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Abstract

Based on the recent improved upper bound for the argument of the Riemann
zeta-function ζ(s) on the critical line, we obtain explicit sharp bounds for the
sum

∑
0<γ6T γ

−1, where γ denote the imaginary part of the non-trivial zeros
ρ = β + iγ of ζ(s).

1 Introduction

The Riemann zeta-function is defined by ζ(s) =
∑∞
n=1 n

−s for <(s) > 1, and extended
by analytic continuation to the complex plan with a simple pole at s = 1. We let

γ1 = min{γ > 0 : ζ(β + iγ) = 0} u 14.1347251417,

which is the imaginary part of the first nontrivial zero of ζ(s). It is known [2] that

N(T ) :=
∑

0<γ6T
ζ(β+iγ)=0

1 =
T

2π
log

T

2πe
+O(log T ), (1)

from which by integration we infer that

A(T ) :=
∑

0<γ6T
ζ(β+iγ)=0

1

γ
= K(T ) +O(1),

where for the whole text we let

K(T ) =
1

4π
log2 T − log(2π)

2π
log T.

The aim of present note is to determine an interval for which the term O(1) in the
above approximation belongs in. To this end, we show the following.
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THEOREM 1. For each T > γ1, we have 0.015 < A(T )−K(T ) < 0.482.

We note that in our previous paper [1] we have done similar computation, based
on the approximation of N(T ) due to Rosser [3]. Unfortunately, we have misquoted in
Rosser’s result, taking 0.433 instead of 0.443 which occurs in the approximation ofN(T )
given by him, and ends in the double side approximation 0.06 < A(T )−K(T ) < 0.436,
so our previous calculation needs some corrections. The present paper is indeed such
correction.
We give the proof of Theorem 1 in the next two sections, and then we give some

computational remarks concerning the difference A(T )−K(T ) and we propose finding
its limit value as T →∞.

2 Preliminaries

To get an explicit result as the above, we need an explicit form of the approximation (1).
We note that the term O(log T ) in (1) comes from the approximation of the function
S(T ), which is defined traditionally by S(T ) = 1

π arg ζ( 12 + iT ), where the argument is
determined via continuous variation along the line segments connecting 2, 2 + iT and
1
2 + iT , with taking the argument of ζ(s) at s = 2 to be zero. If T is an ordinate of
a zero of ζ(s), then we set S(T ) = 1

2 (S(T+) + S(T−)). Indeed, the approximation of
the function N(T ) related strongly to the approximation of S(T ), by considering the
known (see [4]) inequality∣∣∣∣N(T )− T

2π
log

T

2πe
− 7

8

∣∣∣∣ 6 |S(T )|+ E(T ), (2)

which holds for each T > 1 with

E(T ) =
1

4π
arctan

1

2T
+

T

4π
log

(
1 +

1

4T 2

)
+

1

3πT
.

On the other hand, the best known unconditional approximations of S(T ) is due to
Trudgian [4], where he shows for each T > e that

|S(T )| 6 0.112 log T + 0.278 log log T + 2.510. (3)

By using the above bound, we imply the following approximation.

LEMMA 1. For each T > γ1, we have |N(T )−F(T )| 6 R(T ) with

F(T ) =
T

2π
log

T

2πe
+

7

8
, and R(T ) =

14

125
log T +

139

500
log log T +

1261

500
.

This approximation allows us to get bounds for the sum
∑

0<γ6T g(γ) where g is a
suitable function, with the conditions as in the following result.
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PROPOSITION 1. For the functions f and g and for the real numbers a and b, we
define

I(a, b; g, f) :=

∫ b

a

g(t)f ′(t)dt+ g(a)f(a).

If we assume that g(t) is a positive, differentiable and decreasing function defined for
t > γ1, then for each T > γ1, we have∣∣∣∣∣∣

∑
0<γ6T

g(γ)− I(γ1, T ; g,F)

∣∣∣∣∣∣ 6 I(γ1, T ; g,R),

where F and R are as in Lemma 1.

If we take g(t) = 1
t , then by following some computations, we will obtain bounds

as in Theorem 1. To perform computations we note that∫ F ′(t)
t

dt =
1

4π
log2

(
t

2π

)
:= F̂ (t). (4)

Also we have ∫ R′(t)
t

dt = − 14

125t
− 139

500
J(t) := R̂(t), (5)

where the function J is defined for each real t > 1 by

J(t) =

∫ ∞
1

dt

sts
,

which is strictly decreasing and J(t) ∼ 1
t log t as t → ∞. More precisely, we show the

following.

LEMMA 2. For each real t > 1, we have

1

t log t
− 1

t log2 t
< J(t) <

1

t log t
− 1

t log2 t
+

2

t log3 t
. (6)

Moreover, for each t > 12.7, we have

1

t log t
− 1

t log2 t
+

1

t log3 t
< J(t) <

1

t log t
− 1

t log2 t
+

2

t log3 t
. (7)

As an immediate corollary, by considering the relation (5) together with the bounds
(7), we obtain the following required bounds.

COROLLARY 1. For each t > 12.7, we have R̂`(t) < R̂(t) < R̂u(t), where

R̂`(t) = − 14

125t
− 139

500

(
1

t log t
− 1

t log2 t
+

2

t log3 t

)
,



112 Sums Over the Non-trivial Zeros of ζ(s)

and

R̂u(t) = − 14

125t
− 139

500

(
1

t log t
− 1

t log2 t
+

1

t log3 t

)
.

By applying the above preliminary results, deduction of Theorem 1 is based on a
simple computation. We follow the computational details in the next section.

REMARK 1. Assume that the bounds in (3) were to improve dramatically, say to
|S(T )| 6 δ1 log T for some fixed δ1 > 0 and for each T > γ1. Proposition 1 implies
that ∣∣∣∣A(T )−

(
F̂ (T )− F̂ (γ1) +

F (γ1)

γ1

)∣∣∣∣ 6 w(T )− w(γ1) +
δ1 log γ1 + E(γ1)

γ1
,

where

w(t) :=

∫ d
dt (δ1 log t+ E(t))

t
dt ∼ log 2

π
− δ1

t
+

1

π

∞∑
j=1

(−1)j−1cj
t2j

(as t→∞),

and cjs are positive absolute (more precisely independent from δ1) rational constants,
satisfying cj = o(1) as j → ∞. Thus, by considering the relation F̂ (t) = K(t) +
1
4π log2(2π), we get

C`(δ1, γ1)− w(T ) 6 A(T )−K(T ) 6 Cu(δ1, γ1) + w(T ),

where C`(δ1, γ1) and Cu(δ1, γ1) are constants depending on δ1 and γ1.

3 Proofs

In this section, we prove Lemmas 1, 2, Proposition 1, and Theorem 1.

PROOF of Lemma 1. We apply (2), and also (3) with the known [4] parameters
a = 0.112, b = 0.278, c = 2.510, and T0 = e. Since the function E(T ) is strictly
decreasing for T > 0, we imply that E(T ) 6 E(γ1) < 0.012 for each T > γ1, and hence
|S(T )|+ E(T ) < R(T ).

PROOF of Proposition 1. For each smooth function g, we have

∑
0<γ6T

g(γ) =

∫ T

γ−1

g(t)dN(t) = g(T )N(T ) +

∫ T

γ1

N(t) (−g′(t)) dt. (8)

If we assume that g is decreasing, then g′(t) > 0. For each smooth function f integration
by parts implies that∫ T

γ1

f(t) (−g′(t)) dt = −f(T )g(T ) + f(γ1)g(γ1) +

∫ T

γ1

g(t)f ′(t)dt. (9)
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Hence, by applying the bound N(T ) 6 F(T ) +R(T ) in (8), and also by utilizing (9)
with f(t) = F(t) +R(t) we get validity of∑

0<γ6T
g(γ) 6

∫ T

γ1

g(t) (F ′(t) +R′(t)) dt+ g(γ1) (F(γ1) +R(γ1)) , (10)

for each T > γ1, and similarly, by applying the bound N(T ) > F(T ) − R(T ) in (8),
and also by utilizing (9) with f(t) = F(t)−R(t), for each T > γ1 we obtain∑

0<γ6T
g(γ) >

∫ T

γ1

g(t) (F ′(t)−R′(t)) dt+ g(γ1) (F(γ1)−R(γ1)) . (11)

This completes the proof.

PROOF of Lemma 2. We have d
dtJ(t) = − 1

t2 log t , hence J is strictly decreasing.
Also limt→∞(t log t)J(t) = 1. We set J0(t) = J(t), and for each n > 1 we let Jn(t) =

Jn−1(t) + (−1)n(n−1)!
t logn t . By summing over the difference Jk(t)− Jk−1(t), we imply that

Jn(t)− J0(t) =

n∑
k=1

(−1)k(k − 1)!

t logk t
,

and hence

Jn(t) = J(t)−
n−1∑
k=0

(−1)kk!

t logk+1 t
.

The function h(t) = (t log3 t)J2(t) is strictly increasing for t ∈ (1,∞), and it admits
limit values limt→1+ h(t) = 0 and limt→∞ h(t) = 2. Hence we obtain validity of (6).
Moreover, by considering the value h(12.7) u 1.00017 > 1 we get (7).

PROOF of Theorem 1. We apply the approximation (10) with g(t) = 1
t , and then

the upper bound in Corollary 1 to obtain

A(T ) 6 F̂ (T )− F̂ (γ1) + R̂(T )− R̂(γ1) +
F(γ1)

γ1
+
R(γ1)

γ1

6 F̂ (T )− F̂ (γ1) + R̂u(T )− R̂`(γ1) +
F(γ1)

γ1
+
R(γ1)

γ1
:= K(T ) + U(T ),

say, for each T > γ1. The function U(T ) is strictly increasing for T > γ1 and also we
have limT→∞ U(T ) < 482

1000 . Hence A(T ) < K(T ) + 482
1000 is valid for each T > γ1.

By following similar argument as the above, we apply the approximation (11) with
g(t) = 1

t , and then the lower bound in Corollary 1 to obtain

A(T ) > F̂ (T )− F̂ (γ1)− R̂(T ) + R̂(γ1) +
F(γ1)

γ1
− R(γ1)

γ1

> F̂ (T )− F̂ (γ1)− R̂u(T ) + R̂`(γ1) +
F(γ1)

γ1
− R(γ1)

γ1
:= K(T ) + L(T ),

for each T > γ1. The function L(T ) is strictly decreasing for T > γ1 and also we
have limT→∞ L(T ) > 15

1000 . Hence A(T ) > K(T ) + 15
1000 is valid for each T > γ1. This

completes the proof.
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4 Computational Remarks

Regarding to the truth of Theorem 1, naturally we ask about the limit value

lim
T→∞

A(T )−K(T ).

Does this limit exists? If yes, what is its value? Our computations suggests the above
limit exists. To perform such computations, we define the sequence ∆N with general
term

∆N = A(γN )−K(γN ) =

N∑
n=1

1

γn
−
(

1

4π
log2 γN −

log(2π)

2π
log γN

)
.

Figure 1 pictures the points (N,∆N ) for 1 6 N 6 20000, and Figure 2 shows the points
(N,∆N ) 9.9 × 105 6 N 6 106 and 1.99 × 106 6 N 6 2 × 106. As these figures show,
the values of ∆N seems to tend toward a limit with approximate value 0.25163.

Figure 1: Graphs of the points (N,∆N ) in several intervals from 1 to 20000, with
end-points 1000, 5000, 10000, 20000.

Figure 2: Graphs of the points (N,∆N ) for 9.9× 105 6 N 6 106 and 1.99× 106 6 N
6 2× 106.
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To avoid oscillation behavior of the values of the sequence∆N we define the modified
sequence MN by

MN =
1

2000

2000N∑
n=1+2000(N−1)

∆n.

The values of MN are indeed a clustering in averaging of the values of ∆N in short
intervals. Figure 3 shows the points (N,MN ) for 500 6 N 6 1000. Also, Figure 4
shows the values of the difference MN −MN−1 for 500 6 N 6 1000. As this figure
shows, the sequence MN is not decreasing.

Figure 3: Graphs of the points (N,MN ) for 500 6 N 6 1000.

Figure 4: Graphs of the points (N,MN −MN−1) for 500 6 N 6 1000.
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