(j, k)-Symmetric Points With Bounded Boundary Rotation*

Ganapathi Thirupathi ${ }^{\dagger}$

Received 29 February 2016

Abstract

The main objective of this paper is to derive the integral representation for the classes involving (j, k)-symmetrical functions with bounded boundary rotation.

1 Introduction

Let \mathcal{A}_{p} be the class of functions analytic in the open unit disc $\mathbb{U}=\{z:|z|<1\}$ of the form

$$
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad(p \geq 1)
$$

and let $\mathcal{A}=\mathcal{A}_{1}$. We denote by \mathcal{S}^{*} and \mathcal{C} the familiar subclasses of \mathcal{A} consisting of functions which are respectively starlike and convex in \mathbb{U}.

Let $f(z)$ and $g(z)$ be analytic in \mathbb{U}. Then we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U}, if there exists an analytic function $w(z)$ in \mathbb{U} such that $|w(z)|<|z|$ and $f(z)=g(w(z))$, denoted by $f \prec g$. If $g(z)$ is univalent in \mathbb{U}, then the subordination is equivalent to $f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.

Let k be a positive integer and $j=0,1,2, \ldots,(k-1)$. A domain D is said to be (j, k)-fold symmetric if a rotation of D about the origin through an angle $2 \pi j / k$ carries D onto itself. A function $f \in \mathcal{A}$ is said to be (j, k)-symmetrical if for each $z \in \mathbb{U}$

$$
f(\varepsilon z)=\varepsilon^{j} f(z)
$$

where $\varepsilon=\exp (2 \pi i / k)$. The family of (j, k)-symmetrical functions will be denoted by \mathcal{F}_{k}^{j}. For every function f defined on a symmetrical subset \mathbb{U} of \mathbb{C}, there exits a unique sequence of (j, k)-symmetrical functions $f_{j, k}(z), j=0,1, \ldots, k-1$ such that

$$
f=\sum_{j=0}^{k-1} f_{j, k}
$$

[^0]Moreover,

$$
\begin{equation*}
f_{j, k}(z)=\frac{1}{k} \sum_{\nu=0}^{k-1} \frac{f\left(\varepsilon^{\nu} z\right)}{\varepsilon^{\nu p j}}, \quad\left(f \in \mathcal{A}_{p} ; k=1,2, \ldots ; j=0,1,2, \ldots(k-1)\right) \tag{1}
\end{equation*}
$$

If ν is an integer, then the following identities follow directly from (1):

$$
\begin{equation*}
f_{j, k}^{\prime}(z)=\frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon^{-\nu p j+\nu} f^{\prime}\left(\varepsilon^{\nu} z\right), \quad f_{j, k}^{\prime \prime}(z)=\frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon^{-\nu p j+2 \nu} f^{\prime \prime}\left(\varepsilon^{\nu} z\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
& f_{j, k}\left(\varepsilon^{\nu} z\right)=\varepsilon^{\nu p j} f_{j, k}(z), \quad f_{j, k}(z)=\overline{f_{j, k}(\bar{z})} \\
& f_{j, k}^{\prime}\left(\varepsilon^{\nu} z\right)=\varepsilon^{\nu p j-\nu} f_{j, k}^{\prime}(z), \quad f_{j, k}^{\prime}(\bar{z})=\overline{f_{j, k}^{\prime}(z)} \tag{3}
\end{align*}
$$

This decomposition is a generalization of the well known fact that each function defined on a symmetrical subset \mathbb{U} of \mathbb{C} can be uniquely represented as the sum of an even function and an odd function (see Theorem 1 of [4]). We observe that $\mathcal{F}_{2}^{1}, \mathcal{F}_{2}^{0}$ and \mathcal{F}_{k}^{1} are well-known families of odd functions, even functions and k-symmetrical functions respectively. Further, it is obvious that $f_{j, k}(z)$ is a linear operator from \mathbb{U} into \mathbb{U}. The notion of (j, k)-symmetrical functions was first introduced and studied by P. Liczberski and J. Połubiński in [4].

A function $f(z)$ is said to be in the class $\mathcal{U}_{\kappa}(p)$ if

$$
f(z)=z^{p} \exp \left\{\int_{0}^{2 \pi}-p \log \left(1-e^{-i t} z\right) d \mu(t)\right\}
$$

for $\mu(t) \in M_{\kappa}$. Geometrically the condition is that the total variation of the angle which the radius vector $f\left(r e^{i \theta}\right)$ makes with the positive real axis is bounded above by $\kappa p \pi$ as z describes the circle $|z|=r$ for $|z|<1$. From [9], let $V_{\kappa}(p)$ denotes the class of functions f defined on \mathbb{U} which map conformally onto an image domain of boundary rotation almost $\kappa p \pi$. Hence $f(z) \in V_{\kappa}(p)$, if and only if

$$
f^{\prime}(z)=p z^{p-1} \exp \left\{-p \int_{0}^{2 \pi} \log \left(1-e^{-i t} z\right) d \mu(t)\right\}
$$

for some $\mu(t) \in M_{\kappa}$.
For an integer $\kappa, \kappa \geq 2$, let M_{κ} denote the class of real valued functions μ of bounded variation on $[0,2 \pi]$ which satisfy

$$
\begin{equation*}
\int_{0}^{2 \pi} d \mu(t)=2 \text { and } \int_{0}^{2 \pi}|d \mu(t)| \leq \kappa \tag{4}
\end{equation*}
$$

The class M_{κ} was used by Paatero [6]. Let \mathcal{P}_{κ} be the class of analytic functions p defined in \mathbb{U} and with representation

$$
\begin{equation*}
p(z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu(t) \tag{5}
\end{equation*}
$$

where $\mu(t)$ is a function with bounded variation on $[0,2 \pi]$ and it satisfies the conditions (4).

We note that $\kappa \geq 2$ and $p_{2}=p$ is the class of analytic functions with positive real part in \mathbb{U} with $p(0)=1$. The class \mathcal{P}_{κ} was introduced in [7]. From the integral representation (5) it is immediately clear that $p \in \mathcal{P}_{\kappa}$, if and only if, there are analytic functions $p_{1}, p_{2} \in P$ such that

$$
p(z)=\left(\frac{\kappa}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{\kappa}{4}-\frac{1}{2}\right) p_{2}(z)
$$

The class $\mathcal{P}_{\kappa}^{\prime}$ is defined to be the class of all analytic functions f such that $f^{\prime} \in \mathcal{P}_{\kappa}$.
Recently several authors Selvaraj et al. [8], Karthikeyan [3] and Alsarari et al. [1] introduced and investigated several subclasses of symmetric conjugate points. Motivated by the concept introduced by $[2,5]$, in this paper, we derive the integral representation for the classes involving (j, k)-symmetrical functions with bounded boundary rotation. The result is also extended to symmetric conjugate functions.

2 Definitions

DEFINITION 1. A function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{U}_{p}^{j, k}(\mu)$ if and only if it satisfies the condition

$$
\frac{1}{p} \frac{z f^{\prime}(z)}{f_{j, k}(z)} \in \mathcal{P}_{\kappa}, \quad(z \in \mathbb{U})
$$

where $f_{j, k}(z) \neq 0$ and is defined by the equality (1).
DEFINITION 2. A function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{V}_{p}^{j, k}(\mu)$ if and only if it satisfies the condition

$$
\frac{1}{p} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f_{j, k}^{\prime}(z)} \in \mathcal{P}_{\kappa}, \quad(z \in \mathbb{U})
$$

where $f_{j, k}(z) \neq 0$ and is defined by the equality (1). It is clear that $f \in \mathcal{V}_{p}^{j, k}(\mu)$ if and only if $z f^{\prime} \in \mathcal{U}_{p}^{j, k}(\mu)$.

REMARK 1. For $p=1$, this class reduces to the class $U_{k}(m, n)$, which was studied by Fuad. Alsarari et al. [2]. For $j=k=1$ and $p=1$, we get another class introduced by [6].

3 Main Results

THEOREM 1. Suppose a function $f \in \mathcal{A}_{p}$ belongs to the class $\mathcal{U}_{p}^{j, k}(\mu)$. Then

$$
f_{j, k}(z)=z^{p} \exp \left\{-\frac{p}{k} \sum_{\nu=0}^{k-1} \int_{0}^{2 \pi} \log \left(1-z e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}\right) d \mu(t)\right\}
$$

where $f_{j, k}(z)$ is defined by (1) and $\mu(t)$ is defined by (4).
PROOF. Suppose that $f \in \mathcal{U}_{p}^{j, k}(\mu)$. Then

$$
\begin{equation*}
\frac{1}{p} \frac{z f^{\prime}(z)}{f_{j, k}(z)}=p(z), \quad(z \in \mathbb{U} ; \nu=0,1,2, \ldots, k-1) \tag{6}
\end{equation*}
$$

where

$$
p(z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu(t)
$$

Substituting z by $\varepsilon^{\nu} z$ in (6) respectively,

$$
\begin{equation*}
\frac{1}{p} \frac{\varepsilon^{\nu} z f^{\prime}\left(\varepsilon^{\nu} z\right)}{f_{j, k}\left(\varepsilon^{\nu} z\right)}=p\left(\varepsilon^{\nu} z\right) . \quad(z \in \mathbb{U} ; \nu=0,1,2, \ldots, k-1) \tag{7}
\end{equation*}
$$

Using the equality $(3),(7)$ becomes

$$
\begin{equation*}
\frac{1}{p} \frac{z \varepsilon^{\nu-\nu p j} f^{\prime}\left(\varepsilon^{\nu} z\right)}{f_{j, k}(z)}=\frac{1}{2} \int_{0}^{2 \pi} \frac{1+z e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}}{1-z e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}} d \mu(t) \tag{8}
\end{equation*}
$$

Let $(\nu=0,1,2, \ldots, k-1)$ in (8) and summing them, we get

$$
\frac{1}{p} \frac{z f_{j, k}^{\prime}(z)}{f_{j, k}(z)}=\frac{1}{2 k} \sum_{\nu=0}^{k-1} \int_{0}^{2 \pi} \frac{1+z e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}}{1-z e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}} d \mu(t)
$$

equivalently,

$$
\frac{z f_{j, k}^{\prime}(z)}{f_{j, k}(z)}-\frac{p}{z}=\frac{1}{2 k z} \sum_{\nu=0}^{k-1} \int_{0}^{2 \pi} \frac{1+z e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}}{1-z e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}} d \mu(t)-\frac{p}{z}
$$

Integrating, we get

$$
\log \left(\frac{f_{j, k}(z)}{z^{p}}\right)=\frac{1}{k} \sum_{\nu=0}^{k-1} \int_{0}^{2 \pi}-\log \left(1-z e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}\right) d \mu(t)
$$

which gives the required assertion of Theorem 1.
THEOREM 2. Suppose a function $f \in \mathcal{A}_{p}$ belongs to the class $\mathcal{U}_{p}^{j, k}(\mu)$. Then

$$
\begin{aligned}
f(z)=\frac{1}{2} \int_{0}^{z} & \left\{p \zeta^{p-1} \exp \left[-\frac{p}{k} \sum_{\nu=0}^{k-1} \int_{0}^{2 \pi} \log \left(1-\zeta e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}\right) d \mu(t)\right] \times\right. \\
& \left.\int_{0}^{2 \pi} \frac{1+\zeta e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}}{1-\zeta e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}} d \mu(t)\right\} d \zeta
\end{aligned}
$$

where $f_{j, k}(z)$ is defined by (1) and $\mu(t)$ is defined by (4).

PROOF. Let $f \in \mathcal{U}_{p}^{j, k}(\mu)$. Then

$$
\frac{1}{p} \frac{z f^{\prime}(z)}{f_{j, k}(z)}=p(z), \quad(z \in \mathbb{U} ; \nu=0,1,2, \ldots, k-1)
$$

which implies that

$$
z f^{\prime}(z)=p f_{j, k}(z) p(z), \quad(z \in \mathbb{U} ; \nu=0,1,2, \ldots, k-1)
$$

Using Theorem 1 and (5), we have
$f^{\prime}(z)=p z^{p-1} \exp \left\{-\frac{p}{k} \sum_{\nu=0}^{k-1} \int_{0}^{2 \pi} \log \left(1-z e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}\right) d \mu(t)\right\} \times \frac{1}{2} \int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu(t)$.
Integrating, we get the required result of this Theorem.
COROLLARY 1. Put $p=1$ and $j=m, k=n$, in the above Theorem 1 and 2 , we get the results in [2].

COROLLARY 2. Suppose a function $f \in \mathcal{A}_{p}$ belongs to the class $\mathcal{V}_{p}^{j, k}(\mu)$. Then

$$
f_{j, k}^{\prime}(z)=p z^{p-1} \exp \left\{-\frac{p}{k} \sum_{\nu=0}^{k-1} \int_{0}^{2 \pi} \log \left(1-z e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}\right) d \mu(t)\right\}
$$

and

$$
\begin{aligned}
f^{\prime}(z)=\frac{p}{2 z} \int_{0}^{z} & \left\{p \zeta^{p-1} \exp \left[-\frac{p}{k} \sum_{\nu=0}^{k-1} \int_{0}^{2 \pi} \log \left(1-\zeta e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}\right) d \mu(t)\right]\right. \\
& \left.\int_{0}^{2 \pi} \frac{1+\zeta e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}}{1-\zeta e^{-i\left(t-\frac{2 \pi \nu}{k}\right)}} d \mu(t)\right\} d \zeta
\end{aligned}
$$

where $f_{j, k}(z)$ is defined by (1) and $\mu(t)$ is defined by (4).
THEOREM 3. Suppose $f \in \mathcal{A}_{p}$ belongs to the class $\mathcal{U}_{p}^{j, k}(\mu)$. Then $f_{j, k} \in \mathcal{U}_{\kappa}$.
PROOF: Let $f \in \mathcal{U}_{p}^{j, k}(\mu)$. Then

$$
\frac{1}{p} \frac{z f^{\prime}(z)}{f_{j, k}(z)}=p(z) . \quad(z \in \mathbb{U} ; \nu=0,1,2, \ldots, k-1)
$$

Replacing z by $\varepsilon^{\nu} z$,

$$
\frac{1}{p} \frac{\varepsilon^{\nu} z f^{\prime}\left(\varepsilon^{\nu} z\right)}{f_{j, k}\left(\varepsilon^{\nu} z\right)}=p\left(\varepsilon^{\nu} z\right) . \quad(z \in \mathbb{U} ; \nu=0,1,2, \ldots, k-1)
$$

Let $(\nu=0,1,2, \ldots, k-1)$ in (8) and summing them, we get

$$
\frac{1}{p} \frac{z f_{j, k}^{\prime}(z)}{f_{j, k}(z)}=\frac{1}{k} \sum_{\nu=0}^{k-1} p\left(\varepsilon^{\nu} z\right)
$$

It is clear that $\frac{1}{k} \sum_{\nu=0}^{k-1} p\left(\varepsilon^{\nu} z\right)$ belongs to \mathcal{P}_{κ}. Hence the proof is complete.

References

[1] Fuad. S. M. Alsarari and S. Latha, On certain subclasses of functions with respect to ($2 j, k$)-symmetric conjugate points, J. Rajasthan Acad. Phys. Sci., 13(2014), 17-30.
[2] Fuad. S. M. AlSarari and S. Latha, On Symmetrical Functions with bounded boundary rotation, J. Math. Comput. Sci., 4(2014), 494-502.
[3] K. R. Karthikeyan, Some classes of analytic functions with respect to symmetric conjugate points, European Journal of Mathematical Sciences, 2(2013), 168-177.
[4] P. Liczberski and J. Połubiński, On ($j, k)$-symmetrical functions, Math. Bohem., 120(1995), 13-28.
[5] K. I. Noor, B. Malik and S. Mustafa, A survey on functions of bounded boundary and bounded radius rotation, Appl. Math. E-Notes, 12(2012), 136-152.
[6] V. Paatero, Ber die konforme Abbildung von Gebieten deren Rnder von beschrnkter Drehung sind, Ann. Acad. Sei. Fenn. Ser A, 33(1931), 1-79.
[7] B. Pinchuk, Functions of bounded boundary rotation, Israel J. Math., 10(1971), 6-16.
[8] C. Selvaraj, K. R. Karthikeyan and G. Thirupathi, Multivalent functions with respect to symmetric conjugate points, Punjab Univ. J. Math., 46(2014), 1-8.
[9] E. M. Silvia, p-valent classes related to functions of bounded boundary rotation, Rocky Mountain J. Math., 7(1977), 265-274.

[^0]: *Mathematics Subject Classifications: 30C45.
 ${ }^{\dagger}$ Department of Mathematics, R.M.K.Engineering College, R.S.M.Nagar, Kavaraipettai-601 206, Tamilnadu, India

