Statistical Korovkin-Type Theory For Matirx-Valued Functions Of Two Variables*

Fadime Dirik ${ }^{\dagger}$, Kamil Demirci ${ }^{\ddagger}$

Received 3 June 2015

Abstract

In this work, we investigate an approximation problem for matrix valued positive linear operators of two variables. Also using the A-statistical convergence which is stronger than Pringsheim convergence of double sequences, we prove a Korovkin-type approximation theorem for matrix valued positive linear operators of two variables. We also compute the rates of A-statistical convergence of this operators.

1 Introduction

One of the most important and basic results in approximation theory is the classical Bohman-Korovkin theorem (see for instance [10]). This theorem establishes the uniform convergence in the space $C[a, b]$ of all the continuous real functions defined on the interval $[a, b]$, for a sequence of positive linear operators (T_{n}) acting on $C[a, b]$, assuming the convergence only on the test functions $1, x, x^{2}$. Of course, this theory mainly gives the approximation a scaler-valued function by means of linear positive operators. However, in [16], Serra-Capizzano presented a new Korovkin-type result for matrix valued functions. Some other related topics may be found in the papers $[13,17,18]$ and cited therein. In particular, the use of statistical convergence had a great impulse in recent years. Furthermore, with the help of the concept of uniform statistical convergence, which is a regular (non-matrix) summability transformation, various statistical approximation results have been proved $[1,2,3,5,8,9]$. Then, it was demonstrated that those results are more powerful than the classical Korovkin theorem. In [4], using the statistical convergence, Duman and Erkuş-Duman proved Korovkin-type approximation theorem for matrix valued positive linear operators. Our primary interest in the present paper is to obtain a general Korovkin-type approximation theorem for double sequences of matrix valued positive linear operators of two variables from $C\left(D, \mathbb{C}^{s \times t}\right)$ to itself where D is a compact subset of \mathbb{R}^{2}.

[^0]We begin with some definitions and notations which we will use in the sequel. As usual, a double sequence

$$
x=\left(x_{m n}\right), \quad m, n \in \mathbb{N}
$$

is convergent in Pringsheim's sense if, for every $\varepsilon>0$, there exists $N=N(\varepsilon) \in \mathbb{N}$ such that $\left|x_{m n}-L\right|<\varepsilon$ whenever $m, n>N$. Then, L is called the Pringsheim limit of x and is denoted by $P-\lim _{m, n} x=L$ (see [14]). In this case, we say that $x=\left(x_{m n}\right)$ is " P-convergent to L ". Also, if there exists a positive number M such that $\left|x_{m n}\right| \leq M$ for all $(m, n) \in \mathbb{N}^{2}=\mathbb{N} \times \mathbb{N}$, then $x=\left(x_{m n}\right)$ is said to be bounded. Note that in contrast to the case for single sequences, a convergent double sequence needs not to be bounded.

Now let

$$
A=\left[a_{p r m n}\right], p, r, m, n \in \mathbb{N}
$$

be a four-dimensional summability matrix. For a given double sequence $x=\left(x_{m n}\right)$, the A-transform of x, denoted by $A x:=\left\{(A x)_{p r}\right\}$, is given by

$$
(A x)_{p r}=\sum_{(m, n) \in \mathbb{N}^{2}} a_{p r m n} x_{m n}, \quad p, r \in \mathbb{N},
$$

provided the double series converges in Pringsheim's sense for every $(p, r) \in \mathbb{N}^{2}$. In summability theory, a two-dimensional matrix transformation is said to be regular if it maps every convergent sequence in to a convergent sequence with the same limit. The well-known characterization for two dimensional matrix transformations is known as Silverman-Toeplitz conditions (see, for instance, [7]). In 1926, Robinson [15] presented a four dimensional analog of the regularity by considering an additional assumption of boundedness. This assumption was made because a double P-convergent sequence is not necessarily bounded. The definition and the characterization of regularity for four dimensional matrices is known as Robison-Hamilton conditions, or briefly, RH regularity (see, $[6,15]$).

Recall that a four dimensional matrix $A=\left[a_{p r m n}\right]$ is said to be $R H$-regular if it maps every bounded P-convergent sequence into a P-convergent sequence with the same P-limit. The Robison-Hamilton conditions state that a four dimensional matrix $A=\left[a_{\text {prmn }}\right]$ is $R H$-regular if and only if
(i) $P-\lim _{p, r} a_{p r m n}=0$ for each $(m, n) \in \mathbb{N}^{2}$,
(ii) $P-\lim _{p, r} \sum_{(m, n) \in \mathbb{N}^{2}} a_{p r m n}=1$,
(iii) $P-\lim _{p, r} \sum_{m \in \mathbb{N}}\left|a_{p r m n}\right|=0$ for each $n \in \mathbb{N}$,
(iv) $P-\lim _{p, r} \sum_{n \in \mathbb{N}}\left|a_{p r m n}\right|=0$ for each $m \in \mathbb{N}$,
(v) $\sum_{(m, n) \in \mathbb{N}^{2}}\left|a_{p r m n}\right|$ is P-convergent,
(vi) there exist finite positive integers A and B such that $\sum_{m, n>B}\left|a_{p r m n}\right|<A$ holds for every $(p, r) \in \mathbb{N}^{2}$.

Now let $A=\left[a_{p r m n}\right]$ be a non-negative $R H$-regular summability matrix, and let $K \subset \mathbb{N}^{2}$. Then A-density of K is given by

$$
\delta_{A}^{(2)}\{K\}:=P-\lim _{p, r} \sum_{(m, n) \in K} a_{p r m n}
$$

provided that the limit on the right-hand side exists in Pringsheim's sense. A real double sequence $x=\left(x_{m n}\right)$ is said to be A-statistically convergent to a number L if, for every $\varepsilon>0$,

$$
\delta_{A}^{(2)}\left\{(m, n) \in \mathbb{N}^{2}:\left|x_{m n}-L\right| \geq \varepsilon\right\}=0
$$

In this case, we write $s t_{A}^{(2)}-\lim _{m, n} x_{m n}=L$. We should note that if we take $A=C(1,1)$, which is the double Cesáro matrix, then $C(1,1)$-statistical convergence coincides with the notion of statistical convergence for double sequence, which was introduced in $[11,12]$. Finally, if we replace the matrix A by the identity matrix for four-dimensional matrices, then A-statistical convergence reduces to the Pringsheim convergence.

A P-convergent double sequence is A-statistically convergent to the same value but the converse does not hold true.

2 A Korovkin-Type Approximation Theorem for Double Sequences

In this section, we give a Korovkin-type theorem for double sequences of matrix valued positive linear operators defined on $C\left(D, \mathbb{C}^{s \times t}\right)$ using the concept of A-statistical convergence.

Let s, t be two fixed natural numbers and D a compact subset of \mathbb{R}^{2}. By $C\left(D, \mathbb{C}^{s \times t}\right)$ we denote the space of all continuous functions F acting on D and having values in the space $\mathbb{C}^{s \times t}$ of the complex $s \times t$ matrices such that

$$
\begin{equation*}
F(x, y):=\left[f_{j k}(x, y)\right]_{s \times t}, \quad((x, y) \in D, 1 \leq j \leq s, 1 \leq k \leq t) \tag{1}
\end{equation*}
$$

where the symbol $\left[b_{j k}\right]_{s \times t}$ denotes the $s \times t$ matrix. Here, by the continuity of F we mean that all scalar valued functions $f_{j k}$ are continuous on D. Then, the norm $\|\cdot\|_{s \times t}$ on the space $C\left(D, \mathbb{C}^{s \times t}\right)$ is defined by

$$
\|F\|_{s \times t}:=\max _{1 \leq j \leq s, 1 \leq k \leq t}\left\|f_{j k}\right\|:=\max _{1 \leq j \leq s, 1 \leq k \leq t}\left(\sup _{(x, y) \in D}\left|f_{j k}(x, y)\right|\right)
$$

Throughout this paper we use the following test functions

$$
\begin{equation*}
E_{0 j k}(u, v)=E_{j k}, E_{1 j k}(u, v)=u E_{j k} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
E_{2 j k}(u, v)=v E_{j k} \text { and } E_{3 j k}(u, v)=\left(u^{2}+v^{2}\right) E_{j k} \tag{3}
\end{equation*}
$$

for $(u, v) \in D, 1 \leq j \leq s, 1 \leq k \leq t$, where $E_{j k}$ denotes the matrix of the canonical basis of $\mathbb{C}^{s \times t}$ being 1 in the position (j, k) and zero otherwise.

Let $\Phi: C\left(D, \mathbb{C}^{s \times t}\right) \rightarrow C\left(D, \mathbb{C}^{s \times t}\right)$ be an operator, and let us assume that
(i) $\Phi(a F+b G)=a \Phi(F)+b \Phi(G)$ for any $\alpha, \beta \in \mathbb{C}$ and $F, G \in C\left(D, \mathbb{C}^{s \times t}\right)$,
(ii) $\Phi(F) \leq K \Phi(|F|)$ for any function $F \in C\left(D, \mathbb{C}^{s \times t}\right)$ and for a fixed positive constant K.

Under the above-mentioned assumptions, the operator Φ is said to be a matrix linear positive operator, or briefly, $m L P O$ (see, for details, [16]). The inequality appearing in (ii) is understood to be componentwise, i.e., holding for any component $(j, k) \in$ $\{1,2, \ldots, s\} \times\{1,2, \ldots, t\}$.

Now we have the following main result.
THEOREM 1. Let $A=\left[a_{p r m n}\right]$ be a nonnegative $R H$-regular summability matrix and let $\left(\Phi_{m n}\right)$ be a double sequence of $m P L O s$ acting from $C\left(D, \mathbb{C}^{s \times t}\right)$ into itself. Then for all $(j, k) \in\{1,2, \ldots, s\} \times\{1,2, \ldots, t\}$ and for each $i=0,1,2,3$,

$$
\begin{equation*}
s t_{A}^{2}-\lim _{m, n}\left\|\Phi_{m n}\left(E_{i j k}\right)-E_{i j k}\right\|_{s \times t}=0, \tag{4}
\end{equation*}
$$

where $E_{i j k}$ is given by (2) and (3), if and only if for every $F \in C\left(D, \mathbb{C}^{s \times t}\right)$ as in (1),

$$
\begin{equation*}
s t_{A}^{2}-\lim _{m, n}\left\|\Phi_{m n}(F)-F\right\|_{s \times t}=0 . \tag{5}
\end{equation*}
$$

PROOF. Since each $E_{i j k} \in C\left(D, \mathbb{C}^{s \times t}\right),(i=0,1,2,3)$, the implication (5) $\Rightarrow(4)$ is obvious. Suppose now that (4) holds. Let $F \in C\left(D, \mathbb{C}^{s \times t}\right)$ and $(x, y) \in D$ be fixed. Fist, we calculate the expression $\left|\Phi_{n m}(F ; x, y)-F(x, y)\right|$, the symbol $|B|$ denotes the matrix having entries equal to the absolute value of the entries of the matrix B. We can show that $F(x, y):=\left[f_{j k}(x, y)\right]_{s \times t}, 1 \leq j \leq s, 1 \leq k \leq t$, can be written as follows:

$$
F(x, y):=\sum_{j=1}^{s} \sum_{k=1}^{t} f_{j k}(x, y) E_{j k}=\sum_{j=1}^{s} \sum_{k=1}^{t} f_{j k}(x, y) E_{0 j k}(u, v)
$$

Hence, we obtain

$$
\begin{equation*}
\Phi_{m n}(F(x, y) ; x, y)=\sum_{j=1}^{s} \sum_{k=1}^{t} f_{j k}(x, y) \Phi_{m n}\left(E_{0 j k}(u, v) ; x, y\right) \tag{6}
\end{equation*}
$$

Also, the continuity of $f_{j k}$ on D, for a given $\varepsilon>0$, there exists a number $\delta>0$ such that for all $(u, v) \in D$ satisfying

$$
\sqrt{(u-x)^{2}+(v-y)^{2}} \leq \delta
$$

We have

$$
\begin{equation*}
\left|f_{j k}(u, v)-f_{j k}(x, y)\right| \leq \varepsilon \text { for } 1 \leq j \leq s, 1 \leq k \leq t \tag{7}
\end{equation*}
$$

Also we get for all $(x, y),(u, v) \in D$ satisfying $\sqrt{(u-x)^{2}+(v-y)^{2}}>\delta$ that

$$
\begin{equation*}
\left|f_{j k}(u, v)-f_{j k}(x, y)\right| \leq \frac{2 M_{j k}}{\delta^{2}} \varphi(u, v) \text { for } 1 \leq j \leq s, 1 \leq k \leq t \tag{8}
\end{equation*}
$$

where $M:=\sup _{(x, y) \in D}\left|f_{j k}(x, y)\right|$ and $\varphi(u, v)=(u-x)^{2}+(v-y)^{2}$. Combining (7) and (8) we have for $(u, v) \in D$ that

$$
\begin{equation*}
\left|f_{j k}(u, v)-f_{j k}(x, y)\right| \leq \varepsilon+\frac{2 M_{j k}}{\delta^{2}} \varphi(u, v) \tag{9}
\end{equation*}
$$

Then observe that, by (9),

$$
\begin{equation*}
|F(u, v)-F(x, y)| \leq \varepsilon E+\frac{2 M}{\delta^{2}} \varphi(u, v) E \tag{10}
\end{equation*}
$$

where E is the $s \times t$ matrix such that all entires 1 , and

$$
M:=\max _{1 \leq j \leq s, 1 \leq k \leq t} M_{j k}=\|F\|_{s \times t}
$$

Since $\Phi_{m n}$ is a $m P L O$, from (6) and (10), we get

$$
\begin{align*}
& \left|\Phi_{m n}(F(u, v) ; x, y)-F(x, y)\right| \\
\leq & K \Phi_{m n}(|F(u, v)-F(x, y)| ; x, y)+\left|\Phi_{m n}(F(x, y) ; x, y)-F(x, y)\right| \\
\leq & (\varepsilon K+M) \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{0 j k}(u, v) ; x, y\right)-E_{0 j k}(x, y)\right| \\
& +\frac{2 K M}{\delta^{2}} \Phi_{m n}(\varphi(u, v) E ; x, y)+\varepsilon K E \tag{11}
\end{align*}
$$

for a fixed positive constant K. Now we compute the expression $\Phi_{m n}(\varphi(u, v) E ; x, y)$ on the left-hand side of (11). By a simple calculation, we get

$$
\begin{aligned}
\Phi_{m n}(\varphi(u, v) E ; x, y)= & \Phi_{m n}\left(\sum_{j=1}^{s} \sum_{k=1}^{t} \varphi(u, v) E_{j k} ; x, y\right) \\
= & \sum_{j=1}^{s} \sum_{k=1}^{t}\left\{\Phi_{m n}\left(E_{3 j k} ; x, y\right)-2 x \Phi_{m n}\left(E_{1 j k} ; x, y\right)\right. \\
& \left.-2 y \Phi_{m n}\left(E_{2 j k} ; x, y\right)+\left(x^{2}+y^{2}\right) \Phi_{m n}\left(E_{0 j k} ; x, y\right)\right\}
\end{aligned}
$$

Then,

$$
\begin{align*}
& \Phi_{m n}\left(\left((u-x)^{2}+(v-y)^{2}\right) E ; x, y\right) \\
\leq & \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{3 j k} ; x, y\right)-E_{3 j k}(x, y)\right| \\
& +2 A \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{1 j k} ; x, y\right)-E_{1 j k}(x, y)\right| \\
& +2 B \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{2 j k} ; x, y\right)-E_{2 j k}(x, y)\right| \\
& +\left(A^{2}+B^{2}\right) \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{0 j k} ; x, y\right)-E_{0 j k}(x, y),\right| \tag{12}
\end{align*}
$$

where $A:=\max |x|$ and $B:=\max |y|$. Combining (11) and (12), we obtain

$$
\begin{aligned}
& \left|\Phi_{m n}(F(u, v) ; x, y)-F(x, y)\right| \\
\leq & (\varepsilon K+M) \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{0 j k}(u, v) ; x, y\right)-E_{0 j k}(x, y)\right| \\
& +\varepsilon K E+\frac{4 A K M}{\delta^{2}} \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{1 j k} ; x, y\right)-E_{1 j k}(x, y)\right| \\
& +\frac{4 B K M}{\delta^{2}} \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{2 j k} ; x, y\right)-E_{2 j k}(x, y)\right| \\
& +\frac{2 K M}{\delta^{2}} \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{3 j k} ; x, y\right)-E_{3 j k}(x, y)\right| \\
& +\frac{2\left(A^{2}+B^{2}\right) K M}{\delta^{2}} \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{0 j k}(u, v) ; x, y\right)-E_{0 j k}(x, y)\right| \\
\leq & \varepsilon K E+C \sum_{j=1}^{s} \sum_{k=1}^{t} \sum_{i=0}^{3}\left|\Phi_{m n}\left(E_{i j k} ; x, y\right)-E_{i j k}(x, y)\right|,
\end{aligned}
$$

where

$$
C:=\max \left\{\varepsilon K+M+\frac{2\left(A^{2}+B^{2}\right) K M}{\delta^{2}}, \frac{4 A K M}{\delta^{2}}, \frac{4 B K M}{\delta^{2}}, \frac{2 K M}{\delta^{2}}\right\}
$$

Then, taking maximum of all entries of the corresponding matrices and taking supremum over $(x, y) \in D$, we get

$$
\begin{equation*}
\left\|\Phi_{m n}(F)-F\right\|_{s \times t} \leq \varepsilon K+C\left\{\sum_{j=1}^{s} \sum_{k=1}^{t} \sum_{i=0}^{3}\left\|\Phi_{m n}\left(E_{i j k}\right)-E_{i j k}\right\|_{s \times t}\right\} \tag{13}
\end{equation*}
$$

Now, for a given $\varepsilon^{\prime}>0$, choose $\varepsilon>0$ such that $\varepsilon<\frac{\varepsilon^{\prime}}{K}$. Then, define

$$
\Gamma:=\left\{(m, n) \in \mathbb{N}^{2}:\left\|\Phi_{m n}(F)-F\right\|_{s \times t} \geq \varepsilon^{\prime}\right\}
$$

and

$$
\Gamma_{i j k}:=\left\{(m, n) \in \mathbb{N}^{2}:\left\|\Phi_{m n}\left(E_{i j k}\right)-E_{i j k}\right\|_{s \times t} \geq \frac{\varepsilon^{\prime}-\varepsilon K}{4 s t C}\right\}
$$

where $i=0,1,2,3$ and $1 \leq j \leq s, 1 \leq k \leq t$. Then it is easy to see that $\Gamma \subseteq$ $\bigcup_{j=1}^{s} \bigcup_{k=1}^{t} \bigcup_{i=0}^{3} \Gamma_{i j k}$. Thus, we may write, for every $(p, r) \in \mathbb{N}^{2}$, that

$$
\sum_{(m, n) \in \Gamma} a_{p r m n} \leq \sum_{j=1}^{s} \sum_{k=1}^{t} \sum_{i=0}^{3} \sum_{(m, n) \in \Gamma_{i j k}} a_{p r m n}
$$

Letting $p, r \rightarrow \infty$, using (4), we obtain (5). The proof is complete.

3 Concluding Remarks

In Theorem 1 if we replace the matrix A by the double Cesáro matrix $C(1,1)$, then we immediately get the following statistical result.

COROLLARY 1. Let $\left(\Phi_{m n}\right)$ be a double sequence of $m P L O s$ acting from $C\left(D, \mathbb{C}^{s \times t}\right)$ into itself. Then for all $(j, k) \in\{1,2, \ldots, s\} \times\{1,2, \ldots, t\}$ and for each $i=0,1,2,3$,

$$
s t^{2}-\lim _{m, n}\left\|\Phi_{m n}\left(E_{i j k}\right)-E_{i j k}\right\|_{s \times t}=0
$$

where $E_{i j k}$ is given by (2) and (3), if and only if for every $F \in C\left(D, \mathbb{C}^{s \times t}\right)$ as in (1),

$$
s t^{2}-\lim _{m, n}\left\|\Phi_{m n}(F)-F\right\|_{s \times t}=0
$$

In Theorem 1 if we replace the matrix A by the double identity matrix I, then we immediately get the following classical result.

COROLLARY 2. Let $\left(\Phi_{m n}\right)$ be a double sequence of $m P L O s$ acting from $C\left(D, \mathbb{C}^{s \times t}\right)$ into itself. Then for all $(j, k) \in\{1,2, \ldots, s\} \times\{1,2, \ldots, t\}$ and for each $i=0,1,2,3$,

$$
P-\lim _{m, n}\left\|\Phi_{m n}\left(E_{i j k}\right)-E_{i j k}\right\|_{s \times t}=0
$$

where $E_{i j k}$ is given by (2) and (3), if and only if for every $F \in C\left(D, \mathbb{C}^{s \times t}\right)$ as in (1),

$$
P-\lim _{m, n}\left\|\Phi_{m n}(F)-F\right\|_{s \times t}=0
$$

Now we present an example such that our new approximation result works but its classical case (Corollary 2) does not work. Let a, b, c, d be fixed real numbers and $D=[a, b] \times[c, d]$. First consider the following the matrix-valued Bernstein-type operators:

$$
\begin{align*}
B_{m n}(F ; x, y)= & \sum_{l=0}^{m} \sum_{r=0}^{n} F\left(a+\frac{l}{m}(b-a), c+\frac{r}{n}(d-c)\right)\binom{m}{l}\binom{n}{r} \\
& \times\left(\frac{x-a}{b-a}\right)^{l}\left(\frac{y-c}{d-c}\right)^{r}\left(\frac{b-x}{b-a}\right)^{m-l}\left(\frac{d-y}{d-c}\right)^{n-r} \tag{14}
\end{align*}
$$

where $(x, y) \in D, F \in C\left(D, \mathbb{C}^{s \times t}\right)$ such that $F(x, y):=\left[f_{j k}(x, y)\right]_{s \times t}, 1 \leq j \leq s$, $1 \leq k \leq t$. Also, observe that the matrix-valued Bernstein-type polynomials $B_{m n}$ can be also written as follows:

$$
\begin{align*}
B_{m n}(F ; x, y)= & \sum_{l=0}^{m} \sum_{r=0}^{n} \sum_{j=1}^{s} \sum_{k=1}^{t} f_{j k}\left(a+\frac{l}{m}(b-a), c+\frac{r}{n}(d-c)\right)\binom{m}{l}\binom{n}{r} \\
& \times\left(\frac{x-a}{b-a}\right)^{l}\left(\frac{y-c}{d-c}\right)^{r}\left(\frac{b-x}{b-a}\right)^{m-l}\left(\frac{d-y}{d-c}\right)^{n-r} E_{j k} \tag{15}
\end{align*}
$$

where $E_{j k}$ denotes the matrix of the canonical basis of $\mathbb{C}^{s \times t}$ being 1 in the position (j, k) and zero otherwise. Then, by (14) or (15), we obtain that, for $(j, k) \in\{1,2, \ldots, s\} \times$ $\{1,2, \ldots, t\}$,

$$
\begin{aligned}
& B_{m n}\left(E_{0 j k} ; x, y\right) \\
= & \sum_{l=0}^{m} \sum_{r=0}^{n}\binom{m}{l}\binom{n}{r}\left(\frac{x-a}{b-a}\right)^{l}\left(\frac{y-c}{d-c}\right)^{r}\left(\frac{b-x}{b-a}\right)^{m-l}\left(\frac{d-y}{d-c}\right)^{n-r} \\
& \times E_{0 j k}\left(a+\frac{l}{m}(b-a), c+\frac{r}{n}(d-c)\right) \\
= & E_{j k} \sum_{l=0}^{m} \sum_{r=0}^{n}\binom{m}{l}\binom{n}{r}\left(\frac{x-a}{b-a}\right)^{l}\left(\frac{y-c}{d-c}\right)^{r}\left(\frac{b-x}{b-a}\right)^{m-l}\left(\frac{d-y}{d-c}\right)^{n-r} \\
= & E_{0 j k}(x, y) .
\end{aligned}
$$

Similarly, we get that, for $(j, k) \in\{1,2, \ldots, s\} \times\{1,2, \ldots, t\}$,

$$
\begin{aligned}
& B_{m n}\left(E_{1 j k} ; x, y\right) \\
= & \sum_{l=0}^{m} \sum_{r=0}^{n}\binom{m}{l}\binom{n}{r}\left(\frac{x-a}{b-a}\right)^{l}\left(\frac{y-c}{d-c}\right)^{r}\left(\frac{b-x}{b-a}\right)^{m-l}\left(\frac{d-y}{d-c}\right)^{n-r} \\
& \times E_{1 j k}\left(a+\frac{l}{m}(b-a), c+\frac{r}{n}(d-c)\right) \\
= & x E_{j k}=E_{1 j k}(x, y)
\end{aligned}
$$

and

$$
B_{m n}\left(E_{2 j k} ; x, y\right)=y E_{j k}=E_{2 j k}(x, y)
$$

Finally, we obtain that, for $(j, k) \in\{1,2, \ldots, s\} \times\{1,2, \ldots, t\}$,

$$
\begin{aligned}
& B_{m n}\left(E_{3 j k} ; x, y\right) \\
= & \sum_{l=0}^{m} \sum_{r=0}^{n}\binom{m}{l}\binom{n}{r}\left(\frac{x-a}{b-a}\right)^{l}\left(\frac{y-c}{d-c}\right)^{r}\left(\frac{b-x}{b-a}\right)^{m-l}\left(\frac{d-y}{d-c}\right)^{n-r} \\
& \times E_{3 j k}\left(a+\frac{l}{m}(b-a), c+\frac{r}{n}(d-c)\right) \\
= & \left\{x^{2}-\frac{1}{m}(x-a)^{2}+\frac{(b-a)(x-a)}{m}\right. \\
& \left.+y^{2}-\frac{1}{n}(y-c)^{2}+\frac{(d-c)(y-c)}{n}\right\} E_{j k} \\
= & \left(\frac{(b-a)(x-a)}{m}-\frac{1}{m}(x-a)^{2}-\frac{1}{n}(y-c)^{2}+\frac{(d-c)(y-c)}{n}\right) E_{j k} \\
& +E_{3 j k}(x, y) .
\end{aligned}
$$

Now take $A=C(1 ; 1)$ and define a double sequence $u=\left(u_{m n}\right)$ by

$$
u_{m n}:= \begin{cases}1 & \text { if } m \text { and } n \text { are squares } \\ 0 & \text { otherwise }\end{cases}
$$

Using polynomials given by (14) and the double sequence $u=\left(u_{m n}\right)$, we introduce the following $m P L O s$ on $C\left(D, \mathbb{C}^{s \times t}\right)$:

$$
\begin{equation*}
\Phi_{m n}(F ; x, y)=\left(1+u_{m n}\right) B_{m n}(F ; x, y) \tag{16}
\end{equation*}
$$

where $(m, n) \in \mathbb{N}^{2},(x, y) \in D$ and $F \in C\left(D, \mathbb{C}^{s \times t}\right)$ such that $F(x, y):=\left[f_{j k}(x, y)\right]_{s \times t}$, $1 \leq j \leq s, 1 \leq k \leq t$. So, using the properties of matrix-valued the above operators given by (14), for each $1 \leq j \leq s, 1 \leq k \leq t$, one can obtain the following results at once:

$$
\left\|\Phi_{m n}\left(E_{i j k}\right)-E_{i j k}\right\|_{s \times t}=u_{m n}, i=0,1,2
$$

and

$$
\begin{aligned}
\left\|\Phi_{m n}\left(E_{3 j k}\right)-E_{3 j k}\right\|_{s \times t} \leq & \frac{1}{m}(\alpha-a)^{2}+\frac{(b-a)(\alpha-a)}{m}+\frac{1}{n}(\beta-c)^{2} \\
& +\frac{(d-c)(\beta-c)}{n} \\
& +\frac{u_{m n}}{m}(\alpha-a)^{2}+\frac{(b-a)(\alpha-a)}{m} u_{m n} \\
& +\frac{u_{m n}}{n}(\beta-c)^{2}+\frac{(d-c)(\beta-c)}{n} u_{m n}
\end{aligned}
$$

where $\alpha=\max |x|, \beta=\max |y|$. Since $s t-\lim _{m, n} u_{m n}=0$, we conclude that

$$
s t^{2}-\lim _{m, n}\left\|\Phi_{m n}\left(E_{i j k}\right)-E_{i j k}\right\|_{s \times t}=0, \quad i=0,1,2,3
$$

for each $1 \leq j \leq s, 1 \leq k \leq t$. So, by Theorem 1 , we immediately see that

$$
s t^{2}-\lim _{m, n}\left\|\Phi_{m n}(F)-F\right\|_{s \times t}=0
$$

for all $F \in C\left(D, \mathbb{C}^{s \times t}\right)$. However, since u is not ordinary convergent to zero, the double sequence $\left(\Phi_{m n}\right)$ given by (16) does not satisfy the conditions of Corollary 2.

4 Rate of Convergence

Various ways of defining rates of convergence in the A-statistical sense for four-dimensional summability matrices were introduced in [2]. In this section, we compute the corresponding rates of A-statistical convergence in Theorem 1 by means of two different ways.

DEFINITION 1 ([2]). Let $A=\left[a_{p r m n}\right]$ be a non-negative $R H$-regular summability matrix and let $\left(\alpha_{m n}\right)$ be a positive non-increasing double sequence. A double sequence $x=\left(x_{m n}\right)$ is A-statistically convergent to a number L with the rate of $o\left(\alpha_{m n}\right)$ if for every $\varepsilon>0$,

$$
P-\lim _{p, r} \frac{1}{\alpha_{p r}} \sum_{(m, n) \in K(\varepsilon)} a_{p r m n}=0
$$

where

$$
K(\varepsilon):=\left\{(m, n) \in \mathbb{N}^{2}:\left|x_{m n}-L\right| \geq \varepsilon\right\}
$$

In this case, we write

$$
x_{m n}-L=s t_{A}^{(2)}-o\left(\alpha_{m n}\right) \text { as } m, n \rightarrow \infty
$$

DEFINITION $2([2])$. Let $A=\left[a_{p r m n}\right]$ and $\left(\alpha_{m n}\right)$ be the same as in Definition 1. Then, a double sequence $x=\left\{x_{m n}\right\}$ is A-statistically convergent to a number L with the rate of $o_{m n}\left(\alpha_{m n}\right)$ if for every $\varepsilon>0$,

$$
P-\lim _{p, r} \sum_{(m, n) \in M(\varepsilon)} a_{p r m n}=0
$$

where

$$
M(\varepsilon):=\left\{(m, n) \in \mathbb{N}^{2}:\left|x_{m n}-L\right| \geq \varepsilon \alpha_{m n}\right\}
$$

In this case, we write

$$
x_{m n}-L=s t_{A}^{(2)}-o_{m n}\left(\alpha_{m n}\right) \text { as } m, n \rightarrow \infty
$$

We see from the above statements that, in Definition 1 the rate sequence ($\alpha_{m n}$) directly effects the entries of the matrix $A=\left[a_{p r m n}\right]$ although, according to Definition 2 , the rate is more controlled by the terms of the sequence $x=\left(x_{m n}\right)$ (see for details, [5])

Let $F \in C\left(D, \mathbb{C}^{s \times t}\right)$ such that

$$
F(x, y):=\left[f_{j k}(x, y)\right]_{s \times t}, 1 \leq j \leq s, 1 \leq k \leq t
$$

Consider the the following modulus of continuity $\omega\left(f_{j k} ; \delta\right)$:
$\omega\left(f_{j k} ; \delta\right):=\sup \left\{\left|f_{j k}(u, v)-f_{j k}(x, y)\right|:(u, v),(x, y) \in D, \sqrt{(u-x)^{2}+(v-y)^{2}} \leq \delta\right\}$
where $f_{j k}$ are scalar valued functions continuous on D and $\delta>0$. Then, we define the matrix modulus of continuity of F as follows:

$$
\omega_{s \times t}(F ; \delta):=\max _{1 \leq j \leq s, 1 \leq k \leq t} \omega\left(f_{j k} ; \delta\right)
$$

In order to obtain our result, we will make use of the elementary inequality, for all $F \in C\left(D, \mathbb{C}^{s \times t}\right)$ and for $\lambda, \delta>0$,

$$
\begin{equation*}
\omega_{s \times t}(F ; \lambda \delta) \leq(1+[\lambda]) \omega_{s \times t}(F ; \delta) \tag{17}
\end{equation*}
$$

where $[\lambda]$ is defined to be the greatest integer less than or equal to λ.
Then we have the following result.

THEOREM 2. Let $A=\left[a_{p r m n}\right]$ be a nonnegative $R H$-regular summability matrix, let $\left(\alpha_{m n}\right)$ be a positive non-increasing double sequence. and let ($\Phi_{m n}$) be a double sequence of $m P L O s$ acting from $C\left(D, \mathbb{C}^{s \times t}\right)$ into itself. Then for all $(j, k) \in$ $\{1,2, \ldots, s\} \times\{1,2, \ldots, t\}$ and for each $i=0,1,2,3$,
(a) $\left\|\Phi_{m n}\left(E_{0 j k}\right)-E_{0 j k}\right\|_{s \times t}=s t_{A}^{(2)}-o\left(\alpha_{m n j k}\right)$ as $m, n \rightarrow \infty$,
(b) $\omega_{s \times t}\left(F ; \delta_{m n}\right)=s t_{A}^{(2)}-o\left(\delta_{m n}\right)$ as $m, n \rightarrow \infty$ where

$$
F \in C\left(D, \mathbb{C}^{s \times t}\right) \text { and } \delta_{m n}:=\sqrt{\sum_{j=1}^{s} \sum_{k=1}^{t}\left\|\Phi_{m n}\left(\Psi_{j k}\right)\right\|_{s \times t}}
$$

where $\Psi_{j k}(u, v)=(u-x)^{2}+(v-y)^{2}$ for each $(x, y),(u, v) \in D$.
Then, we get, for each $F \in C\left(D, \mathbb{C}^{s \times t}\right)$ as in (1),

$$
\left\|\Phi_{m n}(F)-F\right\|_{s \times t}=s t_{A}^{(2)}-o\left(\gamma_{m n}\right)
$$

where

$$
\gamma_{m, n}:=\max _{1 \leq j \leq s, 1 \leq k \leq t}\left\{\alpha_{m n j k}, \delta_{m n}\right\}
$$

for all $(m, n) \in \mathbb{N}^{2}$. Furthermore, similar conclusions hold with the symbol " o " replaced by " $o_{m n}$ "

PROOF. To see this, we first assume that $(x, y) \in D$ and $F \in C\left(D, \mathbb{C}^{s \times t}\right)$ be fixed, and that (a) and (b) hold. Since $\Phi_{m n}$ is a $m P L O$, we get

$$
\begin{aligned}
& \left|\Phi_{m n}(F(u, v) ; x, y)-F(x, y)\right| \\
\leq & K \Phi_{m n}(|F(u, v)-F(x, y)| ; x, y)+\left|\Phi_{m n}(F(x, y) ; x, y)-F(x, y)\right|
\end{aligned}
$$

where K is a positive constant. Also,

$$
\begin{align*}
|F(u, v)-F(x, y)| & \leq \omega_{s \times t}\left(F ; \sqrt{(u-x)^{2}+(v-y)^{2}}\right) E \\
& \leq\left(1+\frac{(u-x)^{2}+(v-y)^{2}}{\delta^{2}}\right) \omega_{s \times t}(F ; \delta) E \tag{18}
\end{align*}
$$

where E is the $s \times t$ matrix such that all entires 1 . As in the proof Theorem 1 , we may write

$$
\begin{equation*}
\left|\Phi_{m n}(F(x, y) ; x, y)-F(x, y)\right| \leq M \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{0 j k}(u, v) ; x, y\right)-E_{0 j k}(x, y)\right| \tag{19}
\end{equation*}
$$

where

$$
M:=\max _{1 \leq j \leq s, 1 \leq k \leq t} M_{j k}=\|F\|_{s \times t}
$$

By (18) and (19), we obtain

$$
\begin{aligned}
& \left|\Phi_{m n}(F(u, v) ; x, y)-F(x, y)\right| \\
\leq & K \omega_{s \times t}(F ; \delta) \Phi_{m n}(E)+\frac{K}{\delta^{2}} \omega_{s \times t}(F ; \delta) \sum_{j=1}^{s} \sum_{k=1}^{t} \Phi_{m n}\left(\Psi_{j k} ; x, y\right) \\
& +M \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{0 j k}(u, v) ; x, y\right)-E_{0 j k}(x, y)\right| \\
\leq & K \omega_{s \times t}(F ; \delta) \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{0 j k}(u, v) ; x, y\right)-E_{0 j k}(x, y)\right| \\
& +M \sum_{j=1}^{s} \sum_{k=1}^{t}\left|\Phi_{m n}\left(E_{0 j k}(u, v) ; x, y\right)-E_{0 j k}(x, y)\right| \\
& +\frac{K}{\delta^{2}} \omega_{s \times t}(F ; \delta) \sum_{j=1}^{s} \sum_{k=1}^{t} \Phi_{m n}\left(\Psi_{j k} ; x, y\right)+K \omega_{s \times t}(F ; \delta) E .
\end{aligned}
$$

Taking supremum over $(x, y) \in D$ on the both-sides of the above inequality and

$$
\delta:=\delta_{m n}:=\sqrt{\sum_{j=1}^{s} \sum_{k=1}^{t}\left\|\Phi_{m n}\left(\Psi_{j k}\right)\right\|_{s \times t}}
$$

then we obtain

$$
\begin{aligned}
\left\|\Phi_{m n}(F)-F\right\|_{s \times t} \leq & 2 K \omega_{s \times t}\left(F ; \delta_{m n}\right) \\
& +K \omega_{s \times t}\left(F ; \delta_{m n}\right) \sum_{j=1}^{s} \sum_{k=1}^{t}\left\|\Phi_{m n}\left(E_{0 j k} ; x, y\right)-E_{0 j k}\right\|_{s \times t} \\
& +M \sum_{j=1}^{s} \sum_{k=1}^{t}\left\|\Phi_{m n}\left(E_{0 j k} ; x, y\right)-E_{0 j k}\right\|_{s \times t} .
\end{aligned}
$$

Hence, we get

$$
\begin{align*}
& \left\|\Phi_{m n}(F)-F\right\|_{s \times t} \\
\leq & B\left\{\omega_{s \times t}\left(F ; \delta_{m n}\right)+\omega_{s \times t}\left(F ; \delta_{m n}\right) \sum_{j=1}^{s} \sum_{k=1}^{t}\left\|\Phi_{m n}\left(E_{0 j k} ; x, y\right)-E_{0 j k}\right\|_{s \times t}\right. \\
& \left.+\sum_{j=1}^{s} \sum_{k=1}^{t}\left\|\Phi_{m n}\left(E_{0 j k} ; x, y\right)-E_{0 j k}\right\|_{s \times t}\right\} \tag{20}
\end{align*}
$$

where $B=\max \{2 K, M\}$. Now, given $\varepsilon>0$, define the following sets:

$$
\begin{gathered}
\Gamma:=\left\{(m, n) \in \mathbb{N}^{2}:\left\|\Phi_{m n}(F)-F\right\|_{s \times t} \geq \varepsilon\right\} \\
\Gamma_{1}:=\left\{(m, n) \in \mathbb{N}^{2}: \omega_{s \times t}\left(F ; \delta_{m n}\right) \geq \frac{\varepsilon}{(2 s t+1) B}\right\} \\
\Delta_{j k}:=\left\{(m, n) \in \mathbb{N}^{2}: \omega_{s \times t}\left(F ; \delta_{m n}\right)\left\|\Phi_{m n}\left(E_{0 j k} ; x, y\right)-E_{0 j k}\right\|_{s \times t} \geq \frac{\varepsilon}{(2 s t+1) B}\right\}, \\
\Theta_{j k}:=\left\{(m, n) \in \mathbb{N}^{2}:\left\|\Phi_{m n}\left(E_{0 j k} ; x, y\right)-E_{0 j k}\right\|_{s \times t} \geq \frac{\varepsilon}{(2 s t+1) B}\right\},
\end{gathered}
$$

where $1 \leq j \leq s, 1 \leq k \leq t$. Then, it follows from (20) that

$$
\Gamma \subseteq \Gamma_{1} \cup\left(\bigcup_{j=1}^{s} \bigcup_{k=1}^{t} \Delta_{j k}\right) \cup\left(\bigcup_{j=1}^{s} \bigcup_{k=1}^{t} \Theta_{j k}\right)
$$

Also, defining

$$
U:=\left\{(m, n) \in \mathbb{N}^{2}: \omega_{s \times t}\left(F ; \delta_{m n}\right) \geq \sqrt{\frac{\varepsilon}{(2 s t+1) B}}\right\}
$$

and

$$
U_{j k}:=\left\{(m, n) \in \mathbb{N}^{2}:\left\|\Phi_{m n}\left(E_{0 j k} ; x, y\right)-E_{0 j k}\right\|_{s \times t} \geq \sqrt{\frac{\varepsilon}{(2 s t+1) B}}\right\}
$$

we have $\Delta_{j k} \subset U \cup U_{j k}$, which yields

$$
\Gamma \subseteq \Gamma_{1} \cup U \cup\left(\bigcup_{j=1}^{s} \bigcup_{k=1}^{t} U_{j k}\right) \cup\left(\bigcup_{j=1}^{s} \bigcup_{k=1}^{t} \Theta_{j k}\right)
$$

Therefore, since $\gamma_{m n}:=\max _{1 \leq j \leq s, 1 \leq k \leq t}\left\{\alpha_{m n j k}, \delta_{m n}\right\}$, we conclude that, for all $(p, r) \in$ \mathbb{N}^{2},

$$
\begin{align*}
& \frac{1}{\gamma_{p r}} \sum_{(m, n) \in \Gamma} a_{p r m n} \\
\leq & \frac{1}{\delta_{p r}} \sum_{(m, n) \in \Gamma_{1}} a_{p r m n}+\sum_{j=1}^{s} \sum_{k=1}^{t}\left(\frac{1}{\alpha_{m n j k}} \sum_{(m, n) \in U_{j k}} a_{p r m n}\right) \\
& +\frac{1}{\delta_{p r}} \sum_{(m, n) \in U} a_{p r m n}+\sum_{j=1}^{s} \sum_{k=1}^{t}\left(\frac{1}{\alpha_{m n j k}} \sum_{(m, n) \in \Theta_{j k}} a_{p r m n}\right) . \tag{21}
\end{align*}
$$

Letting $p, r \rightarrow \infty$ (in any manner) on both sides of (21), from (18) and (19), we get

$$
P-\lim _{p, r} \frac{1}{\gamma_{p r}} \sum_{(m, n) \in \Gamma} a_{p r m n}=0
$$

Therefore, the proof is completed.

References

[1] K. Demirci and F. Dirik, A Korovkin-type approximation theorem for functions of two variables in statistical sense, Turk J Math., 47(2010), 73-83.
[2] K. Demirci and F. Dirik, Four-dimensional matrix transformation and rate of Astatistical convergence of periodic functions, Math. Comput. Modelling, 52(2010), 1858-1866.
[3] K. Demirci and F. Dirik, Equi-ideal convergence of positive linear operators for analytic p-ideals, Math. Commun., 16(2011), 169-178.
[4] O. Duman and E. Erkuş-Duman, Statistical Korovkin-type theory for matrixvalued functions, Stud. Sci. Math. Hung., 48(2011), 489-508.
[5] O. Duman, M. K. Khan and C. Orhan, A-Statistical convergence of approximating operators, Math. Inequal. Appl., 4(2003), 689-699.
[6] H. J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2(1936), 29-60.
[7] G. H. Hardy, Divergent Series, Oxford Univ. Press, London, 1949.
[8] S. Karakuş and K. Demirci, Summation process of Korovkin type approximation theorem, Miskolc Math. Notes, 12(2011), 75-85.
[9] S. Karakuş, K. Demirci and O. Duman, Equi-statistical convergence of positive linear operators, J. Math. Anal. Appl., 339(2008), 1065-1072.
[10] P. P. Korovkin, Linear Operators and Approximation Theory, Translated from the Russian ed. (1959). Russian Monographs and Texts on Advanced Mathematics and Physics, Vol. III. Gordon and Breach Publishers, Inc., New York; Hindustan Publishing Corp. (India), Delhi 1960.
[11] F. Moricz, Statistical convergence of multiple sequences, Arch. Math. (Basel), 81(2004), 82-89.
[12] Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(2003), 223-231.
[13] D. Noutsos, S. Serra-Capizzano and P. Vassalos, Two-level Toeplitz preconditioning: approximation results for matrices and functions, SIAM J. Sci. Comput., 28(2006), 439-458.
[14] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53(1900), 289-321.
[15] G. M. Robison, Divergent double sequences and series, Amer. Math. Soc. Transl., 28(1926), 50-73.
[16] S. S. Capizzano, A Korovkin based approximation of multilevel Toeplitz matrices (with rectangular unstructured blocks) via multilevel trigonometric matrix spaces, SIAM J. Numer. Anal., 36(1999), 1831-1857.
[17] S. S. Capizzano, A Korovkin-type theory for finite Toeplitz operators via matrix algebras, Numer. Math., 82(1999), 117-142.
[18] S. S. Capizzano, Korovkin tests, approximation, and ergodic theory, Math. Comp., 69(2000), 1533-1558.

[^0]: *Mathematics Subject Classifications: 40G15, 41A36.
 ${ }^{\dagger}$ Corresponding Author. Sinop University, Faculty of Arts and Sciences, Department of Mathematics, TR-57000, Sinop, Turkey.
 \ddagger Sinop University, Faculty of Arts and Sciences, Department of Mathematics, TR-57000, Sinop, Turkey.

