Explicit Approximation Of The Sums Over The Imaginary Part Of The Non-Trivial Zeros Of The Riemann Zeta Function*

Mehdi Hassani ${ }^{\dagger}$

Received 07 June 2015

Abstract

Based on the recent improved upper bound for the argument of the Riemann zeta-function $\zeta(s)$ on the critical line, we obtain explicit sharp bounds for the sum $\sum_{0<\gamma \leqslant T} \gamma^{-1}$, where γ denote the imaginary part of the non-trivial zeros $\rho=\beta+i \gamma$ of $\zeta(s)$.

1 Introduction

The Riemann zeta-function is defined by $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ for $\Re(s)>1$, and extended by analytic continuation to the complex plan with a simple pole at $s=1$. We let

$$
\gamma_{1}=\min \{\gamma>0: \zeta(\beta+i \gamma)=0\} \cong 14.1347251417
$$

which is the imaginary part of the first nontrivial zero of $\zeta(s)$. It is known [2] that

$$
\begin{equation*}
N(T):=\sum_{\substack{0<\gamma \leqslant T \\ \zeta(\beta+i \gamma)=0}} 1=\frac{T}{2 \pi} \log \frac{T}{2 \pi \mathrm{e}}+O(\log T) \tag{1}
\end{equation*}
$$

from which by integration we infer that

$$
A(T):=\sum_{\substack{0<\gamma \leqslant T \\ \zeta(\beta+i \gamma)=0}} \frac{1}{\gamma}=K(T)+O(1),
$$

where for the whole text we let

$$
K(T)=\frac{1}{4 \pi} \log ^{2} T-\frac{\log (2 \pi)}{2 \pi} \log T
$$

The aim of present note is to determine an interval for which the term $O(1)$ in the above approximation belongs in. To this end, we show the following.

[^0]THEOREM 1. For each $T \geqslant \gamma_{1}$, we have $0.015<A(T)-K(T)<0.482$.

We note that in our previous paper [1] we have done similar computation, based on the approximation of $N(T)$ due to Rosser [3]. Unfortunately, we have misquoted in Rosser's result, taking 0.433 instead of 0.443 which occurs in the approximation of $N(T)$ given by him, and ends in the double side approximation $0.06<A(T)-K(T)<0.436$, so our previous calculation needs some corrections. The present paper is indeed such correction.

We give the proof of Theorem 1 in the next two sections, and then we give some computational remarks concerning the difference $A(T)-K(T)$ and we propose finding its limit value as $T \rightarrow \infty$.

2 Preliminaries

To get an explicit result as the above, we need an explicit form of the approximation (1). We note that the term $O(\log T)$ in (1) comes from the approximation of the function $S(T)$, which is defined traditionally by $S(T)=\frac{1}{\pi} \arg \zeta\left(\frac{1}{2}+i T\right)$, where the argument is determined via continuous variation along the line segments connecting $2,2+i T$ and $\frac{1}{2}+i T$, with taking the argument of $\zeta(s)$ at $s=2$ to be zero. If T is an ordinate of a zero of $\zeta(s)$, then we set $S(T)=\frac{1}{2}\left(S\left(T^{+}\right)+S\left(T^{-}\right)\right)$. Indeed, the approximation of the function $N(T)$ related strongly to the approximation of $S(T)$, by considering the known (see [4]) inequality

$$
\begin{equation*}
\left|N(T)-\frac{T}{2 \pi} \log \frac{T}{2 \pi e}-\frac{7}{8}\right| \leqslant|S(T)|+\mathcal{E}(T) \tag{2}
\end{equation*}
$$

which holds for each $T \geqslant 1$ with

$$
\mathcal{E}(T)=\frac{1}{4 \pi} \arctan \frac{1}{2 T}+\frac{T}{4 \pi} \log \left(1+\frac{1}{4 T^{2}}\right)+\frac{1}{3 \pi T} .
$$

On the other hand, the best known unconditional approximations of $S(T)$ is due to Trudgian [4], where he shows for each $T \geqslant \mathrm{e}$ that

$$
\begin{equation*}
|S(T)| \leqslant 0.112 \log T+0.278 \log \log T+2.510 \tag{3}
\end{equation*}
$$

By using the above bound, we imply the following approximation.

LEMMA 1. For each $T \geqslant \gamma_{1}$, we have $|N(T)-\mathcal{F}(T)| \leqslant \mathcal{R}(T)$ with

$$
\mathcal{F}(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi e}+\frac{7}{8}, \quad \text { and } \quad \mathcal{R}(T)=\frac{14}{125} \log T+\frac{139}{500} \log \log T+\frac{1261}{500} .
$$

This approximation allows us to get bounds for the sum $\sum_{0<\gamma \leqslant T} g(\gamma)$ where g is a suitable function, with the conditions as in the following result.

PROPOSITION 1. For the functions f and g and for the real numbers a and b, we define

$$
\Im(a, b ; g, f):=\int_{a}^{b} g(t) f^{\prime}(t) d t+g(a) f(a)
$$

If we assume that $g(t)$ is a positive, differentiable and decreasing function defined for $t \geqslant \gamma_{1}$, then for each $T \geqslant \gamma_{1}$, we have

$$
\left|\sum_{0<\gamma \leqslant T} g(\gamma)-\Im\left(\gamma_{1}, T ; g, \mathcal{F}\right)\right| \leqslant \Im\left(\gamma_{1}, T ; g, \mathcal{R}\right)
$$

where \mathcal{F} and \mathcal{R} are as in Lemma 1.
If we take $g(t)=\frac{1}{t}$, then by following some computations, we will obtain bounds as in Theorem 1. To perform computations we note that

$$
\begin{equation*}
\int \frac{\mathcal{F}^{\prime}(t)}{t} d t=\frac{1}{4 \pi} \log ^{2}\left(\frac{t}{2 \pi}\right):=\hat{F}(t) \tag{4}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\int \frac{\mathcal{R}^{\prime}(t)}{t} d t=-\frac{14}{125 t}-\frac{139}{500} J(t):=\hat{R}(t) \tag{5}
\end{equation*}
$$

where the function J is defined for each real $t>1$ by

$$
J(t)=\int_{1}^{\infty} \frac{d t}{s t^{s}}
$$

which is strictly decreasing and $J(t) \sim \frac{1}{t \log t}$ as $t \rightarrow \infty$. More precisely, we show the following.

LEMMA 2. For each real $t>1$, we have

$$
\begin{equation*}
\frac{1}{t \log t}-\frac{1}{t \log ^{2} t}<J(t)<\frac{1}{t \log t}-\frac{1}{t \log ^{2} t}+\frac{2}{t \log ^{3} t} \tag{6}
\end{equation*}
$$

Moreover, for each $t>12.7$, we have

$$
\begin{equation*}
\frac{1}{t \log t}-\frac{1}{t \log ^{2} t}+\frac{1}{t \log ^{3} t}<J(t)<\frac{1}{t \log t}-\frac{1}{t \log ^{2} t}+\frac{2}{t \log ^{3} t} \tag{7}
\end{equation*}
$$

As an immediate corollary, by considering the relation (5) together with the bounds (7), we obtain the following required bounds.

COROLLARY 1. For each $t>12.7$, we have $\hat{R}_{\ell}(t)<\hat{R}(t)<\hat{R}_{u}(t)$, where

$$
\hat{R}_{\ell}(t)=-\frac{14}{125 t}-\frac{139}{500}\left(\frac{1}{t \log t}-\frac{1}{t \log ^{2} t}+\frac{2}{t \log ^{3} t}\right)
$$

and

$$
\hat{R}_{u}(t)=-\frac{14}{125 t}-\frac{139}{500}\left(\frac{1}{t \log t}-\frac{1}{t \log ^{2} t}+\frac{1}{t \log ^{3} t}\right)
$$

By applying the above preliminary results, deduction of Theorem 1 is based on a simple computation. We follow the computational details in the next section.

REMARK 1. Assume that the bounds in (3) were to improve dramatically, say to $|S(T)| \leqslant \delta_{1} \log T$ for some fixed $\delta_{1}>0$ and for each $T \geqslant \gamma_{1}$. Proposition 1 implies that

$$
\left|A(T)-\left(\hat{F}(T)-\hat{F}\left(\gamma_{1}\right)+\frac{F\left(\gamma_{1}\right)}{\gamma_{1}}\right)\right| \leqslant w(T)-w\left(\gamma_{1}\right)+\frac{\delta_{1} \log \gamma_{1}+\mathcal{E}\left(\gamma_{1}\right)}{\gamma_{1}}
$$

where

$$
w(t):=\int \frac{\frac{d}{d t}\left(\delta_{1} \log t+\mathcal{E}(t)\right)}{t} d t \sim \frac{\log 2}{\pi}-\frac{\delta_{1}}{t}+\frac{1}{\pi} \sum_{j=1}^{\infty} \frac{(-1)^{j-1} c_{j}}{t^{2 j}} \quad(\text { as } t \rightarrow \infty)
$$

and c_{j} s are positive absolute (more precisely independent from δ_{1}) rational constants, satisfying $c_{j}=o(1)$ as $j \rightarrow \infty$. Thus, by considering the relation $\hat{F}(t)=K(t)+$ $\frac{1}{4 \pi} \log ^{2}(2 \pi)$, we get

$$
C_{\ell}\left(\delta_{1}, \gamma_{1}\right)-w(T) \leqslant A(T)-K(T) \leqslant C_{u}\left(\delta_{1}, \gamma_{1}\right)+w(T)
$$

where $C_{\ell}\left(\delta_{1}, \gamma_{1}\right)$ and $C_{u}\left(\delta_{1}, \gamma_{1}\right)$ are constants depending on δ_{1} and γ_{1}.

3 Proofs

In this section, we prove Lemmas 1, 2, Proposition 1, and Theorem 1.
PROOF of Lemma 1. We apply (2), and also (3) with the known [4] parameters $a=0.112, b=0.278, c=2.510$, and $T_{0}=\mathrm{e}$. Since the function $\mathcal{E}(T)$ is strictly decreasing for $T>0$, we imply that $\mathcal{E}(T) \leqslant \mathcal{E}\left(\gamma_{1}\right)<0.012$ for each $T \geqslant \gamma_{1}$, and hence $|S(T)|+\mathcal{E}(T)<\mathcal{R}(T)$.

PROOF of Proposition 1. For each smooth function g, we have

$$
\begin{equation*}
\sum_{0<\gamma \leqslant T} g(\gamma)=\int_{\gamma_{1}^{-}}^{T} g(t) d N(t)=g(T) N(T)+\int_{\gamma_{1}}^{T} N(t)\left(-g^{\prime}(t)\right) d t \tag{8}
\end{equation*}
$$

If we assume that g is decreasing, then $g^{\prime}(t) \geqslant 0$. For each smooth function f integration by parts implies that

$$
\begin{equation*}
\int_{\gamma_{1}}^{T} f(t)\left(-g^{\prime}(t)\right) d t=-f(T) g(T)+f\left(\gamma_{1}\right) g\left(\gamma_{1}\right)+\int_{\gamma_{1}}^{T} g(t) f^{\prime}(t) d t \tag{9}
\end{equation*}
$$

Hence, by applying the bound $N(T) \leqslant \mathcal{F}(T)+\mathcal{R}(T)$ in (8), and also by utilizing (9) with $f(t)=\mathcal{F}(t)+\mathcal{R}(t)$ we get validity of

$$
\begin{equation*}
\sum_{0<\gamma \leqslant T} g(\gamma) \leqslant \int_{\gamma_{1}}^{T} g(t)\left(\mathcal{F}^{\prime}(t)+\mathcal{R}^{\prime}(t)\right) d t+g\left(\gamma_{1}\right)\left(\mathcal{F}\left(\gamma_{1}\right)+\mathcal{R}\left(\gamma_{1}\right)\right) \tag{10}
\end{equation*}
$$

for each $T \geqslant \gamma_{1}$, and similarly, by applying the bound $N(T) \geqslant \mathcal{F}(T)-\mathcal{R}(T)$ in (8), and also by utilizing (9) with $f(t)=\mathcal{F}(t)-\mathcal{R}(t)$, for each $T \geqslant \gamma_{1}$ we obtain

$$
\begin{equation*}
\sum_{0<\gamma \leqslant T} g(\gamma) \geqslant \int_{\gamma_{1}}^{T} g(t)\left(\mathcal{F}^{\prime}(t)-\mathcal{R}^{\prime}(t)\right) d t+g\left(\gamma_{1}\right)\left(\mathcal{F}\left(\gamma_{1}\right)-\mathcal{R}\left(\gamma_{1}\right)\right) \tag{11}
\end{equation*}
$$

This completes the proof.
PROOF of Lemma 2. We have $\frac{d}{d t} J(t)=-\frac{1}{t^{2} \log t}$, hence J is strictly decreasing. Also $\lim _{t \rightarrow \infty}(t \log t) J(t)=1$. We set $J_{0}(t)=J(t)$, and for each $n \geqslant 1$ we let $J_{n}(t)=$ $J_{n-1}(t)+\frac{(-1)^{n}(n-1)!}{t \log ^{n} t}$. By summing over the difference $J_{k}(t)-J_{k-1}(t)$, we imply that

$$
J_{n}(t)-J_{0}(t)=\sum_{k=1}^{n} \frac{(-1)^{k}(k-1)!}{t \log ^{k} t}
$$

and hence

$$
J_{n}(t)=J(t)-\sum_{k=0}^{n-1} \frac{(-1)^{k} k!}{t \log ^{k+1} t}
$$

The function $h(t)=\left(t \log ^{3} t\right) J_{2}(t)$ is strictly increasing for $t \in(1, \infty)$, and it admits limit values $\lim _{t \rightarrow 1^{+}} h(t)=0$ and $\lim _{t \rightarrow \infty} h(t)=2$. Hence we obtain validity of (6). Moreover, by considering the value $h(12.7) \approx 1.00017>1$ we get (7).

PROOF of Theorem 1. We apply the approximation (10) with $g(t)=\frac{1}{t}$, and then the upper bound in Corollary 1 to obtain

$$
\begin{aligned}
A(T) & \leqslant \hat{F}(T)-\hat{F}\left(\gamma_{1}\right)+\hat{R}(T)-\hat{R}\left(\gamma_{1}\right)+\frac{\mathcal{F}\left(\gamma_{1}\right)}{\gamma_{1}}+\frac{\mathcal{R}\left(\gamma_{1}\right)}{\gamma_{1}} \\
& \leqslant \hat{F}(T)-\hat{F}\left(\gamma_{1}\right)+\hat{R}_{u}(T)-\hat{R}_{\ell}\left(\gamma_{1}\right)+\frac{\mathcal{F}\left(\gamma_{1}\right)}{\gamma_{1}}+\frac{\mathcal{R}\left(\gamma_{1}\right)}{\gamma_{1}}:=K(T)+U(T)
\end{aligned}
$$

say, for each $T \geqslant \gamma_{1}$. The function $U(T)$ is strictly increasing for $T \geqslant \gamma_{1}$ and also we have $\lim _{T \rightarrow \infty} U(T)<\frac{482}{1000}$. Hence $A(T)<K(T)+\frac{482}{1000}$ is valid for each $T \geqslant \gamma_{1}$.

By following similar argument as the above, we apply the approximation (11) with $g(t)=\frac{1}{t}$, and then the lower bound in Corollary 1 to obtain

$$
\begin{aligned}
A(T) & \geqslant \hat{F}(T)-\hat{F}\left(\gamma_{1}\right)-\hat{R}(T)+\hat{R}\left(\gamma_{1}\right)+\frac{\mathcal{F}\left(\gamma_{1}\right)}{\gamma_{1}}-\frac{\mathcal{R}\left(\gamma_{1}\right)}{\gamma_{1}} \\
& \geqslant \hat{F}(T)-\hat{F}\left(\gamma_{1}\right)-\hat{R}_{u}(T)+\hat{R}_{\ell}\left(\gamma_{1}\right)+\frac{\mathcal{F}\left(\gamma_{1}\right)}{\gamma_{1}}-\frac{\mathcal{R}\left(\gamma_{1}\right)}{\gamma_{1}}:=K(T)+L(T)
\end{aligned}
$$

for each $T \geqslant \gamma_{1}$. The function $L(T)$ is strictly decreasing for $T \geqslant \gamma_{1}$ and also we have $\lim _{T \rightarrow \infty} L(T)>\frac{15}{1000}$. Hence $A(T)>K(T)+\frac{15}{1000}$ is valid for each $T \geqslant \gamma_{1}$. This completes the proof.

4 Computational Remarks

Regarding to the truth of Theorem 1, naturally we ask about the limit value

$$
\lim _{T \rightarrow \infty} A(T)-K(T) .
$$

Does this limit exists? If yes, what is its value? Our computations suggests the above limit exists. To perform such computations, we define the sequence Δ_{N} with general term

$$
\Delta_{N}=A\left(\gamma_{N}\right)-K\left(\gamma_{N}\right)=\sum_{n=1}^{N} \frac{1}{\gamma_{n}}-\left(\frac{1}{4 \pi} \log ^{2} \gamma_{N}-\frac{\log (2 \pi)}{2 \pi} \log \gamma_{N}\right)
$$

Figure 1 pictures the points $\left(N, \Delta_{N}\right)$ for $1 \leqslant N \leqslant 20000$, and Figure 2 shows the points $\left(N, \Delta_{N}\right) 9.9 \times 10^{5} \leqslant N \leqslant 10^{6}$ and $1.99 \times 10^{6} \leqslant N \leqslant 2 \times 10^{6}$. As these figures show, the values of Δ_{N} seems to tend toward a limit with approximate value 0.25163 .

Figure 1: Graphs of the points $\left(N, \Delta_{N}\right)$ in several intervals from 1 to 20000, with end-points 1000, 5000, 10000, 20000.

Figure 2: Graphs of the points $\left(N, \Delta_{N}\right)$ for $9.9 \times 10^{5} \leqslant N \leqslant 10^{6}$ and $1.99 \times 10^{6} \leqslant N$ $\leqslant 2 \times 10^{6}$.

To avoid oscillation behavior of the values of the sequence Δ_{N} we define the modified sequence M_{N} by

$$
M_{N}=\frac{1}{2000} \sum_{n=1+2000(N-1)}^{2000 N} \Delta_{n}
$$

The values of M_{N} are indeed a clustering in averaging of the values of Δ_{N} in short intervals. Figure 3 shows the points $\left(N, M_{N}\right)$ for $500 \leqslant N \leqslant 1000$. Also, Figure 4 shows the values of the difference $M_{N}-M_{N-1}$ for $500 \leqslant N \leqslant 1000$. As this figure shows, the sequence M_{N} is not decreasing.

Figure 3: Graphs of the points $\left(N, M_{N}\right)$ for $500 \leqslant N \leqslant 1000$.

Figure 4: Graphs of the points $\left(N, M_{N}-M_{N-1}\right)$ for $500 \leqslant N \leqslant 1000$.
Acknowledgements. I express my gratitude to the anonymous referee(s) for careful reading of the manuscript and giving the many valuable suggestions and corrections, which improved the presentation of the paper.

References

[1] M. Hassani, On a sum related by non-trivial zeros of the Riemann zeta function, Appl. Math. E-Notes, 12(2012), 1-4.
[2] A. Ivić, The Riemann Zeta-Function. The theory of the Riemann zeta-function with applications. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1985.
[3] J. B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math., 63(1941), 211-232.
[4] T. S. Trudgian, An improved upper bound for the argument of the Riemann zetafunction on the critical line II, J. Number Theory, 134(2014), 280-292.

[^0]: *Mathematics Subject Classifications: 11M06, 11M26, 11Y35.
 ${ }^{\dagger}$ Department of Mathematics, University of Zanjan, University Blvd., 45371-38791, Zanjan, Iran

