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Abstract

Quadratic trigamma functions and reciprocal binomial coeffi cients sums are
investigated in this paper. Closed form representations and integral expressions
are developed for the infinite series.

1 Introduction and Preliminaries

In a recent paper Furdui [2] evaluates, in closed form, a quadratic series with trigamma
function to obtain the result

∑
n≥1

(
ψ′(n+ 1)

)2
n

= 5ζ (2) ζ (3)− 9ζ (5) . (1)

A generalization of (1) may be expressed for

S (k) ≡
∞∑
n=1

(
ψ′(n+ 1)

)2
np
(
n+ k
k

) , (2)

for k ∈ N0 = {0, 1, 2, 3, ...} and for p ∈ {0, 1} . In this paper we shall represent (2) in
terms of rational coeffi cients of special functions. Let R and C denote, respectively the
sets of real and complex numbers. The digamma function is defined by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)

Γ(z)
or log Γ(z) =

∫ z

1

ψ(t) dt.

The digamma (or Psi) function ψ(z), z ∈ R can be expressed in terms of harmonic
numbers such that ψ (n+ 1) = Hn − γ, here γ is the Euler-Mascheroni constant. A
generalized harmonic number H(m)

n of order m is defined, for positive integers n and
m, as follows:

H(m)
n :=

n∑
r=1

1

rm
, (m,n ∈ N) and H

(m)
0 := 0 (m ∈ N)
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98 A Quadratic Tail of Zeta

and

ψ(n)(z) :=
dn

dzn
{ψ(z)} =

dn+1

dzn+1
{log Γ(z)} (n ∈ N0).

The generalized harmonic numbers, H(α+1)
z , may be expressed in terms of polygamma

functions

H(α+1)
n = ζ (α+ 1) +

(−1)
α

α!
ψ(α) (n+ 1) , n 6= {−1,−2,−3, ...} ,

where ζ (z) is the zeta function.
While there are many results for sums of harmonic numbers, see for example [5],

[6] and references therein, there are fewer results for sums of the type (2).
The following lemma will be useful in the development in the proofs of the main

theorems.

LEMMA 1. For p = 0 and k = 1 we have, from (2),

X (1) : =
∑
n≥1

(
ψ′(n+ 1)

)2
n+ 1

= ζ (2) ζ (3) + ζ (5)− 5

2
ζ (4) (3)

= −
∫ 1

0

∫ 1

0

(xy + log (1− xy)) log x log y

xy (1− x) (1− y)
dxdy. (4)

PROOF. To prove (3) we consider

X (1) =
∑
n≥1

(
ψ′(n+ 1)

)2
n+ 1

=
∑
n≥1

(
ζ (2)−H(2)

n

)2
n+ 1

=
∑
n≥1

1

n+ 1

∑
m≥1

1

(m+ n)
2

2

and changing the index of summation we can write∑
n≥2

(
ψ′(n)

)2
n

=
∑
n≥1

(
ψ′(n)

)2
n

−
(
ψ′(1)

)2
.

Since ψ′(1) = ζ (2) and from, p ∈ N,

ψ(p)(n+ 1) = ψ(p)(n) +
(−1)

p
p!

np+1

we see that

X (1) =
∑
n≥1

(
ψ′(n+ 1) + 1

n2

)2
n

− ζ2 (2)

=
∑
n≥1

((
ψ′(n+ 1)

)2
n

+
2ψ′(n+ 1)

n3
+

1

n5

)
− ζ2 (2)

= X (0) + 2
∑
n≥1

ψ′(n+ 1)

n3
+ ζ (5)− ζ2 (2) .
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By (1), X (0) = 5ζ (2) ζ (3)− 9ζ (5), from [4]∑
n≥1

ψ′(n+ 1)

n3
= −2ζ (2) ζ (3) +

9

2
ζ (5)

and since ζ2 (2) = 5
2ζ (4) , we see that (3) follows. For (4) we use the definition, for

p ∈ N0,

H(p+1)
n =

(−1)
p

p!

∫ 1

0

lnp x

1− x (1− xn) dx (5)

such that

ψ′(n+ 1) = ζ (2)−H(2)
n = −

∫ 1

0

xn log x

1− x dx.

Then

X (1) =
∑
n≥1

(
ψ′(n+ 1)

)2
n+ 1

=

∫ 1

0

∫ 1

0

log x log y

(1− x) (1− y)

∞∑
n=1

(xy)
n

n+ 1
dx

= −
∫ 1

0

∫ 1

0

log x log y (xy + log (1− xy))

xy (1− x) (1− y)
dxdy.

It is of interest to note that since∫ 1

0

∫ 1

0

log x log y

(1− x) (1− y)
dxdy = ζ2 (2) =

5

2
ζ (4) ,

then from (4) we infer the highly oscillatory integral

−
∫ 1

0

∫ 1

0

log x log y log (1− xy)

xy (1− x) (1− y)
dxdy = ζ (2) ζ (3) + ζ (5) .

The case

X (0) =
∑
n≥1

(
ψ′(n+ 1)

)2
n

= 5ζ (2) ζ (3)− 9ζ (5)

is proved by Furdui [2], moreover

−
∫ 1

0

∫ 1

0

log x log y log (1− xy)

(1− x) (1− y)
dxdy =

∑
n≥1

(
ψ′(n+ 1)

)2
n

.

LEMMA 2. Let r ∈ N. The following equality holds:

Z (r) =

∞∑
n=1

H
(2)
n

n (n+ r)

=
1

r

ζ (3) +Hr−1ζ (2)−
r−1∑
j=1

Hj

j2

 , (6)
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and, for r = 0,

Z (0) =

∞∑
n=1

H
(2)
n

n2
=

7

4
ζ (4) .

PROOF. The proof of (6) is given in the paper in [4].

LEMMA 3. For r ∈ N, we have the identity

Y (r) =

∞∑
n=1

H
(2)
n

n2 (n+ r)
=

1

r

(
7

4
ζ (4)− Z (r)

)
. (7)

For r = 0,

Y (0) =

∞∑
n=1

H
(2)
n

n3
= 3ζ (2) ζ (3)− 9

2
ζ (5) .

PROOF. We have

Y (r) =

∞∑
n=1

H
(2)
n

n2 (n+ r)
=

1

r

∞∑
n=1

(
H
(2)
n

n2
− H

(2)
n

n (n+ r)

)

=
1

r

(
7

4
ζ (4)− Z (r)

)
.

LEMMA 4. For r ∈ N. the following equality holds:

X (r) =
∑
n≥1

(
ψ′(n+ 1)

)2
n+ r

= X (1) +
5 (r − 1)

2r
ζ (4)−H(2)

r−1ζ (3) +H
(3)
r−1ζ (2)

−2

r−1∑
j=1

(
Hjζ (2)

j2
+
Hj

2j4
− Z (j)

j

)
, (8)

where X (1) and Z (j) are given by (3) and (6), respectively.

PROOF. Consider

X (r) =
∑
n≥1

(
ψ′(n+ 1)

)2
n+ r

=
∑
n≥1

(
ζ (2)−H(2)

n

)2
n+ r

=
∑
n≥1

1

n+ r

∑
m≥1

1

(m+ n)
2

2
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and changing the index of summation n

X (r) =
∑
n≥2

(
ψ′(n)

)2
n+ r − 1

=
∑
n≥1

(
ζ (2)−H(2)

n + 1
n2

)2
n+ r − 1

− ζ2 (2)

r

=
∑
n≥1

(
ζ (2)−H(2)

n

)2
n+ r − 1

+ 2ζ (2)
∑
n≥1

1

n2 (n+ r − 1)

−2
∑
n≥1

H
(2)
n

n2 (n+ r − 1)
+
∑
n≥1

1

n4 (n+ r − 1)
− 5

2r
ζ (4)

= X (r − 1) +
5ζ (4)

2r (r − 1)
− ζ (3)

(r − 1)
2 −

2Hr−1ζ (2)

(r − 1)
2

+
ζ (2)

(r − 1)
3 −

Hr−1

(r − 1)
4 +

2Z (r − 1)

r − 1
.

This resulting recurrence relation, for r ≥ 2,

X (r)−X (r − 1) =
5ζ (4)

2r (r − 1)
− ζ (3)

(r − 1)
2 −

2Hr−1ζ (2)

(r − 1)
2

+
ζ (2)

(r − 1)
3 −

Hr−1

(r − 1)
4 +

2Z (r − 1)

r − 1

can be solved by the successive reduction of X (r) , X (r − 1) , ..., X (3) , X (2) such
that we obtain (8).

The next few theorems relate the main results of this investigation, namely the
closed form and integral representation of (2).

2 Closed form and Integral Identities

We now prove the following Theorems.

THEOREM 5. Let k ∈ N, then from (2) with p = 0 we have

S (k) =

∞∑
n=1

(
ψ′(n+ 1)

)2(
n+ k
k

) =

k∑
r=1

(−1)
1+r

r

(
k
r

)
X (r) , (9)

where X (r) is given by (8).
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PROOF. Consider the expansion,

S (k) =

∞∑
n=1

(
ψ′(n+ 1)

)2(
n+ k
k

) =
∑
n≥1

(
ζ (2)−H(2)

n

)2
(
n+ k
k

)

=
∑
n≥1

1(
n+ k
k

)
∑
m≥1

1

(m+ n)
2

2

=

∞∑
n=1

k!
(
ψ′(n+ 1)

)2
(n+ 1)k

=

∞∑
n=1

k!
(
ψ′(n+ 1)

)2 k∑
r=1

Λr
n+ r

,

where

Λr = lim
n→−r

n+ r
k∏
r=1

(n+ r)

=
(−1)

r+1
r

k!

(
k

r

)
.

Hence

S (k) =

k∑
r=1

(−1)
r+1

r

(
k

r

) ∞∑
n=1

(
ψ′(n+ 1)

)2
n+ r

=

k∑
r=1

(−1)
r+1

r

(
k

r

)
X (r) .

We call the expression

∑
n≥1

1(
n+ k
k

)
∑
m≥1

1

(m+ n)
2

2

the quadratic tail of zeta. In fact this quadratic tail is associated with the Mordell-
Tornheim sums, see for example, [1] and [3].

The other case of p = 1, from (2), can be evaluated in a similar fashion. We list the
results in the next theorem.

THEOREM 6. Under the assumptions of Theorem 5, we have for p = 1,

T (k) =

∞∑
n=1

(
ψ′(n+ 1)

)2
n

(
n+ k
k

) = X (0) +

k∑
r=1

(−1)
r

(
k

r

)
X (r)

= 5ζ (2) ζ (3)− 9ζ (5) +

k∑
r=1

(−1)
r

(
k

r

)
X (r) . (10)

PROOF. The proof follows directly from Theorem 5, and using the same technique.
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It is possible to represent the harmonic number sums (6), (8), (9), and (10) in terms
of an integral, this is developed in the next theorem.

THEOREM 7. Let r ∈ N. Then we have:∫ 1

0

x log x

(1− x)
Φ (x, 1, r + 1) dx = −2ζ (3) +

1

r
ζ (2) +

r−1∑
j=1

Hj

j2
, (11)

where Φ (x, 1, r + 1) is the classical Hurwitz-Lerch transcendent. From (8) we identify
the representation∫ 1

0

∫ 1

0

xy log x log y

(1− x) (1− y)
Φ (xy, 1, r + 1) dxdy = X (r) , (12)

where X (r) is given by (8).

PROOF. From (5), we can therefore write

∞∑
n=1

H
(2)
n

n (n+ r)
= −

∫ 1

0

log x

1− x

∞∑
n=1

1− xn
n (n+ r)

dx

= −1

r

∫ 1

0

log x

1− x (xΦ (x, 1, r + 1) +Hr + ln (1− x)) dx

=
1

r

ζ (3) +Hr−1ζ (2)−
r−1∑
j=1

Hj

j2

 .

We can evaluate

−1

r

∫ 1

0

log x

1− x (Hr + ln (1− x)) dx =
1

r
(Hrζ (2)− ζ (3)) ,

in which case

−1

r

∫ 1

0

x log x

1− x Φ (x, 1, r + 1) dx =
1

r

2ζ (3)− 1

r
ζ (2)−

r−1∑
j=1

Hj

j2

 ,

hence (11) follows. It is also possible to recover the integral identity (11) from (7).
Similar integral representation can be obtained for S (k) and T (k) . The results are

recorded in the next theorem.

THEOREM 8. Let the conditions of Theorem 5 hold. Then we have for k ∈ N,

1

1 + k

∫ 1

0

∫ 1

0

xy log x log y

(1− x) (1− y)
2F1

[
1, 2

2 + k

∣∣∣∣∣xy
]
dxdy

= S (k) =

∞∑
n=1

(
ψ′(n+ 1)

)2(
n+ k
k

) . (13)
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Also for T (k) :

1

1 + k

∫ 1

0

∫ 1

0

xy log x log y

(1− x) (1− y)
2F1

[
1, 1

2 + k

∣∣∣∣∣xy
]
dxdy

= T (k) =

∞∑
n=1

(
ψ′(n+ 1)

)2
n

(
n+ k
k

) , (14)

where

2F1

[
·, ·
·

∣∣∣∣∣ z
]
is the classical Gauss hypergeometric function.

PROOF. The proof follows the same pattern as that employed in Theorem 5.

EXAMPLES. Some illustrative examples follow. From (13), for k = 5,

1

6

∫ 1

0

∫ 1

0

xy log x log y

(1− x) (1− y)
2F1

[
1, 2

7

∣∣∣∣∣xy
]
dxdy

=
2075

576
ζ (2)− 895

82944
− 125

48
ζ (3)− 15

6
ζ (4)

= S (5) =

∞∑
n=1

(
ψ′(n+ 1)

)2(
n+ 5

5

) .

From (14), for k = 3,

1

4

∫ 1

0

∫ 1

0

xy log x log y

(1− x) (1− y)
2F1

[
1, 1

5

∣∣∣∣∣xy
]
dxdy

= 4ζ (2) ζ (3)− 10ζ (5)− 55

12
ζ (4) +

7

4
ζ (3)− 15

8
ζ (2)− 45

32

= T (3) =

∞∑
n=1

(
ψ′(n+ 1)

)2
n

(
n+ 3

3

) .
From (12), for r = 3, we have

lim
(ε,δ)→(0,0)

∫ 1

ε

∫ 1

δ

xy log x log y

(1− x) (1− y)

(
1

x3y3
+

1

2x2y2
+

log (1− xy)

x4y4

)
dxdy

=
51

32
+

3

8
ζ (2)− 5

4
ζ (3)− ζ (2) ζ (3)− ζ (5) .
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