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Abstract

In this work, we investigate an approximation problem for matrix valued pos-
itive linear operators of two variables. Also using the A-statistical convergence
which is stronger than Pringsheim convergence of double sequences, we prove a
Korovkin-type approximation theorem for matrix valued positive linear operators
of two variables. We also compute the rates of A-statistical convergence of this
operators.

1 Introduction

One of the most important and basic results in approximation theory is the classical
Bohman-Korovkin theorem (see for instance [10]). This theorem establishes the uni-
form convergence in the space C[a, b] of all the continuous real functions defined on
the interval [a, b], for a sequence of positive linear operators (Tn) acting on C[a, b],
assuming the convergence only on the test functions 1, x, x2. Of course, this theory
mainly gives the approximation a scaler-valued function by means of linear positive
operators. However, in [16], Serra-Capizzano presented a new Korovkin-type result
for matrix valued functions. Some other related topics may be found in the papers
[13, 17, 18] and cited therein. In particular, the use of statistical convergence had a
great impulse in recent years. Furthermore, with the help of the concept of uniform
statistical convergence, which is a regular (non-matrix) summability transformation,
various statistical approximation results have been proved [1, 2, 3, 5, 8, 9]. Then, it
was demonstrated that those results are more powerful than the classical Korovkin
theorem. In [4], using the statistical convergence, Duman and Erkuş-Duman proved
Korovkin-type approximation theorem for matrix valued positive linear operators. Our
primary interest in the present paper is to obtain a general Korovkin-type approxima-
tion theorem for double sequences of matrix valued positive linear operators of two
variables from C(D,Cs×t) to itself where D is a compact subset of R2.
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328 Matrix-Valued Functions of Two Variables

We begin with some definitions and notations which we will use in the sequel. As
usual, a double sequence

x = (xmn) , m, n ∈ N,

is convergent in Pringsheim’s sense if, for every ε > 0, there exists N = N(ε) ∈ N such
that |xmn − L| < ε whenever m,n > N . Then, L is called the Pringsheim limit of x
and is denoted by P − lim

m,n
x = L (see [14]). In this case, we say that x = (xmn) is

“P -convergent to L”. Also, if there exists a positive number M such that |xmn| ≤ M
for all (m,n) ∈ N2 = N × N, then x = (xmn) is said to be bounded. Note that in
contrast to the case for single sequences, a convergent double sequence needs not to be
bounded.
Now let

A = [aprmn], p, r,m, n ∈ N,

be a four-dimensional summability matrix. For a given double sequence x = (xmn),
the A-transform of x, denoted by Ax := {(Ax)pr}, is given by

(Ax)pr =
∑

(m,n)∈N2
aprmnxmn, p, r ∈ N,

provided the double series converges in Pringsheim’s sense for every (p, r) ∈ N2. In
summability theory, a two-dimensional matrix transformation is said to be regular if it
maps every convergent sequence in to a convergent sequence with the same limit. The
well-known characterization for two dimensional matrix transformations is known as
Silverman-Toeplitz conditions (see, for instance, [7]). In 1926, Robinson [15] presented
a four dimensional analog of the regularity by considering an additional assumption
of boundedness. This assumption was made because a double P -convergent sequence
is not necessarily bounded. The definition and the characterization of regularity for
four dimensional matrices is known as Robison-Hamilton conditions, or briefly, RH-
regularity (see, [6, 15]).
Recall that a four dimensional matrix A = [aprmn] is said to be RH-regular if it

maps every bounded P -convergent sequence into a P -convergent sequence with the
same P -limit. The Robison-Hamilton conditions state that a four dimensional matrix
A = [aprmn] is RH-regular if and only if

(i) P − lim
p,r

aprmn = 0 for each (m,n) ∈ N2,

(ii) P − lim
p,r

∑
(m,n)∈N2

aprmn = 1,

(iii) P − lim
p,r

∑
m∈N
|aprmn| = 0 for each n ∈ N,

(iv) P − lim
p,r

∑
n∈N
|aprmn| = 0 for each m ∈ N,

(v)
∑

(m,n)∈N2
|aprmn| is P−convergent,
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(vi) there exist finite positive integers A and B such that
∑

m,n>B

|aprmn| < A holds

for every (p, r) ∈ N2.

Now let A = [aprmn] be a non-negative RH-regular summability matrix, and let
K ⊂ N2. Then A-density of K is given by

δ
(2)
A {K} := P − lim

p,r

∑
(m,n)∈K

aprmn

provided that the limit on the right-hand side exists in Pringsheim’s sense. A real
double sequence x = (xmn) is said to be A−statistically convergent to a number L if,
for every ε > 0,

δ
(2)
A {(m,n) ∈ N2 : |xmn − L| ≥ ε} = 0.

In this case, we write st(2)
A − lim

m,n
xmn = L. We should note that if we take A = C(1, 1),

which is the double Cesáro matrix, then C(1, 1)-statistical convergence coincides with
the notion of statistical convergence for double sequence, which was introduced in
[11, 12]. Finally, if we replace the matrix A by the identity matrix for four-dimensional
matrices, then A-statistical convergence reduces to the Pringsheim convergence.
A P -convergent double sequence is A-statistically convergent to the same value but

the converse does not hold true.

2 AKorovkin-Type Approximation Theorem for Dou-
ble Sequences

In this section, we give a Korovkin-type theorem for double sequences of matrix val-
ued positive linear operators defined on C(D,Cs×t) using the concept of A-statistical
convergence.
Let s, t be two fixed natural numbers and D a compact subset of R2. By C(D,Cs×t)

we denote the space of all continuous functions F acting on D and having values in
the space Cs×t of the complex s× t matrices such that

F (x, y) := [fjk(x, y)]s×t , ((x, y) ∈ D, 1 ≤ j ≤ s, 1 ≤ k ≤ t), (1)

where the symbol [bjk]s×t denotes the s × t matrix. Here, by the continuity of F we
mean that all scalar valued functions fjk are continuous on D. Then, the norm ‖·‖s×t
on the space C(D,Cs×t) is defined by

‖F‖s×t := max
1≤j≤s, 1≤k≤t

‖fjk‖ := max
1≤j≤s, 1≤k≤t

(
sup

(x,y)∈D
|fjk(x, y)|

)
.

Throughout this paper we use the following test functions

E0jk(u, v) = Ejk, E1jk(u, v) = uEjk, (2)
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E2jk(u, v) = vEjk and E3jk(u, v) =
(
u2 + v2

)
Ejk, (3)

for (u, v) ∈ D, 1 ≤ j ≤ s, 1 ≤ k ≤ t, where Ejk denotes the matrix of the canonical
basis of Cs×t being 1 in the position (j, k) and zero otherwise.
Let Φ : C(D,Cs×t)→ C(D,Cs×t) be an operator, and let us assume that

(i) Φ(aF + bG) = aΦ(F ) + bΦ(G) for any α, β ∈ C and F,G ∈ C(D,Cs×t),

(ii) Φ(F ) ≤ KΦ(|F |) for any function F ∈ C(D,Cs×t) and for a fixed positive con-
stant K.

Under the above-mentioned assumptions, the operator Φ is said to be a matrix linear
positive operator, or briefly, mLPO (see, for details, [16]). The inequality appearing
in (ii) is understood to be componentwise, i.e., holding for any component (j, k) ∈
{1, 2, ..., s} × {1, 2, ..., t}.

Now we have the following main result.

THEOREM 1. Let A = [aprmn] be a nonnegative RH-regular summability matrix
and let (Φmn) be a double sequence of mPLOs acting from C(D,Cs×t) into itself.
Then for all (j, k) ∈ {1, 2, ..., s} × {1, 2, ..., t} and for each i = 0, 1, 2, 3,

st2A − lim
m,n
‖Φmn(Eijk)− Eijk‖s×t = 0, (4)

where Eijk is given by (2) and (3), if and only if for every F ∈ C(D,Cs×t) as in (1),

st2A − lim
m,n
‖Φmn(F )− F‖s×t = 0. (5)

PROOF. Since each Eijk ∈ C(D,Cs×t), (i = 0, 1, 2, 3), the implication (5)⇒(4) is
obvious. Suppose now that (4) holds. Let F ∈ C(D,Cs×t) and (x, y) ∈ D be fixed.
Fist, we calculate the expression |Φnm(F ;x, y)− F (x, y)|, the symbol |B| denotes the
matrix having entries equal to the absolute value of the entries of the matrix B. We
can show that F (x, y) := [fjk(x, y)]s×t , 1 ≤ j ≤ s, 1 ≤ k ≤ t, can be written as follows:

F (x, y) :=

s∑
j=1

t∑
k=1

fjk(x, y)Ejk =

s∑
j=1

t∑
k=1

fjk(x, y)E0jk(u, v).

Hence, we obtain

Φmn(F (x, y);x, y) =

s∑
j=1

t∑
k=1

fjk(x, y)Φmn (E0jk(u, v);x, y) . (6)

Also, the continuity of fjk on D, for a given ε > 0, there exists a number δ > 0 such
that for all (u, v) ∈ D satisfying√

(u− x)
2

+ (v − y)
2 ≤ δ.
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We have

|fjk (u, v)− fjk (x, y)| ≤ ε for 1 ≤ j ≤ s, 1 ≤ k ≤ t. (7)

Also we get for all (x, y) , (u, v) ∈ D satisfying
√

(u− x)
2

+ (v − y)
2
> δ that

|fjk (u, v)− fjk (x, y)| ≤ 2Mjk

δ2 ϕ(u, v) for 1 ≤ j ≤ s, 1 ≤ k ≤ t, (8)

where M := sup
(x,y)∈D

|fjk(x, y)| and ϕ(u, v) = (u− x)
2

+ (v − y)
2. Combining (7) and

(8) we have for (u, v) ∈ D that

|fjk (u, v)− fjk (x, y)| ≤ ε+
2Mjk

δ2 ϕ(u, v). (9)

Then observe that, by (9),

|F (u, v)− F (x, y)| ≤ εE +
2M

δ2 ϕ(u, v)E, (10)

where E is the s× t matrix such that all entires 1, and

M := max
1≤j≤s, 1≤k≤t

Mjk = ‖F‖s×t .

Since Φmn is a mPLO, from (6) and (10), we get

|Φmn(F (u, v);x, y)− F (x, y)|
≤ KΦmn(|F (u, v)− F (x, y)| ;x, y) + |Φmn(F (x, y);x, y)− F (x, y)|

≤ (εK +M)

s∑
j=1

t∑
k=1

|Φmn (E0jk(u, v);x, y)− E0jk(x, y)|

+
2KM

δ2 Φmn(ϕ(u, v)E;x, y) + εKE (11)

for a fixed positive constant K. Now we compute the expression Φmn(ϕ(u, v)E;x, y)
on the left-hand side of (11). By a simple calculation, we get

Φmn(ϕ(u, v)E;x, y) = Φmn(

s∑
j=1

t∑
k=1

ϕ(u, v)Ejk;x, y)

=

s∑
j=1

t∑
k=1

{Φmn (E3jk;x, y)− 2xΦmn (E1jk;x, y)

−2yΦmn (E2jk;x, y) +
(
x2 + y2

)
Φmn (E0jk;x, y)

}
.
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Then,

Φmn(
(

(u− x)
2

+ (v − y)
2
)
E;x, y)

≤
s∑
j=1

t∑
k=1

|Φmn (E3jk;x, y)− E3jk(x, y)|

+2A

s∑
j=1

t∑
k=1

|Φmn (E1jk;x, y)− E1jk(x, y)|

+2B

s∑
j=1

t∑
k=1

|Φmn (E2jk;x, y)− E2jk(x, y)|

+
(
A2 +B2

) s∑
j=1

t∑
k=1

|Φmn (E0jk;x, y)− E0jk(x, y), | (12)

where A := max |x| and B := max |y|. Combining (11) and (12), we obtain

|Φmn(F (u, v);x, y)− F (x, y)|

≤ (εK +M)

s∑
j=1

t∑
k=1

|Φmn (E0jk(u, v);x, y)− E0jk(x, y)|

+εKE +
4AKM

δ2

s∑
j=1

t∑
k=1

|Φmn (E1jk;x, y)− E1jk(x, y)|

+
4BKM

δ2

s∑
j=1

t∑
k=1

|Φmn (E2jk;x, y)− E2jk(x, y)|

+
2KM

δ2

s∑
j=1

t∑
k=1

|Φmn (E3jk;x, y)− E3jk(x, y)|

+
2
(
A2 +B2

)
KM

δ2

s∑
j=1

t∑
k=1

|Φmn (E0jk(u, v);x, y)− E0jk(x, y)|

≤ εKE + C

s∑
j=1

t∑
k=1

3∑
i=0

|Φmn (Eijk;x, y)− Eijk(x, y)| ,

where

C := max

{
εK +M +

2
(
A2 +B2

)
KM

δ2 ,
4AKM

δ2 ,
4BKM

δ2 ,
2KM

δ2

}
.

Then, taking maximum of all entries of the corresponding matrices and taking supre-
mum over (x, y) ∈ D, we get

‖Φmn(F )− F‖s×t ≤ εK + C


s∑
j=1

t∑
k=1

3∑
i=0

‖Φmn (Eijk)− Eijk‖s×t

 . (13)
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Now, for a given ε
′
> 0, choose ε > 0 such that ε < ε

′

K . Then, define

Γ :=
{

(m,n) ∈ N2 : ‖Φmn(F )− F‖s×t ≥ ε
′
}

and

Γijk :=

{
(m,n) ∈ N2 : ‖Φmn (Eijk)− Eijk‖s×t ≥

ε
′ − εK
4stC

}
,

where i = 0, 1, 2, 3 and 1 ≤ j ≤ s, 1 ≤ k ≤ t. Then it is easy to see that Γ ⊆
s⋃
j=1

t⋃
k=1

3⋃
i=0

Γijk. Thus, we may write, for every (p, r) ∈ N2, that

∑
(m,n)∈Γ

aprmn ≤
s∑
j=1

t∑
k=1

3∑
i=0

∑
(m,n)∈Γijk

aprmn.

Letting p, r →∞, using (4), we obtain (5). The proof is complete.

3 Concluding Remarks

In Theorem 1 if we replace the matrix A by the double Cesáro matrix C(1, 1), then we
immediately get the following statistical result.

COROLLARY 1. Let (Φmn) be a double sequence ofmPLOs acting from C(D,Cs×t)
into itself. Then for all (j, k) ∈ {1, 2, ..., s} × {1, 2, ..., t} and for each i = 0, 1, 2, 3,

st2 − lim
m,n
‖Φmn(Eijk)− Eijk‖s×t = 0,

where Eijk is given by (2) and (3), if and only if for every F ∈ C(D,Cs×t) as in (1),

st2 − lim
m,n
‖Φmn(F )− F‖s×t = 0.

In Theorem 1 if we replace the matrix A by the double identity matrix I, then we
immediately get the following classical result.

COROLLARY 2. Let (Φmn) be a double sequence ofmPLOs acting from C(D,Cs×t)
into itself. Then for all (j, k) ∈ {1, 2, ..., s} × {1, 2, ..., t} and for each i = 0, 1, 2, 3,

P − lim
m,n
‖Φmn(Eijk)− Eijk‖s×t = 0,

where Eijk is given by (2) and (3), if and only if for every F ∈ C(D,Cs×t) as in (1),

P − lim
m,n
‖Φmn(F )− F‖s×t = 0.
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Now we present an example such that our new approximation result works but
its classical case (Corollary 2) does not work. Let a, b, c, d be fixed real numbers
and D = [a, b] × [c, d]. First consider the following the matrix-valued Bernstein-type
operators:

Bmn (F ;x, y) =

m∑
l=0

n∑
r=0

F

(
a+

l

m
(b− a) , c+

r

n
(d− c)

)(
m

l

)(
n

r

)

×
(
x− a
b− a

)l(
y − c
d− c

)r (
b− x
b− a

)m−l(
d− y
d− c

)n−r
, (14)

where (x, y) ∈ D, F ∈ C (D,Cs×t) such that F (x, y) := [fjk(x, y)]s×t , 1 ≤ j ≤ s,
1 ≤ k ≤ t. Also, observe that the matrix-valued Bernstein-type polynomials Bmn can
be also written as follows:

Bmn (F ;x, y) =

m∑
l=0

n∑
r=0

s∑
j=1

t∑
k=1

fjk

(
a+

l

m
(b− a) , c+

r

n
(d− c)

)(
m

l

)(
n

r

)

×
(
x− a
b− a

)l(
y − c
d− c

)r (
b− x
b− a

)m−l(
d− y
d− c

)n−r
Ejk, (15)

where Ejk denotes the matrix of the canonical basis of Cs×t being 1 in the position (j, k)
and zero otherwise. Then, by (14) or (15), we obtain that, for (j, k) ∈ {1, 2, ..., s} ×
{1, 2, ..., t},

Bmn (E0jk;x, y)

=

m∑
l=0

n∑
r=0

(
m

l

)(
n

r

)(
x− a
b− a

)l(
y − c
d− c

)r (
b− x
b− a

)m−l(
d− y
d− c

)n−r
×E0jk

(
a+

l

m
(b− a) , c+

r

n
(d− c)

)
= Ejk

m∑
l=0

n∑
r=0

(
m

l

)(
n

r

)(
x− a
b− a

)l(
y − c
d− c

)r (
b− x
b− a

)m−l(
d− y
d− c

)n−r
= E0jk (x, y) .

Similarly, we get that, for (j, k) ∈ {1, 2, ..., s} × {1, 2, ..., t},

Bmn (E1jk;x, y)

=

m∑
l=0

n∑
r=0

(
m

l

)(
n

r

)(
x− a
b− a

)l(
y − c
d− c

)r (
b− x
b− a

)m−l(
d− y
d− c

)n−r
×E1jk

(
a+

l

m
(b− a) , c+

r

n
(d− c)

)
= xEjk = E1jk (x, y)

and
Bmn (E2jk;x, y) = yEjk = E2jk (x, y) .
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Finally, we obtain that, for (j, k) ∈ {1, 2, ..., s} × {1, 2, ..., t},

Bmn (E3jk;x, y)

=

m∑
l=0

n∑
r=0

(
m

l

)(
n

r

)(
x− a
b− a

)l(
y − c
d− c

)r (
b− x
b− a

)m−l(
d− y
d− c

)n−r
×E3jk

(
a+

l

m
(b− a) , c+

r

n
(d− c)

)
=

{
x2 − 1

m
(x− a)

2
+

(b− a) (x− a)

m

+y2 − 1

n
(y − c)2

+
(d− c) (y − c)

n

}
Ejk

=

(
(b− a) (x− a)

m
− 1

m
(x− a)

2 − 1

n
(y − c)2

+
(d− c) (y − c)

n

)
Ejk

+E3jk (x, y) .

Now take A = C(1; 1) and define a double sequence u = (umn) by

umn :=

{
1 if m and n are squares,
0 otherwise.

Using polynomials given by (14) and the double sequence u = (umn), we introduce the
following mPLOs on C (D,Cs×t) :

Φmn(F ;x, y) = (1 + umn)Bmn (F ;x, y) , (16)

where (m,n) ∈ N2, (x, y) ∈ D and F ∈ C (D,Cs×t) such that F (x, y) := [fjk(x, y)]s×t ,
1 ≤ j ≤ s, 1 ≤ k ≤ t. So, using the properties of matrix-valued the above operators
given by (14), for each 1 ≤ j ≤ s, 1 ≤ k ≤ t, one can obtain the following results at
once:

‖Φmn(Eijk)− Eijk‖s×t = umn, i = 0, 1, 2,

and

‖Φmn(E3jk)− E3jk‖s×t ≤
1

m
(α− a)

2
+

(b− a) (α− a)

m
+

1

n
(β − c)2

+
(d− c) (β − c)

n

+
umn
m

(α− a)
2

+
(b− a) (α− a)

m
umn

+
umn
n

(β − c)2
+

(d− c) (β − c)
n

umn,

where α = max |x|, β = max |y|. Since st− lim
m,n

umn = 0, we conclude that

st2 − lim
m,n
‖Φmn(Eijk)− Eijk‖s×t = 0, i = 0, 1, 2, 3,
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for each 1 ≤ j ≤ s, 1 ≤ k ≤ t. So, by Theorem 1, we immediately see that

st2 − lim
m,n
‖Φmn(F )− F‖s×t = 0

for all F ∈ C (D,Cs×t) . However, since u is not ordinary convergent to zero, the double
sequence (Φmn) given by (16) does not satisfy the conditions of Corollary 2.

4 Rate of Convergence

Various ways of defining rates of convergence in theA-statistical sense for four-dimensional
summability matrices were introduced in [2]. In this section, we compute the corre-
sponding rates of A-statistical convergence in Theorem 1 by means of two different
ways.

DEFINITION 1 ([2]). Let A = [aprmn] be a non-negative RH-regular summability
matrix and let (αmn) be a positive non-increasing double sequence. A double sequence
x = (xmn) is A-statistically convergent to a number L with the rate of o(αmn) if for
every ε > 0,

P − lim
p,r

1

αpr

∑
(m,n)∈K(ε)

aprmn = 0,

where
K(ε) :=

{
(m,n) ∈ N2 : |xmn − L| ≥ ε

}
.

In this case, we write

xmn − L = st
(2)
A − o(αmn) as m,n→∞.

DEFINITION 2 ([2]). Let A = [aprmn] and (αmn) be the same as in Definition 1.
Then, a double sequence x = {xmn} is A-statistically convergent to a number L with
the rate of omn(αmn) if for every ε > 0,

P − lim
p,r

∑
(m,n)∈M(ε)

aprmn = 0,

where
M(ε) :=

{
(m,n) ∈ N2 : |xmn − L| ≥ ε αmn

}
.

In this case, we write

xmn − L = st
(2)
A − omn(αmn) as m,n→∞.

We see from the above statements that, in Definition 1 the rate sequence (αmn)
directly effects the entries of the matrix A = [aprmn] although, according to Definition
2, the rate is more controlled by the terms of the sequence x = (xmn) (see for details,
[5])
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Let F ∈ C(D,Cs×t) such that

F (x, y) := [fjk(x, y)]s×t , 1 ≤ j ≤ s, 1 ≤ k ≤ t.

Consider the the following modulus of continuity ω(fjk; δ):

ω (fjk; δ) := sup

{
|fjk (u, v)− fjk (x, y)| : (u, v) , (x, y) ∈ D,

√
(u− x)

2
+ (v − y)

2 ≤ δ
}

where fjk are scalar valued functions continuous on D and δ > 0. Then, we define the
matrix modulus of continuity of F as follows:

ωs×t (F ; δ) := max
1≤j≤s, 1≤k≤t

ω (fjk; δ) .

In order to obtain our result, we will make use of the elementary inequality, for all
F ∈ C(D,Cs×t) and for λ, δ > 0,

ωs×t (F ;λδ) ≤ (1 + [λ])ωs×t (F ; δ) , (17)

where [λ] is defined to be the greatest integer less than or equal to λ.
Then we have the following result.

THEOREM 2. Let A = [aprmn] be a nonnegative RH-regular summability ma-
trix, let (αmn) be a positive non-increasing double sequence. and let (Φmn) be a
double sequence of mPLOs acting from C(D,Cs×t) into itself. Then for all (j, k) ∈
{1, 2, ..., s} × {1, 2, ..., t} and for each i = 0, 1, 2, 3,

(a) ‖Φmn(E0jk)− E0jk‖s×t = st
(2)
A − o(αmnjk) as m,n→∞,

(b) ωs×t (F ; δmn) = st
(2)
A − o(δmn) as m,n→∞ where

F ∈ C(D,Cs×t) and δmn :=

√√√√ s∑
j=1

t∑
k=1

‖Φmn(Ψjk)‖s×t

where Ψjk(u, v) = (u− x)
2

+ (v − y)
2 for each (x, y) , (u, v) ∈ D.

Then, we get, for each F ∈ C(D,Cs×t) as in (1),

‖Φmn(F )− F‖s×t = st
(2)
A − o(γmn),

where
γm,n := max

1≤j≤s, 1≤k≤t
{αmnjk, δmn}

for all (m,n) ∈ N2. Furthermore, similar conclusions hold with the symbol “o”replaced
by “omn”
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PROOF. To see this, we first assume that (x, y) ∈ D and F ∈ C(D,Cs×t) be fixed,
and that (a) and (b) hold. Since Φmn is a mPLO, we get

|Φmn(F (u, v);x, y)− F (x, y)|
≤ KΦmn(|F (u, v)− F (x, y)| ;x, y) + |Φmn(F (x, y);x, y)− F (x, y)| ,

where K is a positive constant. Also,

|F (u, v)− F (x, y)| ≤ ωs×t

(
F ;

√
(u− x)

2
+ (v − y)

2

)
E

≤
(

1 +
(u− x)

2
+ (v − y)

2

δ2

)
ωs×t (F ; δ)E, (18)

where E is the s× t matrix such that all entires 1. As in the proof Theorem 1, we may
write

|Φmn(F (x, y);x, y)− F (x, y)| ≤M
s∑
j=1

t∑
k=1

|Φmn (E0jk(u, v);x, y)− E0jk(x, y)| , (19)

where
M := max

1≤j≤s, 1≤k≤t
Mjk = ‖F‖s×t .

By (18) and (19), we obtain

|Φmn(F (u, v);x, y)− F (x, y)|

≤ Kωs×t (F ; δ) Φmn (E) +
K

δ2ωs×t (F ; δ)

s∑
j=1

t∑
k=1

Φmn(Ψjk;x, y)

+M

s∑
j=1

t∑
k=1

|Φmn (E0jk(u, v);x, y)− E0jk(x, y)|

≤ Kωs×t (F ; δ)

s∑
j=1

t∑
k=1

|Φmn (E0jk(u, v);x, y)− E0jk(x, y)|

+M

s∑
j=1

t∑
k=1

|Φmn (E0jk(u, v);x, y)− E0jk(x, y)|

+
K

δ2ωs×t (F ; δ)

s∑
j=1

t∑
k=1

Φmn(Ψjk;x, y) +Kωs×t (F ; δ)E.

Taking supremum over (x, y) ∈ D on the both-sides of the above inequality and

δ := δmn :=

√√√√ s∑
j=1

t∑
k=1

‖Φmn(Ψjk)‖s×t,
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then we obtain

‖Φmn(F )− F‖s×t ≤ 2Kωs×t (F ; δmn)

+Kωs×t (F ; δmn)

s∑
j=1

t∑
k=1

‖Φmn (E0jk;x, y)− E0jk‖s×t

+M

s∑
j=1

t∑
k=1

‖Φmn (E0jk;x, y)− E0jk‖s×t .

Hence, we get

‖Φmn(F )− F‖s×t

≤ B

ωs×t (F ; δmn) + ωs×t (F ; δmn)

s∑
j=1

t∑
k=1

‖Φmn (E0jk;x, y)− E0jk‖s×t

+

s∑
j=1

t∑
k=1

‖Φmn (E0jk;x, y)− E0jk‖s×t

 (20)

where B = max {2K,M}. Now, given ε > 0, define the following sets:

Γ :=
{

(m,n) ∈ N2 : ‖Φmn(F )− F‖s×t ≥ ε
}
,

Γ1 :=

{
(m,n) ∈ N2 : ωs×t (F ; δmn) ≥ ε

(2st+ 1)B

}
,

∆jk :=

{
(m,n) ∈ N2 : ωs×t (F ; δmn) ‖Φmn (E0jk;x, y)− E0jk‖s×t ≥

ε

(2st+ 1)B

}
,

Θjk :=

{
(m,n) ∈ N2 : ‖Φmn (E0jk;x, y)− E0jk‖s×t ≥

ε

(2st+ 1)B

}
,

where 1 ≤ j ≤ s, 1 ≤ k ≤ t. Then, it follows from (20) that

Γ ⊆ Γ1 ∪

 s⋃
j=1

t⋃
k=1

∆jk

 ∪
 s⋃
j=1

t⋃
k=1

Θjk

 .

Also, defining

U :=

{
(m,n) ∈ N2 : ωs×t (F ; δmn) ≥

√
ε

(2st+ 1)B

}
and

Ujk :=

{
(m,n) ∈ N2 : ‖Φmn (E0jk;x, y)− E0jk‖s×t ≥

√
ε

(2st+ 1)B

}
,
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we have ∆jk ⊂ U ∪ Ujk, which yields

Γ ⊆ Γ1 ∪ U ∪

 s⋃
j=1

t⋃
k=1

Ujk

 ∪
 s⋃
j=1

t⋃
k=1

Θjk

 .

Therefore, since γmn := max
1≤j≤s, 1≤k≤t

{αmnjk, δmn} , we conclude that, for all (p, r) ∈

N2,

1

γpr

∑
(m,n)∈Γ

aprmn

≤ 1

δpr

∑
(m,n)∈Γ1

aprmn +

s∑
j=1

t∑
k=1

 1

αmnjk

∑
(m,n)∈Ujk

aprmn


+

1

δpr

∑
(m,n)∈U

aprmn +

s∑
j=1

t∑
k=1

 1

αmnjk

∑
(m,n)∈Θjk

aprmn

 . (21)

Letting p, r →∞ (in any manner) on both sides of (21), from (18) and (19), we get

P − lim
p,r

1

γpr

∑
(m,n)∈Γ

aprmn = 0.

Therefore, the proof is completed.
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