(j, k)-Symmetric Points With Bounded Boundary Rotation*

Ganapathi Thirupathi[†]

Received 29 February 2016

Abstract

The main objective of this paper is to derive the integral representation for the classes involving (j, k)-symmetrical functions with bounded boundary rotation.

1 Introduction

Let \mathcal{A}_p be the class of functions analytic in the open unit disc $\mathbb{U} = \{z : |z| < 1\}$ of the form

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad (p \ge 1)$$

and let $\mathcal{A} = \mathcal{A}_1$. We denote by \mathcal{S}^* and \mathcal{C} the familiar subclasses of \mathcal{A} consisting of functions which are respectively starlike and convex in \mathbb{U} .

Let f(z) and g(z) be analytic in \mathbb{U} . Then we say that the function f(z) is subordinate to g(z) in \mathbb{U} , if there exists an analytic function w(z) in \mathbb{U} such that |w(z)| < |z|and f(z) = g(w(z)), denoted by $f \prec g$. If g(z) is univalent in \mathbb{U} , then the subordination is equivalent to f(0) = g(0) and $f(\mathbb{U}) \subset g(\mathbb{U})$.

Let k be a positive integer and j = 0, 1, 2, ..., (k-1). A domain D is said to be (j, k)-fold symmetric if a rotation of D about the origin through an angle $2\pi j/k$ carries D onto itself. A function $f \in \mathcal{A}$ is said to be (j, k)-symmetrical if for each $z \in \mathbb{U}$

$$f(\varepsilon z) = \varepsilon^j f(z),$$

where $\varepsilon = \exp(2\pi i/k)$. The family of (j, k)-symmetrical functions will be denoted by \mathcal{F}_k^j . For every function f defined on a symmetrical subset \mathbb{U} of \mathbb{C} , there exits a unique sequence of (j, k)-symmetrical functions $f_{j,k}(z), j = 0, 1, \ldots, k-1$ such that

$$f = \sum_{j=0}^{k-1} f_{j,k}.$$

^{*}Mathematics Subject Classifications: 30C45.

[†]Department of Mathematics, R.M.K.Engineering College, R.S.M.Nagar, Kavaraipettai-601 206, Tamilnadu, India

Moreover,

$$f_{j,k}(z) = \frac{1}{k} \sum_{\nu=0}^{k-1} \frac{f(\varepsilon^{\nu} z)}{\varepsilon^{\nu p j}}, \quad (f \in \mathcal{A}_p; k = 1, 2, \dots; j = 0, 1, 2, \dots (k-1)).$$
(1)

If ν is an integer, then the following identities follow directly from (1):

$$f'_{j,k}(z) = \frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon^{-\nu p j + \nu} f'(\varepsilon^{\nu} z), \qquad f''_{j,k}(z) = \frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon^{-\nu p j + 2\nu} f''(\varepsilon^{\nu} z), \qquad (2)$$

and

$$f_{j,k}(\varepsilon^{\nu}z) = \varepsilon^{\nu p j} f_{j,k}(z), \quad f_{j,k}(z) = \overline{f_{j,k}(\overline{z})}$$

$$f'_{j,k}(\varepsilon^{\nu}z) = \varepsilon^{\nu p j - \nu} f'_{j,k}(z), \quad f'_{j,k}(\overline{z}) = \overline{f'_{j,k}(z)}.$$
(3)

This decomposition is a generalization of the well known fact that each function defined on a symmetrical subset \mathbb{U} of \mathbb{C} can be uniquely represented as the sum of an even function and an odd function (see Theorem 1 of [4]). We observe that \mathcal{F}_2^1 , \mathcal{F}_2^0 and \mathcal{F}_k^1 are well-known families of odd functions, even functions and k-symmetrical functions respectively. Further, it is obvious that $f_{j,k}(z)$ is a linear operator from \mathbb{U} into \mathbb{U} . The notion of (j, k)-symmetrical functions was first introduced and studied by P. Liczberski and J. Połubiński in [4].

A function f(z) is said to be in the class $\mathcal{U}_{\kappa}(p)$ if

$$f(z) = z^p \exp\left\{\int_0^{2\pi} -p \log\left(1 - e^{-it}z\right) d\mu(t)\right\}$$

for $\mu(t) \in M_{\kappa}$. Geometrically the condition is that the total variation of the angle which the radius vector $f(re^{i\theta})$ makes with the positive real axis is bounded above by $\kappa p\pi$ as z describes the circle |z| = r for |z| < 1. From [9], let $V_{\kappa}(p)$ denotes the class of functions f defined on U which map conformally onto an image domain of boundary rotation almost $\kappa p\pi$. Hence $f(z) \in V_{\kappa}(p)$, if and only if

$$f'(z) = pz^{p-1} \exp\left\{-p \int_0^{2\pi} \log\left(1 - e^{-it}z\right) d\mu(t)\right\}$$

for some $\mu(t) \in M_{\kappa}$.

For an integer κ , $\kappa \geq 2$, let M_{κ} denote the class of real valued functions μ of bounded variation on $[0, 2\pi]$ which satisfy

$$\int_{0}^{2\pi} d\mu(t) = 2 \text{ and } \int_{0}^{2\pi} |d\mu(t)| \le \kappa.$$
(4)

The class M_{κ} was used by Paatero [6]. Let \mathcal{P}_{κ} be the class of analytic functions p defined in \mathbb{U} and with representation

$$p(z) = \frac{1}{2} \int_0^{2\pi} \frac{1 + ze^{-it}}{1 - ze^{-it}} d\mu(t),$$
(5)

20

where $\mu(t)$ is a function with bounded variation on $[0, 2\pi]$ and it satisfies the conditions (4).

We note that $\kappa \geq 2$ and $p_2 = p$ is the class of analytic functions with positive real part in \mathbb{U} with p(0) = 1. The class \mathcal{P}_{κ} was introduced in [7]. From the integral representation (5) it is immediately clear that $p \in \mathcal{P}_{\kappa}$, if and only if, there are analytic functions $p_1, p_2 \in P$ such that

$$p(z) = \left(\frac{\kappa}{4} + \frac{1}{2}\right)p_1(z) - \left(\frac{\kappa}{4} - \frac{1}{2}\right)p_2(z).$$

The class \mathcal{P}'_{κ} is defined to be the class of all analytic functions f such that $f' \in \mathcal{P}_{\kappa}$.

Recently several authors Selvaraj et al. [8], Karthikeyan [3] and Alsarari et al. [1] introduced and investigated several subclasses of symmetric conjugate points. Motivated by the concept introduced by [2, 5], in this paper, we derive the integral representation for the classes involving (j, k)-symmetrical functions with bounded boundary rotation. The result is also extended to symmetric conjugate functions.

2 Definitions

DEFINITION 1. A function $f \in \mathcal{A}_p$ is said to be in the class $\mathcal{U}_p^{j,k}(\mu)$ if and only if it satisfies the condition

$$\frac{1}{p}\frac{zf'(z)}{f_{j,k}(z)} \in \mathcal{P}_{\kappa}, \qquad (z \in \mathbb{U})$$

where $f_{j,k}(z) \neq 0$ and is defined by the equality (1).

DEFINITION 2. A function $f \in \mathcal{A}_p$ is said to be in the class $\mathcal{V}_p^{j,k}(\mu)$ if and only if it satisfies the condition

$$\frac{1}{p} \frac{(zf'(z))'}{f'_{i,k}(z)} \in \mathcal{P}_{\kappa}, \qquad (z \in \mathbb{U})$$

where $f_{j,k}(z) \neq 0$ and is defined by the equality (1). It is clear that $f \in \mathcal{V}_p^{j,k}(\mu)$ if and only if $zf' \in \mathcal{U}_p^{j,k}(\mu)$.

REMARK 1. For p = 1, this class reduces to the class $U_k(m, n)$, which was studied by Fuad. Alsarari et al. [2]. For j = k = 1 and p = 1, we get another class introduced by [6].

3 Main Results

THEOREM 1. Suppose a function $f \in \mathcal{A}_p$ belongs to the class $\mathcal{U}_p^{j,k}(\mu)$. Then

$$f_{j,k}(z) = z^p \exp\left\{-\frac{p}{k} \sum_{\nu=0}^{k-1} \int_0^{2\pi} \log\left(1 - ze^{-i\left(t - \frac{2\pi\nu}{k}\right)}\right) d\mu(t)\right\},\$$

where $f_{j,k}(z)$ is defined by (1) and $\mu(t)$ is defined by (4).

PROOF. Suppose that $f \in \mathcal{U}_p^{j, k}(\mu)$. Then

$$\frac{1}{p}\frac{zf'(z)}{f_{j,k}(z)} = p(z), \qquad (z \in \mathbb{U}; \, \nu = 0, \, 1, \, 2, \, \dots, \, k-1) \tag{6}$$

where

$$p(z) = \frac{1}{2} \int_0^{2\pi} \frac{1 + ze^{-it}}{1 - ze^{-it}} d\mu(t).$$

Substituting z by $\varepsilon^{\nu} z$ in (6) respectively,

$$\frac{1}{p} \frac{\varepsilon^{\nu} z f'(\varepsilon^{\nu} z)}{f_{j,k}(\varepsilon^{\nu} z)} = p(\varepsilon^{\nu} z). \qquad (z \in \mathbb{U}; \, \nu = 0, \, 1, \, 2, \, \dots, \, k-1)$$
(7)

Using the equality (3), (7) becomes

$$\frac{1}{p} \frac{z \varepsilon^{\nu - \nu p j} f'(\varepsilon^{\nu} z)}{f_{j,k}(z)} = \frac{1}{2} \int_0^{2\pi} \frac{1 + z e^{-i\left(t - \frac{2\pi\nu}{k}\right)}}{1 - z e^{-i\left(t - \frac{2\pi\nu}{k}\right)}} d\mu(t).$$
(8)

Let $(\nu = 0, 1, 2, ..., k - 1)$ in (8) and summing them, we get

$$\frac{1}{p}\frac{zf_{j,k}'(z)}{f_{j,k}(z)} = \frac{1}{2k}\sum_{\nu=0}^{k-1}\int_0^{2\pi}\frac{1+ze^{-i\left(t-\frac{2\pi\nu}{k}\right)}}{1-ze^{-i\left(t-\frac{2\pi\nu}{k}\right)}}d\mu(t),$$

equivalently,

$$\frac{zf_{j,k}'(z)}{f_{j,k}(z)} - \frac{p}{z} = \frac{1}{2kz} \sum_{\nu=0}^{k-1} \int_0^{2\pi} \frac{1 + ze^{-i\left(t - \frac{2\pi\nu}{k}\right)}}{1 - ze^{-i\left(t - \frac{2\pi\nu}{k}\right)}} d\mu(t) - \frac{p}{z}.$$

Integrating, we get

$$\log\left(\frac{f_{j,k}(z)}{z^p}\right) = \frac{1}{k} \sum_{\nu=0}^{k-1} \int_0^{2\pi} -\log\left(1 - ze^{-i\left(t - \frac{2\pi\nu}{k}\right)}\right) d\mu(t),$$

which gives the required assertion of Theorem 1.

THEOREM 2. Suppose a function $f \in \mathcal{A}_p$ belongs to the class $\mathcal{U}_p^{j, k}(\mu)$. Then

$$\begin{split} f(z) &= \frac{1}{2} \int_0^z \left\{ p \zeta^{p-1} \exp\left[-\frac{p}{k} \sum_{\nu=0}^{k-1} \int_0^{2\pi} \log\left(1 - \zeta e^{-i\left(t - \frac{2\pi\nu}{k}\right)} \right) d\mu(t) \right] \times \\ &\int_0^{2\pi} \frac{1 + \zeta e^{-i\left(t - \frac{2\pi\nu}{k}\right)}}{1 - \zeta e^{-i\left(t - \frac{2\pi\nu}{k}\right)}} d\mu(t) \right\} d\zeta, \end{split}$$

where $f_{j,k}(z)$ is defined by (1) and $\mu(t)$ is defined by (4).

PROOF. Let $f \in \mathcal{U}_p^{j, k}(\mu)$. Then

$$\frac{1}{p}\frac{zf'(z)}{f_{j,k}(z)} = p(z), \qquad (z \in \mathbb{U}; \, \nu = 0, \, 1, \, 2, \, \dots, \, k-1)$$

which implies that

$$zf'(z) = pf_{j,k}(z)p(z), \qquad (z \in \mathbb{U}; \ \nu = 0, \ 1, \ 2, \ \dots, \ k-1).$$

Using Theorem 1 and (5), we have

$$f'(z) = pz^{p-1} \exp\left\{-\frac{p}{k} \sum_{\nu=0}^{k-1} \int_0^{2\pi} \log\left(1 - ze^{-i\left(t - \frac{2\pi\nu}{k}\right)}\right) d\mu(t)\right\} \times \frac{1}{2} \int_0^{2\pi} \frac{1 + ze^{-it}}{1 - ze^{-it}} d\mu(t).$$

Integrating, we get the required result of this Theorem.

COROLLARY 1. Put p = 1 and j = m, k = n, in the above Theorem 1 and 2, we get the results in [2].

COROLLARY 2. Suppose a function $f \in \mathcal{A}_p$ belongs to the class $\mathcal{V}_p^{j,k}(\mu)$. Then

$$f'_{j,k}(z) = pz^{p-1} \exp\left\{-\frac{p}{k} \sum_{\nu=0}^{k-1} \int_0^{2\pi} \log\left(1 - ze^{-i\left(t - \frac{2\pi\nu}{k}\right)}\right) d\mu(t)\right\}$$

and

$$f'(z) = \frac{p}{2z} \int_0^z \left\{ p\zeta^{p-1} \exp\left[-\frac{p}{k} \sum_{\nu=0}^{k-1} \int_0^{2\pi} \log\left(1 - \zeta e^{-i\left(t - \frac{2\pi\nu}{k}\right)}\right) d\mu(t) \right] \int_0^{2\pi} \frac{1 + \zeta e^{-i\left(t - \frac{2\pi\nu}{k}\right)}}{1 - \zeta e^{-i\left(t - \frac{2\pi\nu}{k}\right)}} d\mu(t) \right\} d\zeta,$$

where $f_{j,k}(z)$ is defined by (1) and $\mu(t)$ is defined by (4).

THEOREM 3. Suppose $f \in \mathcal{A}_p$ belongs to the class $\mathcal{U}_p^{j, k}(\mu)$. Then $f_{j, k} \in \mathcal{U}_{\kappa}$.

PROOF: Let $f \in \mathcal{U}_p^{j,k}(\mu)$. Then

$$\frac{1}{p}\frac{zf'(z)}{f_{j,k}(z)} = p(z). \qquad (z \in \mathbb{U}; \ \nu = 0, \ 1, \ 2, \ \dots, \ k-1)$$

Replacing z by $\varepsilon^{\nu} z$,

$$\frac{1}{p}\frac{\varepsilon^{\nu}zf'(\varepsilon^{\nu}z)}{f_{j,k}(\varepsilon^{\nu}z)} = p(\varepsilon^{\nu}z). \qquad (z \in \mathbb{U}; \, \nu = 0, \, 1, \, 2, \, \dots, \, k-1)$$

Let $(\nu = 0, 1, 2, \dots, k-1)$ in (8) and summing them, we get

$$\frac{1}{p} \frac{z f_{j,k}'(z)}{f_{j,k}(z)} = \frac{1}{k} \sum_{\nu=0}^{k-1} p(\varepsilon^{\nu} z).$$

It is clear that $\frac{1}{k} \sum_{\nu=0}^{k-1} p(\varepsilon^{\nu} z)$ belongs to \mathcal{P}_{κ} . Hence the proof is complete.

References

- Fuad. S. M. Alsarari and S. Latha, On certain subclasses of functions with respect to (2j, k)-symmetric conjugate points, J. Rajasthan Acad. Phys. Sci., 13(2014), 17–30.
- [2] Fuad. S. M. AlSarari and S. Latha, On Symmetrical Functions with bounded boundary rotation, J. Math. Comput. Sci., 4(2014), 494–502.
- [3] K. R. Karthikeyan, Some classes of analytic functions with respect to symmetric conjugate points, European Journal of Mathematical Sciences, 2(2013), 168–177.
- [4] P. Liczberski and J. Połubiński, On (j, k)-symmetrical functions, Math. Bohem., 120(1995), 13–28.
- [5] K. I. Noor, B. Malik and S. Mustafa, A survey on functions of bounded boundary and bounded radius rotation, Appl. Math. E-Notes, 12(2012), 136–152.
- [6] V. Paatero, Ber die konforme Abbildung von Gebieten deren Rnder von beschrukter Drehung sind, Ann. Acad. Sei. Fenn. Ser A, 33(1931), 1–79.
- [7] B. Pinchuk, Functions of bounded boundary rotation, Israel J. Math., 10(1971), 6–16.
- [8] C. Selvaraj, K. R. Karthikeyan and G. Thirupathi, Multivalent functions with respect to symmetric conjugate points, Punjab Univ. J. Math., 46(2014), 1–8.
- [9] E. M. Silvia, p-valent classes related to functions of bounded boundary rotation, Rocky Mountain J. Math., 7(1977), 265–274.