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Abstract

In this work, we investigate an approximation problem for matrix valued pos-
itive linear operators of two variables. Also using the A-statistical convergence
which is stronger than Pringsheim convergence of double sequences, we prove a
Korovkin-type approximation theorem for matrix valued positive linear operators
of two variables. We also compute the rates of A-statistical convergence of this
operators.

1 Introduction

One of the most important and basic results in approximation theory is the classical
Bohman-Korovkin theorem (see for instance [10]). This theorem establishes the uni-
form convergence in the space Cf[a,b] of all the continuous real functions defined on
the interval [a,b], for a sequence of positive linear operators (7,) acting on Cla,b],
assuming the convergence only on the test functions 1,z,22. Of course, this theory
mainly gives the approximation a scaler-valued function by means of linear positive
operators. However, in [16], Serra-Capizzano presented a new Korovkin-type result
for matrix valued functions. Some other related topics may be found in the papers
[13, 17, 18] and cited therein. In particular, the use of statistical convergence had a
great impulse in recent years. Furthermore, with the help of the concept of uniform
statistical convergence, which is a regular (non-matrix) summability transformation,
various statistical approximation results have been proved [1, 2, 3, 5, 8, 9]. Then, it
was demonstrated that those results are more powerful than the classical Korovkin
theorem. In [4], using the statistical convergence, Duman and Erkug-Duman proved
Korovkin-type approximation theorem for matrix valued positive linear operators. Our
primary interest in the present paper is to obtain a general Korovkin-type approxima-
tion theorem for double sequences of matrix valued positive linear operators of two
variables from C(D,C**?) to itself where D is a compact subset of RZ.
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328 Matrix-Valued Functions of Two Variables

We begin with some definitions and notations which we will use in the sequel. As
usual, a double sequence
T = (xmn), m,n € Na

is convergent in Pringsheim’s sense if, for every ¢ > 0, there exists N = N(¢) € N such

that |Zm, — L| < &€ whenever m,n > N. Then, L is called the Pringsheim limit of «

and is denoted by P — limxz = L (see [14]). In this case, we say that @ = (zn) i8
m,n

“P-convergent to L”. Also, if there exists a positive number M such that |z, < M
for all (m,n) € N> = N x N, then 2 = (2,,,) is said to be bounded. Note that in
contrast to the case for single sequences, a convergent double sequence needs not to be
bounded.

Now let

A= [aprmn]a p,T,m,n € Na

be a four-dimensional summability matrix. For a given double sequence z = (Zyy),
the A-transform of z, denoted by Az := {(Ax),.}, is given by

(Am)pr = Z AprmnTmn, DT € N,
(m,n)€EN2

provided the double series converges in Pringsheim’s sense for every (p,r) € N?. In
summability theory, a two-dimensional matrix transformation is said to be regular if it
maps every convergent sequence in to a convergent sequence with the same limit. The
well-known characterization for two dimensional matrix transformations is known as
Silverman-Toeplitz conditions (see, for instance, [7]). In 1926, Robinson [15] presented
a four dimensional analog of the regularity by considering an additional assumption
of boundedness. This assumption was made because a double P-convergent sequence
is not necessarily bounded. The definition and the characterization of regularity for
four dimensional matrices is known as Robison-Hamilton conditions, or briefly, RH-
regularity (see, [6, 15]).

Recall that a four dimensional matrix A = [aprmn] is said to be RH-regular if it
maps every bounded P-convergent sequence into a P-convergent sequence with the
same P-limit. The Robison-Hamilton conditions state that a four dimensional matrix
A = [aprmn] is RH-regular if and only if

(i) P —lim appmn = 0 for each (m,n) € N2,
p,T

(i) P—lm > aprmn =1,
DT (m,n)eN?

(iii) P —lim Y |aprmn| =0 for each n € N,

PT meN

(iv) P—lm > |aprmn| =0 for each m € N,

PT neN

(v) > |aprmnl| is P—convergent,
(m,n)EN?



F. Dirik and K. Demirci 329

(vi) there exist finite positive integers A and B such that > |aprmn| < A holds
m,n>B

for every (p,7) € N2.

Now let A = [aprmn] be a non-negative RH-regular summability matrix, and let
K C N?2. Then A-density of K is given by

2 .
554){[(} =P - lzl)g,l Z Aprmn
(m,n)eEK
provided that the limit on the right-hand side exists in Pringsheim’s sense. A real
double sequence & = (Z,,,) is said to be A—statistically convergent to a number L if,
for every € > 0,

6(Az){(m’ n) eN?: |xmn - L| > 5} =0.

In this case, we write stff) — lim®,,,, = L. We should note that if we take A = C(1,1),

which is the double Cesdro matrix, then C(1,1)-statistical convergence coincides with
the notion of statistical convergence for double sequence, which was introduced in
[11, 12]. Finally, if we replace the matrix A by the identity matrix for four-dimensional
matrices, then A-statistical convergence reduces to the Pringsheim convergence.

A P-convergent double sequence is A-statistically convergent to the same value but
the converse does not hold true.

2 A Korovkin-Type Approximation Theorem for Dou-
ble Sequences

In this section, we give a Korovkin-type theorem for double sequences of matrix val-
ued positive linear operators defined on C(D,C**?) using the concept of A-statistical
convergence.

Let s,t be two fixed natural numbers and D a compact subset of R2. By C(D, C**?)
we denote the space of all continuous functions F' acting on D and having values in
the space C**! of the complex s x ¢ matrices such that

F(xay) = [fjk(l'vy)]sxtv ((xay) € Dv 1 S] < S, 1< k < t)? (1)

where the symbol [bjx], ., denotes the s x ¢ matrix. Here, by the continuity of F' we
mean that all scalar valued functions f;; are continuous on D. Then, the norm ||-||sx¢
on the space C(D,C**?) is defined by

[Fllgxq o= max || fixll = _ max (( sup Ifjk(w,y)l>~

1<j<s, 1<k<t 1<j<s, 1Sk<t \ (z,4)eD

Throughout this paper we use the following test functions

onk(u,v) = Ejk, Eljk(um) = quk, (2)
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Esjk(u,v) = vEj, and Esji(u,v) = (u2 + U2) Ej, (3)

for (u,v) € D, 1 <j <s,1<k <t where Ej; denotes the matrix of the canonical
basis of C**! being 1 in the position (j, k) and zero otherwise.
Let ® : C(D,C***) — C(D,C**") be an operator, and let us assume that

(i) ®(aF +bG) = a®(F) 4 b®(G) for any o, 3 € C and F,G € C(D,C5*),

(i) ®(F) < K®(|F|) for any function F € C(D,C**") and for a fixed positive con-
stant K.

Under the above-mentioned assumptions, the operator ® is said to be a matrix linear
positive operator, or briefly, mLPO (see, for details, [16]). The inequality appearing
in (i7) is understood to be componentwise, i.e., holding for any component (j,k) €

{1,2,...,8} x {1,2,....t}.
Now we have the following main result.

THEOREM 1. Let A = [aprmn] be a nonnegative RH-regular summability matrix
and let (®,,,) be a double sequence of mPLOs acting from C(D,C**!) into itself.
Then for all (4,k) € {1,2,...,s} x {1,2,...,t} and for each i = 0,1, 2,3,

sth — i [ @ (Eiji) = Eijiell g = 0, (4)

where E, ;5 is given by (2) and (3), if and only if for every F' € C(D,C%*") as in (1),

5t124 - }}LI% @ (F) — F||s><t =0. (5)

PROOF. Since each E;j;, € C(D,C**), (i =0,1,2,3), the implication (5)=-(4) is
obvious. Suppose now that (4) holds. Let F € C(D,C**") and (z,y) € D be fixed.
Fist, we calculate the expression |®,.,(F;z,y) — F(z,y)|, the symbol |B| denotes the
matrix having entries equal to the absolute value of the entries of the matrix B. We
can show that F'(z,y) := [fir(z,y)],y;» 1 < J < 5,1 <k <t can be written as follows:

Fla,y) =33 fala ) By = 303 fiele, ) B (u,0).

j=1k=1 j=1k=1
Hence, we obtain

s t

S (F(2,y);2,y) = DY fir@,9)Pran (Boji(u, v):i2,9). (6)
j=1k=1

Also, the continuity of f;z on D, for a given € > 0, there exists a number ¢ > 0 such
that for all (u,v) € D satisfying

\/(u—x)2+(v—y)2§6.
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We have
|fjk(u,v)—fjk(l‘7y)‘Sé‘fOI'lSjSS,lSkSt. (7)

Also we get for all (z,y), (u,v) € D satisfying \/(u —2)° + (v —y)® > 6 that

2M. .
| fir (u,v) = fir (2,9)] < 5;%(%@) for1<j<s,1<k<t, (8)

where M = sup |fjr(z,y)| and ¢(u,v) = (u— 2)*> 4+ (v —1y)°. Combining (7) and
(z,y)eD
(8) we have for (u,v) € D that

2M,;
[Fin (0,0) = i (2, 9)] < &+ =, ). (9)
Then observe that, by (9),
2M
|F (U,U) - F (l',y)| S ek + ?@(uvv)Ea (10)

where F is the s x ¢ matrix such that all entires 1, and

M = max M, = ||F|

1<j<s, 1<k<t st

Since ®,,,, is a mPLO, from (6) and (10), we get

| @ (F'(u, 0); 2, y) — F (2,9)]

< K@y (|F(u,v) = F(z,y)| 5 2,y) + | Prmn (F(2,y); 2, y) — F(z,y)|

(5K + M) Z Z ‘(bmn (onk(u,v);x,y) - EOjk(xay”
j=1k=1

IN

2KM
T@mn((p(uvv)E;may) +5KE (11)

for a fixed positive constant K. Now we compute the expression ®,,,(¢(u,v)E;z,y)
on the left-hand side of (11). By a simple calculation, we get

s t
(D7nn(<p(u7 U)E7 x, Z/) = (I)'mn(z Z @(uy U)Ejk; €, Z/)
j=1k=1
s t
= ZZ{q)mn (ESjk:;x7y) - 2$<I)mn (Eljk:;xyy)
§=1k=1

_zyq)mn (Eij;xay) + (:L'2 + y2) (I)mn (EOjk;xay)} .
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Then,

Do (((w =) + (0 =1)°) By, )

S

IN

t
Z|‘I>mn Ezji;x,y) — Esjr(x,y)|
J=1 k=1

s t
+2AZZ|¢)mn El]kvx y) Eljk(x7y)|
j=1k=1
s t

BZ ‘q)mn E2jk}’$ y) Eij(mayM
j=1k=1
s t

32 ZZ |q)mn EO]Imx y) EOjk(xay)a‘ (12)

j=1k=1

where A := max |z| and B := max|y|. Combining (11) and (12), we obtain
|<I>mn(F(u7v);x,y) - F(‘x»y)‘

s t
S (€K+M)ZZ‘(I)mn (onk(u,v);x,y) _EOjk(w7y>|
j=1k=1
AAKM S &
+5KE + T Z Z |q)mn (Eljk;xay) - Eljk(‘ray”
j=1k=1
ABKM A
52 ZZ|®mn (E2]k7$ay)7E2]k(may)|
j=1k=1
s t
2KM
+672 ZZ |q)mn (E?)jk;mvy) - E3jk;(l',y)‘
=1 k=1
2 (A2 +BQ KM
( ZZ |®mn EO]k U U) X y) onk($7y)|
j=1k=1
t 3
< eKE+CY Y
1k=1

|®mn (Ezjk; mvy) - Ez]k(mvy” )
j=1k=11:=0

where

2(A2+ B?>)KM 4AKM 4BKM 2KM
C::max{sK+M+ ( ) :

52 ) 52 ’ 62 ) 62
Then, taking maximum of all entries of the corresponding matrices and taking supre-

mum over (z,y) € D, we get

3

t
1@ (F) = Fl,p < K +C ZZ

||(I>mn L_/k ijk”sxt . (13)
j=1 k=1 i=0
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Now, for a given e >0, choose € > 0 such that e < <. Then, define

r:.= {(m,n) EN?: (|8 (F) = Fll > }
and

) 2. e —eK
Fijk = {(m,n) € N° : ||(I)mn (Ez_]k:) — Eijk”sxt > M},

wherez’ =0,1,2,3and 1 < j < 5,1 <k < t. Then it is easy to see that I' C
s t

Fz ik Thus we may wri e, for every (p,r) € N2, that
Jj= =

s t 3
E Aprmn < E E 5 E Aprmn -
m,n)el’ 7j=1k=11i=0 (m,n)el;
J

Letting p,r — 00, using (4), we obtain (5). The proof is complete.

3 Concluding Remarks

In Theorem 1 if we replace the matrix A by the double Ceséro matrix C(1,1), then we
immediately get the following statistical result.

COROLLARY 1. Let (®,,,) be a double sequence of mPLOs acting from C(D, C*t)
into itself. Then for all (5, k) € {1,2,...,s} x {1,2,...,t} and for each i = 0,1,2, 3,

2_' .. _ .. =
st = 1im ||y (Eije) = Bl = 0,

where E;;j, is given by (2) and (3), if and only if for every F' € C(D,C***) as in (1),

sxt

st? _gmn”@mn( )= F

In Theorem 1 if we replace the matrix A by the double identity matrix I, then we
immediately get the following classical result.

COROLLARY 2. Let (®,,,,,) be a double sequence of mPLOs acting from C(D, C#*?)
into itself. Then for all (j,k) € {1,2,...,s} x {1,2,...,t} and for each i = 0,1,2,3,

m,n

where E;j;, is given by (2) and (3), if and only if for every F' € C(D,C**") as in (1),

sxt =
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Now we present an example such that our new approximation result works but
its classical case (Corollary 2) does not work. Let a, b,c,d be fixed real numbers
and D = [a,b] x [¢,d]. First consider the following the matrix-valued Bernstein-type
operators:

Bon (F3 2, 9) ZZF<a+ (b—a),c+— (d ))("Z)(f)

=0 r=0

l I m—1 n—r
T—a y—c b—z d—y
14
() (=) G=0) (=)
where (z,y) € D, F € C(D,C**") such that F(x,y) := [fix(z,y)],,» 1 < j <'s,

1 <k <t. Also, observe that the matrix-valued Bernstein-type polynomials B,,, can
be also written as follows:

By (F;2,y) iiZZm(H (b-a)et (d )>(nll)<7:>

=0 r=0j=1k=1

z—a\ y—c b—z\" (d—y\""
E; 15
X(b—a) (d—c) (b—a) (d—c) gks (15)
where Ejj, denotes the matrix of the canonical basis of C*** being 1 in the position (j, k)

and zero otherwise. Then, by (14) or (15), we obtain that, for (j,k) € {1,2,...,s} X
{1727 ""t}’

85

mn EOjk;xay)
B m n T —a l y—c T b— m—l1 d—y n—r
N — = b—a d—c b—a d—c

x B, <a+7;(b—a),c+r(d—c)>

Il
<

- w2 (N0 G (520 (20) (=)
= Eyjk (z,y).

Similarly, we get that, for (j,k) € {1,2,...,s} x {1,2,...,t},
an (Eljk?’x y)
m n n T —a l y—c r b—x m—I1 d—y n—r
T b—a d—c b—a d—c
=0 r=
E + L —a), e+ Dd—0)
wla+—(b—a),c+—(d—c
15k m ) n

= zEj; = Eji (z,y)

I
M

and
an (Eij;$,y) = yEJk = E2jk (x7y) .
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Finally, we obtain that, for (5,k) € {1,2,...,s} x {1,2,...,t},

l y—c T b— m—l1 d—y n—r
d—c b—a d—c

imn T(LESde z,y)
- 33 (N0 (=

l
X Esjj, <a—|—m(b—a),c

+ ~——
<

+Es31 (z,y) .

Now take A = C(1;1) and define a double sequence u = (t,) by

1 if m and n are squares,
Umn 1= .
mn 0 otherwise.

Using polynomials given by (14) and the double sequence u = (uy,,,), we introduce the
following mPLOs on C (D, C5*?) :

CDmn(F;x’y) = (1 + umn)an (F§ SB,y) 5 (16)

where (m,n) € N?, (z,y) € D and F € C (D, C**") such that F(z,y) = [fjr(z,y)],.,
1<j<s,1<k<t So, using the properties of matrix-valued the above operators
given by (14), for each 1 < j < s, 1 < k < t, one can obtain the following results at
once:

||¢)mn(Ezjk) - Eiijsxt = Umn, ¢ = 0,1,2,

and
@ (Fsj) ~ Bl < - (@ —ap + L7002
NUETICRT
n
+umn (- a)2 n (b—a)(a—a) w
m m
+umn (6 _ C)Q + (d - C) (5 - C)umna
n n

where o = max |z|, 8 = max |y|. Since st — limu,,,, = 0, we conclude that
m,n

st* — im || @, (Eyji) — Eijill,.., =0, i=0,1,2,3,

m,n
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foreach 1 < j <s,1 <k <t So, by Theorem 1, we immediately see that

st? — }}fﬂ [ @ (F) — Fstt =0

for all F € C (D,C#*"). However, since u is not ordinary convergent to zero, the double
sequence (®,,,,) given by (16) does not satisfy the conditions of Corollary 2.

4 Rate of Convergence

Various ways of defining rates of convergence in the A-statistical sense for four-dimensional
summability matrices were introduced in [2]. In this section, we compute the corre-
sponding rates of A-statistical convergence in Theorem 1 by means of two different
ways.

DEFINITION 1 ([2]). Let A = [aprmn] be a non-negative RH-regular summability
matrix and let (ayy,y,) be a positive non-increasing double sequence. A double sequence
x = (Tmn) is A-statistically convergent to a number L with the rate of o(,,) if for
every € > 0,

1
P —lim Z Qprmn = 0,

J e
P (mn) €K (e)

where

K(e) == {(m,n) EN?: |z, — L| > ¢}.
In this case, we write

Tn — L = stff) — o(@mn) as m,n — oo.

DEFINITION 2 ([2]). Let A = [aprmn] and (auyy) be the same as in Definition 1.
Then, a double sequence x = {z,,,} is A-statistically convergent to a number L with
the rate of opmp(Qmy) if for every € > 0,

P —lim Z Aprmn = 0,

pr (m,n)eM(e)

where
M(e) = {(m,n) eEN?: |z — Ll > ¢ amn} .

In this case, we write

2
Ty — L = st%) — Omn(Qmn) as m,n — oo.

We see from the above statements that, in Definition 1 the rate sequence (@)
directly effects the entries of the matrix A = [aprms] although, according to Definition
2, the rate is more controlled by the terms of the sequence x = (2,,,,) (see for details,

[51)
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Let F € C(D,C%*") such that
F(ﬂ%y) = [fik(xay)]sxtv 1<j<s 1< k<t.

Consider the the following modulus of continuity w(f;jx;0):

w(fjk;(S) = Sup{|fjk‘ (U,U) - fjk (xvy)| : (u,v),(x,y) €D, \/(u_'r)Q + (U _y)2 < 5}

where f;), are scalar valued functions continuous on D and § > 0. Then, we define the
matrix modulus of continuity of F' as follows:

Woxt (F’ 6) = 1<j<I£1a1X<k<tw (fjk; 5) '

=J =5 LRk

In order to obtain our result, we will make use of the elementary inequality, for all
F € C(D,C***) and for \,§ > 0,

wsxt (F300) < (14 [A]) wsxe (F6), (17)

where [\ is defined to be the greatest integer less than or equal to A.
Then we have the following result.

THEOREM 2. Let A = [aprmn]| be a nonnegative RH-regular summability ma-
trix, let (amn) be a positive non-increasing double sequence. and let (®,,,) be a
double sequence of mPLOs acting from C(D,C%*?) into itself. Then for all (j,k) €
{1,2,...,8} x {1,2,...,t} and for each i = 0,1,2,3,

(@) [|@mn(Boji) — Bojilly, = 5t — 0(@mnge) as m,n — o,

(b) wext (F;0mn) = stff) — 0(6mn) as m,n — oo where

s t
FeC(D,C™) and Smn = | > Y 11 @mn (W)l
j=1k=1

where W, (u,v) = (u—z)* + (v —y)? for each (z,y), (u,v) € D.

Then, we get, for each F' € C(D,C**") as in (1),

(2)

||(I)mn(F) - F||s><t = StA - O(an)v

where
max {amnjka 6mn}

SIS, IXRY

’Ym,n :

for all (m,n) € N2, Furthermore, similar conclusions hold with the symbol “o” replaced
by “Omn”
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PROOF. To see this, we first assume that (z,y) € D and F € C(D,C**?) be fixed,
and that (a) and (b) hold. Since ®,,,,, is a mPLO, we get

|<I>mn(F(u,v);x,y) _F(mvy)‘
< KOpn([F(u,v) = F(z,y)52,y) + | Pomn(F(2,9); 2, y) — F(2,9)],

where K is a positive constant. Also,

Fluo) = Fepl < wo (Fiyf/lu=af + 0= ) £

<1+ (U—x)z;(v_y)2> Wext (F,5) E, (18)

IN

where F is the s x t matrix such that all entires 1. As in the proof Theorem 1, we may
write

s t
|¢)mn(F($7y);w7 y) - F(:c,y)\ < MZ Z |(I)mn (onk(u,’l}); xvy) - onk(xvy)l ’ (19)
J=1k=1
where
M= e, Mie = 1Fllce
By (18) and (19), we obtain
|(I)mn(F(uvv);xay) - F (a:,y)l
K s t
S Kwsxt (Fa(s) (I)mn (E)+67wsxt (F;(S) émn(\:[jjk;x,y)
j=1k=1
s t

+MZ Z ‘(I)mn (onk(’lt,'U);fE,y) - EOJk(xay”

j=1k=1

s t
< Kuwexy (F;0) Z Z [P (Eojk(u,v);2,y) — Eoji(x,y)]
J=1k=1
s t

+MZ Z ‘(I)mn (E()jk(uvv);xay) - E()jk(xvy”

J=1k=1

K s t
+?wsxt (F;9) Z Z Dy (Vi 2, y) + Kwexy (F;0) E.
j=1k=1

Taking supremum over (z,y) € D on the both-sides of the above inequality and

S

t
0= 6mn = ZZ H(I)mn(\pjk)‘lsxt?

j=1k=1
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then we obtain

Hq)mn(F) _F||s><t < 2Kwsxe (F 6mn)

s t

+Kws><t F 5mn ZZ”(I)mn EO]kvx y) EOjk||S><t
Jj=1k=1

+MZZ ”(I)mn (E()jk;l',y) - EOjk“sxt .

j=1k=1
Hence, we get
H(I)mn(F) - F||s><t

S

S B Wsxt (F;(Smn)+wsxt (Fy(smn)z
j=1

M~

||¢)’mn (EOjk:;xa y) - onkstt

o>~
Il

1

S

t
+ Z Z [P rmn (Eojk; ,Y) — Eojkll 4 (20)
J=1k=1

where B = max {2K, M}. Now, given £ > 0, define the following sets:

[:={(m,n) € N*: || @, (F) — Fll,,, > ¢},

2 3
= P Wsxt ;0mn) 2 )
Iy {(m,n) € N*: went (F;0mn) (2St+1)B}

g
Ajj = {(m,n) €N Wt (F50mn) |Pmn (Eoji; 2, y) — Eojillyy, = (28f+1)3}7

— 2, . €
Ojk 1= {(mJL) € N° 1 || @y, (Eoji; z,y) — E()ijsxt > W}a

where 1 < j <s, 1 <k <t. Then, it follows from (20) that

s t s t
Ircri,u UUAjk U UU@JI‘
j=1k=1 j=1k=1
Also, defining
3
U {(m n) € N : wext (F0mn) > (2$t—|—1)B}

and

€
Ujg :== {(m,n) e N || D, (Eojr; w,y) — Eojill gy > W}v
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we have A C U U Ujy, which yields

t

s s t
rcryuvu | Ui |ul U U6 -
j=1k=1

j=1k=1
Therefore, since 7,,,,, := s a1<k< {@mnjk, Omn}, we conclude that, for all (p,r) €
<j<s
N2,
1
— Z Aprmn
Tpr (m,n)er
1 s t
D SIL RS 5551 (= SR
P (m,n)er; j=1k=1 mnjk (m,n)eUjk
1 s t
SIS 5 S
P (m,n)eU j=1k=1 Xmnjk (m, n)e@m

Letting p,r — oo (in any manner) on both sides of (21), from (18) and (19), we get
— hm— Z Qprmn = 0.
P Tpr (m,n)er

Therefore, the proof is completed.
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