respect to both f and g. Suppose that c is a non-zero complex constant, n and $m(\geq 2)$ are integers satisfying $n+m \geq 10$. If
$f^{n}(z)(f(z)-1)^{m} f(z+c)$ and $g^{n}(z)(g(z)-1)^{m} g(z+c)$ share " $(\alpha, 2)$ ", then either $f=g$ or f and g satisfy the algebraic equation $R(f, g)=0$, where $R(f, g)$ is given by

$$
R\left(w_{1}, w_{2}\right)=w_{1}^{n}\left(w_{1}-1\right)^{m} w_{1}(z+c)-w_{2}^{n}\left(w_{2}-1\right)^{m} w_{2}(z+c)
$$

THEOREM E. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0, \infty)$ be a small function with respect to both f and g. Suppose that c is a non-zero complex constant, n and $m(\geq 2)$ are integers satisfying $n+m \geq 13$. If $f^{n}(z)(f(z)-1)^{m} f(z+c)$ and $g^{n}(z)(g(z)-1)^{m} g(z+c)$ share $(\alpha, 2)^{*}$, then the conclusions of Theorem D hold.

THEOREM F. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0, \infty)$ be a small function with respect to both f and g. Suppose that c is a non-zero complex constant, n and $m(\geq 2)$ are integers satisfying $n+m \geq 19$. If $\bar{E}_{2)}\left(\alpha(z), f^{n}(z)(f(z)-1)^{m} f(z+c)\right)=\bar{E}_{2)}\left(\alpha(z), g^{n}(z)(g(z)-1)^{m} g(z+c)\right)$, then the conclusions of Theorem D hold.

Recently, P. Sahoo and H. Karmakar [12] extended the above theorems and proved the following results.

THEOREM G. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0)$ be a small function of both f and g. Suppose that c is a non-zero complex constant, $n(\geq 1), m(\geq 1)$ and $k(\geq 0)$ are integers satisfying $n \geq 2 k+m+6$ when $m \leq k+1$ and $n \geq 4 k-m+10$ when $m>k+1$. If $\left(f^{n}(z)(f(z)-1)^{m} f(z+c)\right)^{(k)}$ and $\left(g^{n}(z)(g(z)-1)^{m} g(z+c)\right)^{(k)}$ share " $(\alpha, 2)$ ", then either $f=g$ or f and g satisfy the algebraic equation $R(f, g)=0$, where $R(f, g)$ is given by

$$
R\left(w_{1}, w_{2}\right)=w_{1}^{n}\left(w_{1}-1\right)^{m} w_{1}(z+c)-w_{2}^{n}\left(w_{2}-1\right)^{m} w_{2}(z+c)
$$

THEOREM H. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0)$ be a small function of both f and g. Suppose that c is a non-zero complex constant, $n(\geq 1), m(\geq 1)$ and $k(\geq 0)$ are integers satisfying $n \geq 3 k+2 m+8$ when $m \leq k+1$ and $n \geq 6 k-m+13$ when $m>k+1$. If $\left(f^{n}(z)(f(z)-1)^{m} f(z+c)\right)^{(k)}$ and $\left(g^{n}(z)(g(z)-1)^{m} g(z+c)\right)^{(k)}$ share $(\alpha, 2)^{*}$, then the conclusions of Theorem G hold.

THEOREM I. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0)$ be a small function of both f and g. Suppose that c is a non-zero complex constant, $n(\geq 1), m(\geq 1)$ and $k(\geq 0)$ are integers satisfying $n \geq 5 k+4 m+12$ when $m \leq k+1$ and $n \geq 10 k-m+19$ when $m>k+1$. If $\bar{E}_{2)}\left(\alpha(z),\left(f^{n}(z)(f(z)-1)^{m} f(z+\right.\right.$ $\left.c))^{(k)}\right)=\bar{E}_{2)}\left(\alpha(z),\left(g^{n}(z)(g(z)-1)^{m} g(z+c)\right)^{(k)}\right)$, then the conclusions of Theorem G hold.

In this paper, we assume $c_{j} \in \mathbb{C} \backslash\{0\}(j=1,2, \ldots, d)$ are constants, $n(\geq 1), m(\geq 1)$ and $k(\geq 0)$ are integers, $s_{j}(j=1,2, \ldots, d)$ are non-negative integers, $\lambda=\sum_{j=1}^{d} s_{j}=$
$s_{1}+s_{2}+\cdots+s_{d}$. With these assumptions, we study the uniqueness problems of difference polynomials sharing a small function of more general form

$$
\left(f(z)^{n}(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}
$$

and hence obtain the following theorems which extends and generalises the results obtained by P. Sahoo and H. Karmakar [12].

THEOREM 1. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0)$ be a small function of both f and g. Let $c_{j}(j=1,2, \ldots, d)$ be complex constants, $s_{j}(j=1,2, \ldots, d)$ be non-negative integers. Suppose $n(\geq 1), m(\geq 1)$ and k (≥ 0) are integers satisfying $n \geq 2 k+m+\lambda+5$ when $m \leq k+1$ and $n \geq 4 k-m+\lambda+9$ when $m>k+1$. If

$$
\left(f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)} \text { and }\left(g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}
$$

share " $(\alpha, 2)$ ", then either $f=g$ or f and g satisfy the algebraic equation $R(f, g)=0$, where $R(f, g)$ is given by

$$
R\left(w_{1}, w_{2}\right)=w_{1}^{n}\left(w_{1}-1\right)^{m} \prod_{j=1}^{d} w_{1}\left(z+c_{j}\right)^{s_{j}}-w_{2}^{n}\left(w_{2}-1\right)^{m} \prod_{j=1}^{d} w_{2}\left(z+c_{j}\right)^{s_{j}}
$$

THEOREM 2. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0)$ be a small function of both f and g. Let $c_{j}(j=1,2, \ldots, d)$ be complex constants, $s_{j}(j=1,2, \ldots, d)$ be non-negative integers. Suppose $n(\geq 1), m(\geq 1)$ and k (≥ 0) are integers satisfying $n \geq 3 k+2 m+2 \lambda+6$ when $m \leq k+1$ and $n \geq 6 k-m+2 \lambda+11$ when $m>k+1$. If

$$
\left(f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)} \text { and }\left(g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}
$$

share $(\alpha, 2)^{*}$, then the conclusions of Theorem 1 hold.
THEOREM 3. Let f and g be two transcendental entire functions of finite order and $\alpha(\not \equiv 0)$ be a small function of both f and g. Let $c_{j}(j=1,2, \ldots, d)$ be complex constants, $s_{j}(j=1,2, \ldots, d)$ be non-negative integers. Suppose $n(\geq 1), m(\geq 1)$ and $k(\geq 0)$ are integers satisfying $n \geq 5 k+4 m+4 \lambda+8$ when $m \leq k+1$ and $n \geq 10 k-m+4 \lambda+15$ when $m>k+1$. If

$$
\begin{aligned}
& \bar{E}_{2)}\left(\alpha(z),\left(f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}\right) \\
= & \bar{E}_{2)}\left(\alpha(z),\left(g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}\right),
\end{aligned}
$$

then the conclusions of Theorem 1 hold.

REMARK 1. For $j=1,2, \ldots, d$, if $\left(s_{j}=0\right.$ for $\left.j \neq 1\right)$ and $\left(c_{j}=c, s_{j}=1\right.$ for $\left.j=1\right)$ (i.e., $\lambda=1$) in Theorems $1-3$, we obtain Theorems $G-I$ respectively.

REMARK 2. For $j=1,2, \ldots, d$, if $\left(s_{j}=0\right.$ for $\left.j \neq 1\right)$ and $\left(c_{j}=c, s_{j}=1\right.$ for $\left.j=1\right)$ (i.e., $\lambda=1$) also $k=0$ in Theorems $1-3$, we obtain Theorems $D-F$ respectively.

REMARK 3. For $j=1,2, \ldots, d$, if $\left(s_{j}=0\right.$ for $\left.j \neq 1\right)$ and $\left(c_{j}=c, s_{j}=1\right.$ for $j=1$) (i.e., $\lambda=1$) also $m=1, k=0$ in Theorems $1-3$, we obtain Theorems $A-C$ respectively.

2 Preliminary Lemmas

In this section, we present some necessary lemmas. We shall denote by H the following function:

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)
$$

where F and G are non-constant meromorphic functions defined in the complex plane.
LEMMA 1 ([15]). Let f be a non-constant meromorphic function and p, k be positive integers. Then

$$
\begin{align*}
& N_{p}\left(r, 0 ; f^{(k)}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}(r, 0 ; f)+S(r, f), \tag{1}\\
& N_{p}\left(r, 0 ; f^{(k)}\right) \leq k \bar{N}(r, \infty ; f)+N_{p+k}(r, 0 ; f)+S(r, f) \tag{2}
\end{align*}
$$

LEMMA 2 ([2]). Let f be meromorphic function of order $\rho(f)<\infty$, and let c be a non-zero complex constant. Then, for each $\varepsilon>0$, we have

$$
T(r, f(z+c))=T(r, f)+O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\{\log r\} .
$$

LEMMA 3 ([3]). Let f be meromorphic function of finite order and c be a non-zero complex constant. Then,

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)+m\left(r, \frac{f(z)}{f(z+c)}\right)=O\left\{r^{\rho(f)-1+\varepsilon}\right\}
$$

LEMMA 4. Let f be an entire function of order $\rho(f)<\infty$ and $F(z)=f^{n}(z)(f(z)-$ 1) ${ }^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}$ where $n(\geq 1), m(\geq 1)$ and $k(\geq 0)$ are integers. Then,

$$
T(r, F)=(n+m+\lambda) T(r, f)+O\left\{r^{\rho(f)-1+\varepsilon}\right\}+S(r, f)
$$

for all r outside of a set of finite linear measure where $\lambda=s_{1}+s_{2}+\ldots+s_{d}=\sum_{j=1}^{d} s_{j}$.

PROOF. Since f is an entire function of finite order, from Lemma 3 and standard Valiron-Mohon'ko theorem [13], we have

$$
\begin{align*}
(n+m+\lambda) T(r, f(z)) & =T\left(r, f^{n+\lambda}(z)(f(z)-1)^{m}\right)+S(r, f) \\
& =m\left(r, f^{n+\lambda}(z)(f(z)-1)^{m}\right)+S(r, f) \\
& \leq m\left(r, \frac{f^{n+\lambda}(z)(f(z)-1)^{m}}{F(z)}\right)+m(r, F(z))+S(r, f) \\
& \leq m\left(r, \frac{f^{\lambda}(z)}{\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}\right)+m(r, F(z))+S(r, f) \\
& \leq T(r, F(z))+O\left\{r^{\rho(f)-1+\varepsilon}\right\}+S(r, f) . \tag{3}
\end{align*}
$$

On the other hand, from Lemma 2, we have

$$
\begin{align*}
T(r, F(z)) & \leq m\left(r, f^{n}(z)\right)+m\left(r,(f(z)-1)^{m}\right)+m\left(r, f^{\lambda}(z) \cdot \prod_{j=1}^{d} \frac{f\left(z+c_{j}\right)^{s_{j}}}{f(z)^{s_{j}}}\right)+S(r, f) \\
& \leq(n+m) m(r, f(z))+\lambda m(r, f(z))+\sum_{j=1}^{d} s_{j} \cdot m\left(r, \frac{f\left(z+c_{j}\right)}{f(z)}\right)+S(r, f) \\
& \leq(n+m+\lambda) m(r, f(z))+O\left\{r^{\rho(f)-1+\varepsilon}\right\}+S(r, f) \\
& \leq(n+m+\lambda) T(r, f(z))+O\left\{r^{\rho(f)-1+\varepsilon}\right\}+S(r, f) \tag{4}
\end{align*}
$$

From (3) and (4), we can prove this lemma easily.
LEMMA 5. Let f and g be entire functions, $n(\geq 1), m(\geq 1)$ and $k(\geq 0)$ be integers and let

$$
F(z)=\left(f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}
$$

and

$$
G(z)=\left(g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}
$$

If there exists non-zero constants b_{1} and b_{2} such that $\bar{N}\left(r, b_{1} ; F\right)=\bar{N}(r, 0 ; G)$ and $\bar{N}\left(r, b_{2} ; G\right)=\bar{N}(r, 0 ; F)$, then $n \leq 2 k+m+\lambda+2$ when $m \leq k+1$ and $n \leq 4 k-m+\lambda+4$ when $m>k+1$.

PROOF. Let $F_{1}(z)=f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}$ and $G_{1}(z)=g^{n}(z)(g(z)-$ 1) ${ }^{m} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}$. From Lemma 4, we have

$$
\begin{align*}
& T\left(r, F_{1}\right)=(n+m+\lambda) T(r, f)+O\left\{r^{\rho(f)-1+\varepsilon}\right\}+S(r, f) \tag{5}\\
& T\left(r, G_{1}\right)=(n+m+\lambda) T(r, g)+O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, g) \tag{6}
\end{align*}
$$

By second fundamental theorem and by the hypothesis, we have

$$
\begin{align*}
T(r, F) & \leq \bar{N}(r, 0 ; F)+\bar{N}\left(r, c_{1} ; F\right)+S(r, F) \\
& \leq \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+S(r, F) \tag{7}
\end{align*}
$$

Using (1), (2), (5) and (7), we have

$$
\begin{align*}
(n+m+\lambda) T(r, f) & \leq T(r, F)-\bar{N}(r, 0 ; F)+N_{k+1}\left(r, 0 ; F_{1}\right)+S(r, f) \\
& \leq \bar{N}(r, 0 ; G)+N_{k+1}\left(r, 0 ; F_{1}\right)+S(r, f) \\
& \leq N_{k+1}\left(r, 0 ; F_{1}\right)+\bar{N}_{k+1}\left(r, 0 ; G_{1}\right)+S(r, f)+S(r, g) \tag{8}
\end{align*}
$$

When $m \leq k+1$, using (8) and Lemma 2, we see that

$$
\begin{align*}
(n+m+\lambda) T(r, f) & \leq(k+m+\lambda+1)(T(r, f)+T(r, g))+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{9}
\end{align*}
$$

Similarly,

$$
\begin{align*}
(n+m+\lambda) T(r, g) & \leq(k+m+\lambda+1)(T(r, f)+T(r, g))+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{10}
\end{align*}
$$

From (9) and (10), we have

$$
\begin{aligned}
(n-2 k-m-\lambda-2)(T(r, f)+T(r, g)) & \leq O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\left\{r^{\rho(g)-1+\varepsilon}\right\} \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

which gives $n \leq 2 k+m+\lambda+2$. When $m>k+1$, using (8) and Lemma 2 , we have

$$
\begin{align*}
(n+m+\lambda) T(r, f) & \leq(2 k+\lambda+2)(T(r, f)+T(r, g))+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{11}
\end{align*}
$$

Similarly,

$$
\begin{align*}
(n+m+\lambda) T(r, g) & \leq(2 k+\lambda+2)(T(r, f)+T(r, g))+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{12}
\end{align*}
$$

From (11) and (12), we have

$$
\begin{aligned}
(n-4 k+m-\lambda-4)(T(r, f)+T(r, g)) & \leq O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\left\{r^{\rho(g)-1+\varepsilon}\right\} \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

which gives $n \leq 4 k-m+\lambda+4$. This proves the lemma.
LEMMA 6 ([1]). Let F and G be non-constant meromorphic functions that share " $(1,2)$ " and $H \not \equiv 0$. Then

$$
\begin{aligned}
T(r, F) & \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)-\sum_{p=3}^{\infty} \bar{N}\left(r, 0 ; \left.\frac{G^{\prime}}{G} \right\rvert\, \geq p\right) \\
& +S(r, F)+S(r, G)
\end{aligned}
$$

and the same inequality holds for $T(r, G)$.
LEMMA 7 ([1]). Let F and G be non-constant meromorphic functions that share $(1,2)^{*}$ and $H \not \equiv 0$. Then

$$
\begin{aligned}
T(r, F) & \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+\bar{N}(r, 0 ; F) \\
& +\bar{N}(r, \infty ; F)-m(r, 1 ; G)+S(r, F)+S(r, G)
\end{aligned}
$$

and the same inequality holds for $T(r, G)$.
LEMMA 8 ([9]). Let F and G be non-constant entire functions and $p \geq 2$ be an integer. If $\bar{E}_{p)}(1, F)=\bar{E}_{p)}(1, G)$ and $H \not \equiv 0$, then

$$
T(r, F) \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+2 \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+S(r, F)+S(r, G)
$$

and the same inequality holds for $T(r, G)$.

3 Proofs of the Theorems

PROOF OF THEOREM 1. Let $F=\frac{F_{1}^{(k)}}{\alpha}$ and $G=\frac{G_{1}^{(k)}}{\alpha}$ where $F_{1}(z)=f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}$ and $G_{1}(z)=g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}$.

Then F and G are transcendental meromorphic functions that share " $(1,2)$ " except the zeros and poles of $\alpha(z)$. Suppose that $H \not \equiv 0$. Using (1), (5) and Lemma 4, we have

$$
\begin{aligned}
N_{2}(r, 0 ; F) & \leq N_{2}\left(r, 0 ; F_{1}^{(k)}\right)+S(r, f) \\
& \leq T\left(r, F_{1}^{(k)}\right)-(n+m+\lambda) T(r, f)+N_{k+2}\left(r, 0 ; F_{1}\right)+S(r, f) \\
& \leq T(r, F)-(n+m+\lambda) T(r, f)+N_{k+2}\left(r, 0 ; F_{1}\right)+S(r, f)
\end{aligned}
$$

From this, we get

$$
\begin{equation*}
(n+m+\lambda) T(r, f) \leq T(r, F)-N_{2}(r, 0 ; F)+N_{k+2}\left(r, 0 ; F_{1}\right)+S(r, f) \tag{13}
\end{equation*}
$$

Also by (2), we obtain

$$
N_{2}(r, 0 ; F) \leq N_{2}\left(r, 0 ; F_{1}^{(k)}\right)+S(r, f) \leq N_{k+2}\left(r, 0 ; F_{1}\right)+S(r, f)
$$

Similarly,

$$
\begin{equation*}
N_{2}(r, 0 ; G) \leq N_{k+2}\left(r, 0 ; G_{1}\right)+S(r, g) \tag{14}
\end{equation*}
$$

Using (14) and Lemma 6 in (13), we have

$$
\begin{align*}
(n+m+\lambda) T(r, f) & \leq N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+N_{k+2}\left(r, 0 ; F_{1}\right) \\
& +S(r, f)+S(r, g) \\
& \leq N_{k+2}\left(r, 0 ; F_{1}\right)+N_{k+2}\left(r, 0 ; G_{1}\right)+S(r, f)+S(r, g) \tag{15}
\end{align*}
$$

Suppose that $m \leq k+1$, then from (15), we have

$$
\begin{align*}
(n+m+\lambda) T(r, f) & \leq(k+m+\lambda+2)(T(r, f)+T(r, g))+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{16}
\end{align*}
$$

Similarly,

$$
\begin{align*}
(n+m+\lambda) T(r, g) & \leq(k+m+\lambda+2)(T(r, f)+T(r, g))+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{17}
\end{align*}
$$

From (16) and (17), we have
$(n-2 k-m-\lambda-4)(T(r, f)+T(r, g)) \leq O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g)$,
which contradicts the assumption that $n \geq 2 k+m+\lambda+5$. Next, assume that $m>k+1$. From (15), we have

$$
\begin{align*}
(n+m+\lambda) T(r, f) & \leq(2 k+\lambda+4)(T(r, f)+T(r, g))+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{18}
\end{align*}
$$

Similarly,

$$
\begin{align*}
(n+m+\lambda) T(r, g) & \leq(2 k+\lambda+4)(T(r, f)+T(r, g))+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{19}
\end{align*}
$$

From (18) and (19), we have
$(n+m-4 k-\lambda-8)(T(r, f)+T(r, g)) \leq O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g)$, a contradiction, since $n \geq 4 k-m+\lambda+9$. Therefore, we have $H=0$. It implies that

$$
\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)=0
$$

Integrating twice, we get

$$
\begin{equation*}
\frac{1}{F-1}=\frac{A}{G-1}+B \tag{20}
\end{equation*}
$$

From (20), F and G share 1 CM and hence they share " $(1,2)$ ". Therefore $n \geq 2 k+$ $m+\lambda+5$ if $m \leq k+1$ and $n \geq 4 k-m+\lambda+9$ if $m>k+1$.

Next, we discuss the following three cases.
Case 1. Suppose that $B \neq 0$ and $A=B$. Then from (20), we have

$$
\begin{equation*}
\frac{1}{F-1}=\frac{B G}{G-1} \tag{21}
\end{equation*}
$$

If $B=-1$, then from (21), we have $F G=1$. Then

$$
\left(f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)} \cdot\left(g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}=\alpha^{2}
$$

It follows that $N(r, 0 ; f)=S(r, f)$ and $N(r, 1 ; f)=S(r, f)$. Thus, we have

$$
\delta(0, f)+\delta(1, f)+\delta(\infty, f)=3
$$

which is not possible. If $B \neq-1$, then from (21), we have $\frac{1}{F}=\frac{B G}{(1+B) G-1}$. So $\bar{N}\left(r, \frac{1}{1+B} ; G\right)=\bar{N}(r, 0 ; F)$. Using (1), (2), (6) and the second fundamental theorem of Nevanlinna, we deduce that

$$
\begin{align*}
T(r, G) & \leq \bar{N}(r, 0 ; G)+\bar{N}\left(r, \frac{1}{1+B} ; G\right)+\bar{N}(r, \infty ; G)+S(r, G) \\
& \leq \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)+S(r, G) \\
& \leq N_{k+1}\left(r, 0 ; F_{1}\right)+T(r, G)+N_{k+1}\left(r, 0 ; G_{1}\right) \\
& -(n+m+\lambda) T(r, g)+S(r, g) \tag{22}
\end{align*}
$$

If $m \leq k+1$, then from (22) we have

$$
\begin{aligned}
(n+m+\lambda) T(r, g) \leq & (k+m+\lambda+1)(T(r, f)+T(r, g)) \\
& +O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
(n-2 k-m-\lambda-2)(T(r, f)+T(r, g)) \leq & O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\left\{r^{\rho(g)-1+\varepsilon}\right\} \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

a contradiction since $n \geq 2 k+m+\lambda+5$. If $m>k+1$, from (22), we have

$$
\begin{aligned}
(n+m+\lambda) T(r, g) \leq & (2 k+\lambda+2)(T(r, f)+T(r, g))+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
(n-4 k+m-\lambda-4)(T(r, f)+T(r, g)) \leq & O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\left\{r^{\rho(g)-1+\varepsilon}\right\} \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

which is a contradiction since $n \geq 4 k-m+\lambda+9$.
Case 2. Let $B \neq 0$ and $A \neq B$. From (20), we have

$$
F=\frac{(B+1) G-(B-A+1)}{B G+(A-B)}
$$

and hence

$$
\bar{N}\left(r, \frac{B-A+1}{B+1} ; G\right)=\bar{N}(r, 0 ; F) .
$$

Proceeding as in case 1, we get a contradiction.
Case 3. Let $B=0$ and $A \neq 0$. From (20), we have $F=\frac{G+A-1}{A}$ and $G=$ $A F-(A-1)$. If $A \neq 1$, then it follows that

$$
\bar{N}\left(r, \frac{A-1}{A} ; F\right)=\bar{N}(r, 0 ; G) \text { and } \bar{N}(r, 1-A ; G)=\bar{N}(r, 0 ; F)
$$

By applying Lemma 5 , we arrive at a contradiction. Therefore $A=1$ and hence $F=G$. It implies that

$$
\left(f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}=\left(g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}
$$

By integration, we obtain
$\left(f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k-1)}=\left(g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right)^{(k-1)}+c_{k-1}$,
where c_{k-1} is a constant. If $c_{k-1} \neq 0$, then by Lemma 5 , we get $n \leq 2 k+m+\lambda$ when $m \leq k+1$ and $n \leq 4 k-m+\lambda$ when $m>k+1$, which contradicts the hypothesis. Hence, $c_{k-1}=0$. Repeating the same process $k-1$ times, we get

$$
\begin{equation*}
f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}=g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}} \tag{23}
\end{equation*}
$$

Set $h=f / g$. If h is a constant, then substituting $f=g h$ in (23), we have

$$
\begin{align*}
& g^{n} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\left[g^{m}\left(h^{n+m+\lambda}-1\right)-m C_{1} g^{m-1}\left(h^{n+m+\lambda-1}-1\right)+\right. \\
& \left.\cdots+(-1)^{m}\left(h^{n+\lambda}-1\right)\right]=0 \tag{24}
\end{align*}
$$

Since g is a transcendental entire function, we have $g^{n} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}} \not \equiv 0$. Hence, from (24), we get

$$
g^{m}\left(h^{n+m+\lambda}-1\right)-m C_{1} g^{m-1}\left(h^{n+m+\lambda-1}-1\right)+\cdots+(-1)^{m}\left(h^{n+\lambda}-1\right)=0
$$

which implies $h=1$ and hence $f=g$. If h is not constant, then from (23), we find that f and g satisfy the algebraic equation $R(f, g)=0$, where $R(f, g)$ is given by

$$
R\left(w_{1}, w_{2}\right)=w_{1}^{n}\left(w_{1}-1\right)^{m} \prod_{j=1}^{d} w_{1}\left(z+c_{j}\right)^{s_{j}}-w_{2}^{n}\left(w_{2}-1\right)^{m} \prod_{j=1}^{d} w_{2}\left(z+c_{j}\right)^{s_{j}}
$$

Hence the proof of Theorem 1.
PROOF OF THEOREM 2. Let $F, G, F_{1}(z)$ and $G_{1}(z)$ be defined as in Theorem 1. Then, F and G are transcendental meromorphic functions that share $(1,2)^{*}$ except the zeros and poles of $\alpha(z)$. Let $H \not \equiv 0$. By using (2) for $p=1$, (14) and Lemma 7 in (13), we get

$$
\begin{align*}
& (n+m+\lambda) T(r, f) \\
& \leq N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G) \\
& +\bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)+N_{k+2}\left(r, 0 ; F_{1}\right)+S(r, f)+S(r, g) \\
& \leq N_{k+2}\left(r, 0 ; F_{1}\right)+N_{k+2}\left(r, 0 ; G_{1}\right)+N_{k+1}\left(r, 0 ; F_{1}\right)+S(r, f)+S(r, g) \tag{25}
\end{align*}
$$

If $m \leq k+1$, then from (25), we obtain

$$
\begin{align*}
& (n+m+\lambda) T(r, f) \\
& \leq(2 k+2 m+2 \lambda+3) T(r, f)+(k+m+\lambda+2) T(r, g)+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{26}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& (n+m+\lambda) T(r, g) \\
& \leq(2 k+2 m+2 \lambda+3) T(r, g)+(k+m+\lambda+2) T(r, f)+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{27}
\end{align*}
$$

From (26) and(27), we get
$(n-3 k-2 m-2 \lambda-5)(T(r, f)+T(r, g)) \leq O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g)$, contradicting the fact that $n \geq 3 k+2 m+2 \lambda+6$. If $m>k+1$, then from (25), we obtain

$$
\begin{align*}
(n+m+\lambda) T(r, f) & \leq(4 k+2 \lambda+6) T(r, f)+(2 k+\lambda+4) T(r, g)+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{28}
\end{align*}
$$

Similarly,

$$
\begin{align*}
(n+m+\lambda) T(r, g) & \leq(4 k+2 \lambda+6) T(r, g)+(2 k+\lambda+4) T(r, f)+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{29}
\end{align*}
$$

From (28) and (29), we get
$(n-6 k+m-2 \lambda-10)(T(r, f)+T(r, g)) \leq O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g)$,
contradicting the fact that $n \geq 6 k-m+2 \lambda+11$. Thus, $H \equiv 0$ and the rest of the theorem follows from the proof of Theorem 1. Hence the proof of Theorem 2.

PROOF OF THEOREM 3. Let $F, G, F_{1}(z)$ and $G_{1}(z)$ be defined as in Theorem 1. Then, F and G are transcendental meromorphic functions such that $\bar{E}_{2)}(1, F)=$ $\bar{E}_{2)}(1, G)$ except the zeros and poles of $\alpha(z)$. Let $H \not \equiv 0$. Then, by (2), (14) and Lemma 8 in (13), we get

$$
\begin{align*}
& (n+m+\lambda) T(r, f) \\
& \leq N_{2}(r, 0 ; G)+2 \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+N_{k+2}\left(r, 0 ; F_{1}\right)+S(r, f)+S(r, g) \\
& \leq N_{k+2}\left(r, 0 ; F_{1}\right)+N_{k+2}\left(r, 0 ; G_{1}\right)+2 N_{k+1}\left(r, 0 ; F_{1}\right) \\
& +N_{k+1}\left(r, 0 ; G_{1}\right)+S(r, f)+S(r, g) \tag{30}
\end{align*}
$$

If $m \leq k+1$, then from (30), we obtain

$$
\begin{align*}
& (n+m+\lambda) T(r, f) \\
& \leq(3 k+3 m+3 \lambda+4) T(r, f)+(2 k+2 m+2 \lambda+3) T(r, g)+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{31}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& (n+m+\lambda) T(r, g) \\
& \leq(3 k+3 m+3 \lambda+4) T(r, g)+(2 k+2 m+2 \lambda+3) T(r, f)+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{32}
\end{align*}
$$

From (31) and (32), we get
$(n-5 k-4 m-4 \lambda-7)(T(r, f)+T(r, g)) \leq O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g)$, contradicting the fact that $n \geq 5 k+4 m+4 \lambda+8$. If $m>k+1$, then from (30), we obtain

$$
\begin{align*}
(n+m+\lambda) T(r, f) & \leq(6 k+3 \lambda+8) T(r, f)+(4 k+2 \lambda+6) T(r, g)+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{33}
\end{align*}
$$

Similarly,

$$
\begin{align*}
(n+m+\lambda) T(r, g) & \leq(6 k+3 \lambda+8) T(r, g)+(4 k+2 \lambda+6) T(r, f)+O\left\{r^{\rho(f)-1+\varepsilon}\right\} \\
& +O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g) \tag{34}
\end{align*}
$$

From (33) and (34), we get
$(n-10 k+m-4 \lambda-14)(T(r, f)+T(r, g)) \leq O\left\{r^{\rho(f)-1+\varepsilon}\right\}+O\left\{r^{\rho(g)-1+\varepsilon}\right\}+S(r, f)+S(r, g)$,
contradicting the fact that $n \geq 10 k-m+4 \lambda+15$. Thus $H \equiv 0$ and the rest of the theorem follows from the proof of Theorem 1. Hence the proof of Theorem 3.

References

[1] A. Banerjee and S. Mukherjee, Uniqueness of meromorphic functions concerning differential monomials sharing the same value, Bull. Math. Soc. Sci. Math. Roumanie, 50(2007), 191-206.
[2] Y.-M. Chiang and S.-J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 16(2008), 105-129.
[3] R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31(2006), 463-478.
[4] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[5] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory Appl., 46(2001), 241-253.
[6] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci., 28(2001), 83-91.
[7] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15, de Gruyter, Berlin, 1993.
[8] S. Lin and W. Lin, Uniqueness of meromorphic functions concerning weakly weighted-sharing, Kodai Math. J., 29(2006), 269-280.
[9] X. Lin and W. Lin, Uniqueness of entire functions sharing one value, Acta Math. Sci. Ser. B Engl. Ed., 31(2011), 1062-1076.
[10] C. Meng, Uniqueness of entire functions concerning difference polynomials, Math. Bohem, 139(2014), 89-97.
[11] P. Sahoo, Uniqueness of entire functions related to difference polynomials, Commun. Math. Stat., 3(2015), 227-238.
[12] P. Sahoo and H. Karmakar, Results on uniqueness of entire functions whose certain difference polynomials share a small function, Anal. Math., 41(2015), 257-272.
[13] C.-C. Yang and X. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22(1997), 395-406.
[14] C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Acad. Publ., Dordrecht, 2003.
[15] J.-L. Zhang and L.-Z. Yang, Some results related to a conjecture of R. Brück, JIPAM. J. Inequal. Pure Appl. Math., 8(2007), Article 18, 11 pp.

[^0]: *Mathematics Subject Classifications: 30D35
 ${ }^{\dagger}$ Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore-560056, India
 ${ }^{\ddagger}$ Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore-560056, India

