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Abstract

Based on the recent improved upper bound for the argument of the Riemann
zeta-function ((s) on the critical line, we obtain explicit sharp bounds for the
sum ZO<7<T7_1, where v denote the imaginary part of the non-trivial zeros

p =B +ivy of {(s).
1 Introduction

The Riemann zeta-function is defined by ((s) = >~ n~* for R(s) > 1, and extended
by analytic continuation to the complex plan with a simple pole at s = 1. We let

v, = min{y > 0: ¢(8 + i) = 0} = 14.1347251417,

which is the imaginary part of the first nontrivial zero of {(s). It is known [2] that

T T
NT):= > 1= 5 log 53—+ O(log 7)), (1)
0<y<T
C(B+iv)=0

from which by integration we infer that

AT = Y %:K(T)+O(1),

0<y<T
¢(B+iv)=0
where for the whole text we let
1 9 log(2m)
K(T)=—log“T — ———ZlogT.
(T) = ;- log 5 108

The aim of present note is to determine an interval for which the term O(1) in the
above approximation belongs in. To this end, we show the following.
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110 Sums Over the Non-trivial Zeros of ((s)

THEOREM 1. For each T' > v, we have 0.015 < A(T) — K(T') < 0.482.

We note that in our previous paper [1] we have done similar computation, based
on the approximation of N(T') due to Rosser [3]. Unfortunately, we have misquoted in
Rosser’s result, taking 0.433 instead of 0.443 which occurs in the approximation of N (7T')
given by him, and ends in the double side approximation 0.06 < A(T) — K(T') < 0.436,
so our previous calculation needs some corrections. The present paper is indeed such
correction.

We give the proof of Theorem 1 in the next two sections, and then we give some
computational remarks concerning the difference A(T) — K (T') and we propose finding
its limit value as T — oc.

2 Preliminaries

To get an explicit result as the above, we need an explicit form of the approximation (1).
We note that the term O(logT) in (1) comes from the approximation of the function
S(T), which is defined traditionally by S(T') = L arg((3 +iT'), where the argument is
determined via continuous variation along the hne segments connecting 2, 2 + i7" and
% + T, with taking the argument of ((s) at s = 2 to be zero. If T is an ordinate of
a zero of ((s), then we set S(T) = 1(S(T*) + S(T7)). Indeed, the approximation of
the function N(T') related strongly to the approximation of S(T'), by considering the
known (see [4]) inequality

T T 7

1g—\\|s< )+ E(T), @)

N(T
(T) - o 2me

which holds for each T > 1 with

1 1 T 1 1
T) = — arctan — + —log (14 —= | + ——
E(T) 1 rctan 5o + og< +4T2>+37TT

On the other hand, the best known unconditional approximations of S(T') is due to
Trudgian [4], where he shows for each T' > e that

|S(T)| < 0.1121log T + 0.278 log log T' + 2.510. (3)

By using the above bound, we imply the following approximation.

LEMMA 1. For each T' > v, we have |[N(T) — F(T)| < R(T) with

T T 7 139 1261
T)= —log— ++, and R 212 e+ B 1oglog T+ 1262
F) =g les g o+ g and RAT) = 5plog T+ Frploglog T+ —o.

This approximation allows us to get bounds for the sum ) V< g(7) where g is a
suitable function, with the conditions as in the following result.
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PROPOSITION 1. For the functions f and g and for the real numbers a and b, we

define
b

jmﬁ%ﬁ:/g@ﬂme@ﬂﬂ

a

If we assume that g(t) is a positive, differentiable and decreasing function defined for
t > 74, then for each T' > v,, we have

Z g(’y)_j(717T7gvf) <3(717T;Q7R),
0<y<T

where F and R are as in Lemma 1.

If we take g(t) = %, then by following some computations, we will obtain bounds
as in Theorem 1. To perform computations we note that

[T = Lo (1) = o, (4)
Also we have R (t 14 139
/ t( ) i — ~ D55~ 5007 = R(t), (5)

where the function J is defined for each real ¢ > 1 by

H=[ =
J(t) /1 et
1

TToa7 & t — 00. More precisely, we show the
ogt

which is strictly decreasing and J(t) ~
following.

LEMMA 2. For each real ¢ > 1, we have

1 1 1 1 2
— - —— < J(t) < — 5~ + T (6)
tlogt tlog®t tlogt tlog®t tlog”t
Moreover, for each t > 12.7, we have
1 1 1 1 1 2
J(t) (7)

- + < J(t) < — + :
tlogt tlog*t tlogt tlogt tlog’t tlogt

As an immediate corollary, by considering the relation (5) together with the bounds
(7), we obtain the following required bounds.

COROLLARY 1. For each t > 12.7, we have R,(t) < R(t) < R,(t), where

Bult) RIS A TS SR
OV T 7125t 500 \tlogt  tlog?t | tlogit)’
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and

() = 14 139/ 1 Lo
YO 125t 500 \tlogt  tlog®t | tlogit)

By applying the above preliminary results, deduction of Theorem 1 is based on a
simple computation. We follow the computational details in the next section.

REMARK 1. Assume that the bounds in (3) were to improve dramatically, say to
|S(T)| < d1logT for some fixed §; > 0 and for each T > ;. Proposition 1 implies
that

‘A(T) - (F<T> — F(y) + F(jl))’ < w(T) —wimy) + 2 loggf £t
where
wit) = / i 1Ogtt - S(t))dt 10g2 *1 + % i t2; (as t — 00),

and c;s are positive absolute (more precisely independent from d;) rational constants,
satlsfylng ¢; = o(l) as j — oo. Thus, by considering the relation F(t) = K(t) +
= log (27), we get

Ce(61,71) —w(T) < A(T) = K(T) < Cu(b1,71) + w(T),

where Cy(d1,7,) and C,(d1,7,) are constants depending on ¢y and ;.

3 Proofs

In this section, we prove Lemmas 1, 2, Proposition 1, and Theorem 1.

PROOF of Lemma 1. We apply (2), and also (3) with the known [4] parameters
a = 0.112, b = 0.278, ¢ = 2.510, and T, = e. Since the function £(T) is strictly
decreasing for T' > 0, we imply that £(T) < £(y;) < 0.012 for each T' > ~,, and hence
|S(T)| + E(T) < R(T).

PROOF of Proposition 1. For each smooth function g, we have

S () = / | g(HAN(t) = g(T)N(T) + / N(t) (—g/ (1)) dt. (®)

0<y<T Y1

If we assume that g is decreasing, then ¢’(¢) > 0. For each smooth function f integration
by parts implies that

T

f@) (=g'(t) dt = *f(T)g(T)+f(71)g(71)+/ g(t).f'(t)dt. 9)

1 1
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Hence, by applying the bound N(T') < F(T) 4+ R(T) in (8), and also by utilizing (9)
with f(t) = F(t) + R(t) we get validity of

T
Y 9 < / g(t) (F'(t) + R'(£)) dt + g(71) (F(v1) + R(71)) 5 (10)
0<y<T Y1
for each T' > v, and similarly, by applying the bound N(T') > F(T) — R(T) in (8),
and also by utilizing (9) with f(¢t) = F(t) — R(t), for each T > v, we obtain

> 9(7)2/ 9(t) (F'(t) = R'(t)) dt + g(71) (F(v1) = R(11)) - (11)

0<y<T Y1

This completes the proof.

PROOF of Lemma 2. We have %J(t) = —iTieai logt7 hence J is strictly decreasing.
Also lim; o (tlogt)JJ(t) = 1. We set Jo(t) = J(t), and for each n > 1 we let J,(t) =
In—1(t) + EDZe—D! By summing over the difference Ji(t) — Jr—1(t), we imply that

tlog™t
Tn(t) = Jo(t) = En: (MUY

k
st tlog™t

and hence
-1

kk'
Z log]”'1

The function h(t) = (tlog®t)Ja(t) is strlctly increasing for ¢ € (1,00), and it admits
limit values lim;_ 1+ h(¢t) = 0 and lim;—, o h(¢) = 2. Hence we obtain validity of (6).
Moreover, by considering the value h(12.7) = 1.00017 > 1 we get (7).

PROOF of Theorem 1. We apply the approximation (10) with g(¢) = 1, and then
the upper bound in Corollary 1 to obtain

A(T) < F(T) = F(m) + R(T) = R(7,) +

71
. . . . F R
<P - Fln) + RlD) - R + T+ RO o ey o),
1 1
say, for each T' > ;. The function U(T) is strictly increasing for T' > ~,; and also we
have limrp_, o U(T) < 182 Hence A(T) < K(T) + {32 is valid for each T > ;.
By following similar argument as the above, we apply the approximation (11) with
g(t) = %7 and then the lower bound in Corollary 1 to obtain

: 2 : : F(r1) _ Ry
AT) > (D) — Fi) — R(T) + Riay) + 2020 RO
Y1 71
- - - - F R
> F(T) — Flyy) = (D) + Rety) + T8 = RO ey 1),
1 1
for each T > ~,. The function L(T) is strictly decreablng for T > ~, and also we
have lurn;p_,OO L(T) > 1555. Hence A(T) > K(T) + 1555 is valid for each T > ~,. This

1000
completes the proof.
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4 Computational Remarks

Regarding to the truth of Theorem 1, naturally we ask about the limit value
Tlirn A(T) - K(T).

Does this limit exists? If yes, what is its value? Our computations suggests the above
limit exists. To perform such computations, we define the sequence Ay with general
term
A 1
Ay =Alyy) — K(yy) = Z — — [ —log® vy —
T \47

log(2m)

1
o OgTN

n=1
Figure 1 pictures the points (N, Ay) for 1 < N < 20000, and Figure 2 shows the points
(N,An) 9.9 x 10° < N < 10° and 1.99 x 10° < N < 2 x 10°. As these figures show,
the values of Ay seems to tend toward a limit with approximate value 0.25163.
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Figure 1: Graphs of the points (N, Ay) in several intervals from 1 to 20000, with
end-points 1000, 5000, 10000, 20000.
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Figure 2: Graphs of the points (N, Ay) for 9.9 x 10> < N < 10° and 1.99 x 10 < N
< 2 x 109,
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To avoid oscillation behavior of the values of the sequence A  we define the modified

sequence My by
2000N

1

My = —— A,

N 79000 > "
n=1+2000(N —1)

The values of My are indeed a clustering in averaging of the values of Ay in short
intervals. Figure 3 shows the points (N, My) for 500 < N < 1000. Also, Figure 4
shows the values of the difference My — Mpy_; for 500 < N < 1000. As this figure
shows, the sequence My is not decreasing.
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Figure 3: Graphs of the points (N, My) for 500 < N < 1000.
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Figure 4: Graphs of the points (N, My — My_1) for 500 < N < 1000.
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