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Abstract

In this paper, we study the uniqueness problems of difference polynomials of
entire functions sharing a small function α, using the concept of weakly weighted
sharing and relaxed weighted sharing. Our results extend and generalise the
results due to Pulak Sahoo and Himadri Karmakar [12].

1 Introduction and Main Results

In this paper, we mainly study the uniqueness of entire functions of certain difference
polynomials sharing a small function. It is assumed that the reader is familiar with
the standard notations of Nevanlinna theory such as T (r, f), m(r, f), N(r, f), N(r, f),
S(r, f) and so on (see [4, 7, 14]). A meromorphic function f means meromorphic in
the whole complex plane. If no poles occur, then f is called an entire function. We say
that the meromorphic function α(6≡ 0,∞) is a small function of f, if T (r, α) = S(r, f).
Let k be a positive integer. Set E(a, f) = {z : f(z)−a = 0}, where a zero point with

multiplicity k is counted k times in the set. If these zero points are counted only once,
then we denote the set by E(a, f). Let f and g be two non-constant meromorphic
functions. If E(a, f) = E(a, g), then we say that f and g share the value a CM; if
E(a, f) = E(a, g), then we say that f and g share the value a IM. We denote by
Ek)(a, f) the set of all a-points of f with multiplicities not exceeding k, where an a-
point is counted according to its multiplicity. Also we denote by Ek)(a, f) the set of
distinct a-points of f with multiplicities not greater than k. We denote order of f by
ρ(f) (see [7, 14]). We now explain the following definitions.

DEFINITION 1 ([6]). Let a ∈ C∪ {∞}. We denote by N(r, a; f |= 1) the counting
function of simple a-points of f . For a positive integer k, we denote by N(r, a; f |≤ k)
the counting function of those a-points of f (counted with proper multiplicities) whose
multiplicities are not greater than k. By N(r, a; f |≤ k) we denote the corresponding
reduced counting function. Analogously, we can define N(r, a; f |≥ k) and N(r, a; f |≥
k).
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128 Uniqueness of Entire Functions of Difference Polynomials

DEFINITION 2 ([5]). Let k be a positive integer or infinity. We denote by
Nk(r, a; f) the counting function of a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + · · ·+N(r, a; f |≥ k).

Clearly N1(r, a; f) = N(r, a; f).

Let NE(r, a; f, g) (NE(r, a; f, g)) be the counting function (reduced counting func-
tion) of all common zeros of f−a and g−a with the same multiplicities andN0(r, a; f, g)
(N0(r, a; f, g)) the counting function (reduced counting function) of all common zeros
of f − a and g − a ignoring multiplicities. If

N (r, a; f) +N (r, a; g)− 2NE(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share a “CM”. On the other hand, if

N (r, a; f) +N (r, a; g)− 2N0(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share a “IM”.

DEFINITION 3 ([8]). Let f and g share a “IM” and k be a positive integer or

infinity. N
E

k)(r, a; f, g) denotes the reduced counting function of those a-points of f
whose multiplicities are equal to the corresponding a-points of g and both of their mul-
tiplicities are not greater than k. N

0

(k(r, a; f, g) denotes the reduced counting function
of those a-points of f which are a-points of g and both of their multiplicities are not
less than k.

The following is the definition of weakly weighted sharing which is a scaling between
sharing IM and sharing CM.

DEFINITION 4 ([8]). For a ∈ C ∪ {∞}, if k is a positive integer or infinity and

N(r, a; f |≤ k)−NE

k)(r, a; f, g) = S(r, f),

N(r, a; g |≤ k)−NE

k)(r, a; f, g) = S(r, g),

N(r, a; f |≥ k + 1)−N0

(k+1(r, a; f, g) = S(r, f),

N(r, a; g |≥ k + 1)−N0

(k+1(r, a; f, g) = S(r, g),

or if k = 0 and

N(r, a; f)−N0(r, a; f, g) = S(r, f), N(r, a; g)−N0(r, a; f, g) = S(r, g),

then we say that f and g weakly share a with weight k. Here, we write f, g share
“(a, k)” to mean that f, g weakly share a with weight k.
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The following is the definition of relaxed weighted sharing, weaker than weakly
weighted sharing.

DEFINITION 5 ([1]). We denote by N(r, a; f |= p; g |= q) the reduced counting
function of common a-points of f and g with multiplicities p and q respectively.

DEFINITION 6 ([1]). Let f, g share a “IM”. Also let k be a positive integer or
infinity and a ∈ C ∪ {∞}. If for p 6= q,∑

p,q≤k
N(r, a; f |= p; g |= q) = S(r),

then we say that f and g share a with weight k in a relaxed manner. Here we write f
and g share (a, k)∗ to mean that f and g share a with weight k in a relaxed manner.

In recent years, there has been an increasing interest in studying difference equations
in the complex plane.

In 2014, C. Meng [10] proved the following results using the concept of weakly
weighted sharing and relaxed weighted sharing.

THEOREM A. Let f and g be two transcendental entire functions of finite order
and α(6≡ 0,∞) be a small function with respect to both f and g. Suppose that c is
a non-zero complex constant and n ≥ 7 is an integer. If fn(z)(f(z) − 1)f(z + c) and
gn(z)(g(z)− 1)g(z + c) share “(α, 2)”, then f = g.

THEOREM B. Let f and g be two transcendental entire functions of finite order
and α(6≡ 0,∞) be a small function with respect to both f and g. Suppose that c is a
non-zero complex constant and n ≥ 10 is an integer. If fn(z)(f(z) − 1)f(z + c) and
gn(z)(g(z)− 1)g(z + c) share (α, 2)∗, then f = g.

THEOREM C. Let f and g be two transcendental entire functions of finite order
and α( 6≡ 0,∞) be a small function with respect to both f and g. Suppose that c is a
non-zero complex constant and n ≥ 16 is an integer. If

E2)(α(z), f
n(z)(f(z)− 1)f(z + c)) = E2)(α(z), g

n(z)(g(z)− 1)g(z + c)),

then f = g.

Recently, P. Sahoo [11] generalised the above theorems and obtained the following
results.

THEOREM D. Let f and g be two transcendental entire functions of finite order
and α(6≡ 0,∞) be a small function with respect to both f and g. Suppose that c is
a non-zero complex constant, n and m (≥ 2) are integers satisfying n + m ≥ 10. If
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fn(z)(f(z)−1)mf(z+c) and gn(z)(g(z)−1)mg(z+c) share “(α, 2)”, then either f = g
or f and g satisfy the algebraic equation R(f, g) = 0, where R(f, g) is given by

R(w1, w2) = wn1 (w1 − 1)mw1(z + c)− wn2 (w2 − 1)mw2(z + c).

THEOREM E. Let f and g be two transcendental entire functions of finite order
and α(6≡ 0,∞) be a small function with respect to both f and g. Suppose that c is
a non-zero complex constant, n and m (≥ 2) are integers satisfying n + m ≥ 13. If
fn(z)(f(z)−1)mf(z+c) and gn(z)(g(z)−1)mg(z+c) share (α, 2)∗, then the conclusions
of Theorem D hold.

THEOREM F. Let f and g be two transcendental entire functions of finite order
and α(6≡ 0,∞) be a small function with respect to both f and g. Suppose that c is
a non-zero complex constant, n and m (≥ 2) are integers satisfying n + m ≥ 19. If
E2)(α(z), f

n(z)(f(z) − 1)mf(z + c)) = E2)(α(z), g
n(z)(g(z) − 1)mg(z + c)), then the

conclusions of Theorem D hold.

Recently, P. Sahoo and H. Karmakar [12] extended the above theorems and proved
the following results.

THEOREM G. Let f and g be two transcendental entire functions of finite order
and α( 6≡ 0) be a small function of both f and g. Suppose that c is a non-zero complex
constant, n(≥ 1), m(≥ 1) and k (≥ 0) are integers satisfying n ≥ 2k + m + 6 when
m ≤ k+1 and n ≥ 4k−m+10 when m > k+1. If (fn(z)(f(z)− 1)mf(z+ c))(k) and
(gn(z)(g(z) − 1)mg(z + c))(k) share “(α, 2)”, then either f = g or f and g satisfy the
algebraic equation R(f, g) = 0, where R(f, g) is given by

R(w1, w2) = wn1 (w1 − 1)mw1(z + c)− wn2 (w2 − 1)mw2(z + c).

THEOREM H. Let f and g be two transcendental entire functions of finite order
and α( 6≡ 0) be a small function of both f and g. Suppose that c is a non-zero complex
constant, n(≥ 1), m(≥ 1) and k (≥ 0) are integers satisfying n ≥ 3k + 2m + 8 when
m ≤ k+1 and n ≥ 6k−m+13 when m > k+1. If (fn(z)(f(z)− 1)mf(z+ c))(k) and
(gn(z)(g(z)− 1)mg(z + c))(k) share (α, 2)∗, then the conclusions of Theorem G hold.

THEOREM I. Let f and g be two transcendental entire functions of finite order
and α( 6≡ 0) be a small function of both f and g. Suppose that c is a non-zero complex
constant, n(≥ 1), m(≥ 1) and k (≥ 0) are integers satisfying n ≥ 5k + 4m+ 12 when
m ≤ k+1 and n ≥ 10k−m+19 when m > k+1. If E2)(α(z), (fn(z)(f(z)− 1)mf(z+
c))(k)) = E2)(α(z), (g

n(z)(g(z)− 1)mg(z + c))(k)), then the conclusions of Theorem G
hold.

In this paper, we assume cj ∈ C\{0} (j = 1, 2, ..., d) are constants, n(≥ 1), m(≥ 1)

and k (≥ 0) are integers, sj(j = 1, 2, ..., d) are non-negative integers, λ =
d∑
j=1

sj =
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s1 + s2 + · · · + sd. With these assumptions, we study the uniqueness problems of
difference polynomials sharing a small function of more general form

(f(z)n(f(z)− 1)m
d∏
j=1

f(z + cj)
sj )(k)

and hence obtain the following theorems which extends and generalises the results
obtained by P. Sahoo and H. Karmakar [12].

THEOREM 1. Let f and g be two transcendental entire functions of finite order
and α( 6≡ 0) be a small function of both f and g. Let cj (j = 1, 2, ..., d) be complex
constants, sj (j = 1, 2, ..., d) be non-negative integers. Suppose n (≥ 1), m (≥ 1) and k
(≥ 0) are integers satisfying n ≥ 2k+m+λ+5 when m ≤ k+1 and n ≥ 4k−m+λ+9
when m > k + 1. If

(fn(z)(f(z)− 1)m
d∏
j=1

f(z + cj)
sj )(k) and (gn(z)(g(z)− 1)m

d∏
j=1

g(z + cj)
sj )(k)

share “(α, 2)”, then either f = g or f and g satisfy the algebraic equation R(f, g) = 0,
where R(f, g) is given by

R(w1, w2) = wn1 (w1 − 1)m
d∏
j=1

w1(z + cj)
sj − wn2 (w2 − 1)m

d∏
j=1

w2(z + cj)
sj .

THEOREM 2. Let f and g be two transcendental entire functions of finite order
and α( 6≡ 0) be a small function of both f and g. Let cj (j = 1, 2, ..., d) be complex
constants, sj(j = 1, 2, ..., d) be non-negative integers. Suppose n (≥ 1), m (≥ 1) and k
(≥ 0) are integers satisfying n ≥ 3k+2m+2λ+6 whenm ≤ k+1 and n ≥ 6k−m+2λ+11
when m > k + 1. If

(fn(z)(f(z)− 1)m
d∏
j=1

f(z + cj)
sj )(k) and (gn(z)(g(z)− 1)m

d∏
j=1

g(z + cj)
sj )(k)

share (α, 2)∗, then the conclusions of Theorem 1 hold.

THEOREM 3. Let f and g be two transcendental entire functions of finite order and
α(6≡ 0) be a small function of both f and g. Let cj (j = 1, 2, ..., d) be complex constants,
sj(j = 1, 2, ..., d) be non-negative integers. Suppose n (≥ 1), m (≥ 1) and k (≥ 0) are
integers satisfying n ≥ 5k + 4m+ 4λ+ 8 when m ≤ k + 1 and n ≥ 10k −m+ 4λ+ 15
when m > k + 1. If

E2)(α(z), (f
n(z)(f(z)− 1)m

d∏
j=1

f(z + cj)
sj )(k))

= E2)(α(z), (g
n(z)(g(z)− 1)m

d∏
j=1

g(z + cj)
sj )(k)),
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then the conclusions of Theorem 1 hold.

REMARK 1. For j = 1, 2, ..., d, if (sj = 0 for j 6= 1) and (cj = c, sj = 1 for j = 1)
(i.e., λ = 1) in Theorems 1− 3, we obtain Theorems G− I respectively.

REMARK 2. For j = 1, 2, ..., d, if (sj = 0 for j 6= 1) and (cj = c, sj = 1 for j = 1)
(i.e., λ = 1) also k = 0 in Theorems 1− 3, we obtain Theorems D − F respectively.

REMARK 3. For j = 1, 2, ..., d, if (sj = 0 for j 6= 1) and (cj = c, sj = 1 for
j = 1) (i.e., λ = 1) also m = 1, k = 0 in Theorems 1 − 3, we obtain Theorems A − C
respectively.

2 Preliminary Lemmas

In this section, we present some necessary lemmas. We shall denote by H the following
function:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
,

where F and G are non-constant meromorphic functions defined in the complex plane.

LEMMA 1 ([15]). Let f be a non-constant meromorphic function and p, k be
positive integers. Then

Np(r, 0; f
(k)) ≤ T (r, f (k))− T (r, f) +Np+k(r, 0; f) + S(r, f), (1)

Np(r, 0; f
(k)) ≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2)

LEMMA 2 ([2]). Let f be meromorphic function of order ρ(f) <∞, and let c be a
non-zero complex constant. Then, for each ε > 0, we have

T (r, f(z + c)) = T (r, f) +O{rρ(f)−1+ε}+O{logr}.

LEMMA 3 ([3]). Let f be meromorphic function of finite order and c be a non-zero
complex constant. Then,

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= O{rρ(f)−1+ε}.

LEMMA 4. Let f be an entire function of order ρ(f) <∞ and F (z) = fn(z)(f(z)−

1)m
d∏
j=1

f(z + cj)
sj where n (≥ 1), m (≥ 1) and k (≥ 0) are integers. Then,

T (r, F ) = (n+m+ λ)T (r, f) +O{rρ(f)−1+ε}+ S(r, f),
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for all r outside of a set of finite linear measure where λ = s1 + s2 + ...+ sd =
d∑
j=1

sj .

PROOF. Since f is an entire function of finite order, from Lemma 3 and standard
Valiron-Mohon’ko theorem [13], we have

(n+m+ λ)T (r, f(z)) = T (r, fn+λ(z)(f(z)− 1)m) + S(r, f)
= m

(
r, fn+λ(z)(f(z)− 1)m

)
+ S(r, f)

≤ m
(
r,
fn+λ(z)(f(z)− 1)m

F (z)

)
+m(r, F (z)) + S(r, f)

≤ m

r, fλ(z)
d∏
j=1

f(z + cj)sj

+m(r, F (z)) + S(r, f)
≤ T (r, F (z)) +O{rρ(f)−1+ε}+ S(r, f). (3)

On the other hand, from Lemma 2, we have

T (r, F (z)) ≤ m(r, fn(z)) +m(r, (f(z)− 1)m) +m

r, fλ(z) · d∏
j=1

f(z + cj)
sj

f(z)sj

+ S(r, f)
≤ (n+m)m(r, f(z)) + λm(r, f(z)) +

d∑
j=1

sj ·m
(
r,
f(z + cj)

f(z)

)
+ S(r, f)

≤ (n+m+ λ)m(r, f(z)) +O{rρ(f)−1+ε}+ S(r, f)
≤ (n+m+ λ)T (r, f(z)) +O{rρ(f)−1+ε}+ S(r, f). (4)

From (3) and (4), we can prove this lemma easily.

LEMMA 5. Let f and g be entire functions, n(≥ 1), m(≥ 1) and k(≥ 0) be integers
and let

F (z) =

fn(z)(f(z)− 1)m d∏
j=1

f(z + cj)
sj

(k)

and

G(z) =

gn(z)(g(z)− 1)m d∏
j=1

g(z + cj)
sj

(k)

.

If there exists non-zero constants b1 and b2 such that N(r, b1;F ) = N(r, 0;G) and
N(r, b2;G) = N(r, 0;F ), then n ≤ 2k+m+λ+2 whenm ≤ k+1 and n ≤ 4k−m+λ+4
when m > k + 1.
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PROOF. Let F1(z) = fn(z)(f(z) − 1)m
d∏
j=1

f(z + cj)
sj and G1(z) = gn(z)(g(z) −

1)m
d∏
j=1

g(z + cj)
sj . From Lemma 4, we have

T (r, F1) = (n+m+ λ)T (r, f) +O{rρ(f)−1+ε}+ S(r, f), (5)

T (r,G1) = (n+m+ λ)T (r, g) +O{rρ(g)−1+ε}+ S(r, g). (6)

By second fundamental theorem and by the hypothesis, we have

T (r, F ) ≤ N(r, 0;F ) +N(r, c1;F ) + S(r, F )
≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ). (7)

Using (1), (2), (5) and (7), we have

(n+m+ λ)T (r, f) ≤ T (r, F )−N(r, 0;F ) +Nk+1(r, 0;F1) + S(r, f)
≤ N(r, 0;G) +Nk+1(r, 0;F1) + S(r, f)
≤ Nk+1(r, 0;F1) +Nk+1(r, 0;G1) + S(r, f) + S(r, g). (8)

When m ≤ k + 1, using (8) and Lemma 2, we see that

(n+m+ λ)T (r, f) ≤ (k +m+ λ+ 1) (T (r, f) + T (r, g)) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (9)

Similarly,

(n+m+ λ)T (r, g) ≤ (k +m+ λ+ 1) (T (r, f) + T (r, g)) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (10)

From (9) and (10), we have

(n− 2k −m− λ− 2) (T (r, f) + T (r, g)) ≤ O{rρ(f)−1+ε}+O{rρ(g)−1+ε}
+ S(r, f) + S(r, g),

which gives n ≤ 2k +m+ λ+ 2. When m > k + 1, using (8) and Lemma 2, we have

(n+m+ λ)T (r, f) ≤ (2k + λ+ 2) (T (r, f) + T (r, g)) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (11)

Similarly,

(n+m+ λ)T (r, g) ≤ (2k + λ+ 2) (T (r, f) + T (r, g)) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (12)



H. P. Waghamore and S. Anand 135

From (11) and (12), we have

(n− 4k +m− λ− 4) (T (r, f) + T (r, g)) ≤ O{rρ(f)−1+ε}+O{rρ(g)−1+ε}
+ S(r, f) + S(r, g),

which gives n ≤ 4k −m+ λ+ 4. This proves the lemma.

LEMMA 6 ([1]). Let F and G be non-constant meromorphic functions that share
“(1,2)” and H 6≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)−
∞∑
p=3

N

(
r, 0;

G′

G
|≥ p

)
+ S(r, F ) + S(r,G)

and the same inequality holds for T (r,G).

LEMMA 7 ([1]). Let F and G be non-constant meromorphic functions that share
(1, 2)∗ and H 6≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +N(r, 0;F )
+N(r,∞;F )−m(r, 1;G) + S(r, F ) + S(r,G)

and the same inequality holds for T (r,G).

LEMMA 8 ([9]). Let F and G be non-constant entire functions and p ≥ 2 be an
integer. If Ep)(1, F ) = Ep)(1, G) and H 6≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) + 2N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G),

and the same inequality holds for T (r,G).

3 Proofs of the Theorems

PROOF OF THEOREM 1. Let F =
F
(k)
1

α
and G =

G
(k)
1

α
where

F1(z) = fn(z)(f(z)− 1)m
d∏
j=1

f(z+ cj)
sj and G1(z) = gn(z)(g(z)− 1)m

d∏
j=1

g(z+ cj)
sj .

Then F and G are transcendental meromorphic functions that share “(1, 2)” except
the zeros and poles of α(z). Suppose that H 6≡ 0. Using (1), (5) and Lemma 4, we have

N2(r, 0;F ) ≤ N2(r, 0;F (k)1 ) + S(r, f)

≤ T (r, F (k)1 )− (n+m+ λ)T (r, f) +Nk+2(r, 0;F1) + S(r, f)
≤ T (r, F )− (n+m+ λ)T (r, f) +Nk+2(r, 0;F1) + S(r, f).
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From this, we get

(n+m+ λ)T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f). (13)

Also by (2), we obtain

N2(r, 0;F ) ≤ N2(r, 0;F (k)1 ) + S(r, f) ≤ Nk+2(r, 0;F1) + S(r, f).

Similarly,
N2(r, 0;G) ≤ Nk+2(r, 0;G1) + S(r, g). (14)

Using (14) and Lemma 6 in (13), we have

(n+m+ λ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +Nk+2(r, 0;F1)
+ S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + S(r, f) + S(r, g). (15)

Suppose that m ≤ k + 1, then from (15), we have

(n+m+ λ)T (r, f) ≤ (k +m+ λ+ 2) (T (r, f) + T (r, g)) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (16)

Similarly,

(n+m+ λ)T (r, g) ≤ (k +m+ λ+ 2) (T (r, f) + T (r, g)) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (17)

From (16) and (17), we have

(n−2k−m−λ−4) (T (r, f)+T (r, g)) ≤ O{rρ(f)−1+ε}+O{rρ(g)−1+ε}+S(r, f)+S(r, g),

which contradicts the assumption that n ≥ 2k+m+λ+5. Next, assume thatm > k+1.
From (15), we have

(n+m+ λ)T (r, f) ≤ (2k + λ+ 4) (T (r, f) + T (r, g)) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (18)

Similarly,

(n+m+ λ)T (r, g) ≤ (2k + λ+ 4) (T (r, f) + T (r, g)) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (19)

From (18) and (19), we have

(n+m−4k−λ−8) (T (r, f)+T (r, g)) ≤ O{rρ(f)−1+ε}+O{rρ(g)−1+ε}+S(r, f)+S(r, g),

a contradiction, since n ≥ 4k −m+ λ+ 9. Therefore, we have H = 0. It implies that(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
= 0.
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Integrating twice, we get
1

F − 1 =
A

G− 1 +B, (20)

From (20), F and G share 1 CM and hence they share “(1, 2)”. Therefore n ≥ 2k +
m+ λ+ 5 if m ≤ k + 1 and n ≥ 4k −m+ λ+ 9 if m > k + 1.
Next, we discuss the following three cases.
Case 1. Suppose that B 6= 0 and A = B. Then from (20), we have

1

F − 1 =
BG

G− 1 . (21)

If B = −1, then from (21), we have FG = 1. Then

(fn(z)(f(z)− 1)m
d∏
j=1

f(z + cj)
sj )(k) · (gn(z)(g(z)− 1)m

d∏
j=1

g(z + cj)
sj )(k) = α2.

It follows that N(r, 0; f) = S(r, f) and N(r, 1; f) = S(r, f). Thus, we have

δ(0, f) + δ(1, f) + δ(∞, f) = 3,

which is not possible. If B 6= −1, then from (21), we have
1

F
=

BG

(1 +B)G− 1 . So

N

(
r,

1

1 +B
;G

)
= N(r, 0;F ). Using (1), (2), (6) and the second fundamental theorem

of Nevanlinna, we deduce that

T (r,G) ≤ N(r, 0;G) +N
(
r,

1

1 +B
;G

)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G)
≤ Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1)
− (n+m+ λ)T (r, g) + S(r, g). (22)

If m ≤ k + 1, then from (22) we have

(n+m+ λ)T (r, g) ≤ (k +m+ λ+ 1) (T (r, f) + T (r, g))

+O{rρ(f)−1+ε}+O{rρ(g)−1+ε}+ S(r, f) + S(r, g).

Hence,

(n− 2k −m− λ− 2) (T (r, f) + T (r, g)) ≤ O{rρ(f)−1+ε}+O{rρ(g)−1+ε}
+S(r, f) + S(r, g),

a contradiction since n ≥ 2k +m+ λ+ 5. If m > k + 1, from (22), we have

(n+m+ λ)T (r, g) ≤ (2k + λ+ 2) (T (r, f) + T (r, g)) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g).
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Hence,

(n− 4k +m− λ− 4) (T (r, f) + T (r, g)) ≤ O{rρ(f)−1+ε}+O{rρ(g)−1+ε}
+S(r, f) + S(r, g),

which is a contradiction since n ≥ 4k −m+ λ+ 9.
Case 2. Let B 6= 0 and A 6= B. From (20), we have

F =
(B + 1)G− (B −A+ 1)

BG+ (A−B)

and hence

N

(
r,
B −A+ 1
B + 1

;G

)
= N(r, 0;F ).

Proceeding as in case 1, we get a contradiction.

Case 3. Let B = 0 and A 6= 0. From (20), we have F =
G+A− 1

A
and G =

AF − (A− 1). If A 6= 1, then it follows that

N

(
r,
A− 1
A

;F

)
= N(r, 0;G) and N(r, 1−A;G) = N(r, 0;F ).

By applying Lemma 5, we arrive at a contradiction. Therefore A = 1 and hence F = G.
It implies that

(fn(z)(f(z)− 1)m
d∏
j=1

f(z + cj)
sj )(k) = (gn(z)(g(z)− 1)m

d∏
j=1

g(z + cj)
sj )(k).

By integration, we obtain

(fn(z)(f(z)−1)m
d∏
j=1

f(z+ cj)
sj )(k−1) = (gn(z)(g(z)−1)m

d∏
j=1

g(z+ cj)
sj )(k−1)+ ck−1,

where ck−1 is a constant. If ck−1 6= 0 , then by Lemma 5, we get n ≤ 2k+m+λ when
m ≤ k + 1 and n ≤ 4k −m + λ when m > k + 1, which contradicts the hypothesis.
Hence, ck−1 = 0. Repeating the same process k − 1 times, we get

fn(z)(f(z)− 1)m
d∏
j=1

f(z + cj)
sj = gn(z)(g(z)− 1)m

d∏
j=1

g(z + cj)
sj (23)

Set h = f/g. If h is a constant, then substituting f = gh in (23), we have

gn
d∏
j=1

g(z + cj)
sj [gm(hn+m+λ − 1)−mC1gm−1(hn+m+λ−1 − 1) +

· · ·+ (−1)m(hn+λ − 1)] = 0. (24)
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Since g is a transcendental entire function, we have gn
d∏
j=1

g(z+ cj)
sj 6≡ 0. Hence, from

(24), we get

gm(hn+m+λ − 1)−mC1gm−1(hn+m+λ−1 − 1) + · · ·+ (−1)m(hn+λ − 1) = 0,

which implies h = 1 and hence f = g. If h is not constant, then from (23), we find that
f and g satisfy the algebraic equation R(f, g) = 0, where R(f, g) is given by

R(w1, w2) = wn1 (w1 − 1)m
d∏
j=1

w1(z + cj)
sj − wn2 (w2 − 1)m

d∏
j=1

w2(z + cj)
sj .

Hence the proof of Theorem 1.

PROOF OF THEOREM 2. Let F, G, F1(z) and G1(z) be defined as in Theorem
1. Then, F and G are transcendental meromorphic functions that share (1, 2)∗ except
the zeros and poles of α(z). Let H 6≡ 0. By using (2) for p = 1, (14) and Lemma 7 in
(13), we get

(n+m+ λ)T (r, f)

≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)
+N(r, 0;F ) +N(r,∞;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)
≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) +Nk+1(r, 0;F1) + S(r, f) + S(r, g) (25)

If m ≤ k + 1, then from (25), we obtain

(n+m+ λ)T (r, f)

≤ (2k + 2m+ 2λ+ 3)T (r, f) + (k +m+ λ+ 2)T (r, g) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (26)

Similarly,

(n+m+ λ)T (r, g)

≤ (2k + 2m+ 2λ+ 3)T (r, g) + (k +m+ λ+ 2)T (r, f) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (27)

From (26) and(27), we get

(n−3k−2m−2λ−5) (T (r, f)+T (r, g)) ≤ O{rρ(f)−1+ε}+O{rρ(g)−1+ε}+S(r, f)+S(r, g),

contradicting the fact that n ≥ 3k + 2m + 2λ + 6. If m > k + 1, then from (25), we
obtain

(n+m+ λ)T (r, f) ≤ (4k + 2λ+ 6)T (r, f) + (2k + λ+ 4)T (r, g) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (28)
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Similarly,

(n+m+ λ)T (r, g) ≤ (4k + 2λ+ 6)T (r, g) + (2k + λ+ 4)T (r, f) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (29)

From (28) and (29), we get

(n−6k+m−2λ−10) (T (r, f)+T (r, g)) ≤ O{rρ(f)−1+ε}+O{rρ(g)−1+ε}+S(r, f)+S(r, g),

contradicting the fact that n ≥ 6k − m + 2λ + 11. Thus, H ≡ 0 and the rest of the
theorem follows from the proof of Theorem 1. Hence the proof of Theorem 2.

PROOF OF THEOREM 3. Let F, G, F1(z) and G1(z) be defined as in Theorem
1. Then, F and G are transcendental meromorphic functions such that E2)(1, F ) =
E2)(1, G) except the zeros and poles of α(z). Let H 6≡ 0. Then, by (2), (14) and Lemma
8 in (13), we get

(n+m+ λ)T (r, f)

≤ N2(r, 0;G) + 2N(r, 0;F ) +N(r, 0;G) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)
≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + 2Nk+1(r, 0;F1)
+Nk+1(r, 0;G1) + S(r, f) + S(r, g). (30)

If m ≤ k + 1, then from (30), we obtain

(n+m+ λ)T (r, f)

≤ (3k + 3m+ 3λ+ 4)T (r, f) + (2k + 2m+ 2λ+ 3)T (r, g) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (31)

Similarly,

(n+m+ λ)T (r, g)

≤ (3k + 3m+ 3λ+ 4)T (r, g) + (2k + 2m+ 2λ+ 3)T (r, f) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (32)

From (31) and (32), we get

(n−5k−4m−4λ−7) (T (r, f)+T (r, g)) ≤ O{rρ(f)−1+ε}+O{rρ(g)−1+ε}+S(r, f)+S(r, g),

contradicting the fact that n ≥ 5k + 4m + 4λ + 8. If m > k + 1, then from (30), we
obtain

(n+m+ λ)T (r, f) ≤ (6k + 3λ+ 8)T (r, f) + (4k + 2λ+ 6)T (r, g) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (33)
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Similarly,

(n+m+ λ)T (r, g) ≤ (6k + 3λ+ 8)T (r, g) + (4k + 2λ+ 6)T (r, f) +O{rρ(f)−1+ε}
+O{rρ(g)−1+ε}+ S(r, f) + S(r, g). (34)

From (33) and (34), we get

(n−10k+m−4λ−14) (T (r, f)+T (r, g)) ≤ O{rρ(f)−1+ε}+O{rρ(g)−1+ε}+S(r, f)+S(r, g),

contradicting the fact that n ≥ 10k −m + 4λ + 15. Thus H ≡ 0 and the rest of the
theorem follows from the proof of Theorem 1. Hence the proof of Theorem 3.
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