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Abstract

In this paper, we obtain some results concerning the location of zeros of a
complex polynomial. The results presented here improve upon the earlier results
and this is justified through some specific examples, for which we develop MAT-
LAB code to construct polynomials for which the region obtained by our results
are sharper than obtainable from some of the known results. A brief compar-
ative analysis on the computational results is also done. It may be noted that
the problems dealing with the location of zeros of a polynomial, besides being
of theoretical interest, have important applications in many areas, such as signal
processing, communication theory and control theory.

1 Introduction

Let p(2) be a polynomial of degree n, having complex coefficients. Since by the Fun-
damental Theorem of Algebra the polynomial p(z) has exactly n zeros, so it would
obviously be of interest to obtain the smallest possible region containing all the zeros
of a polynomial. The results related to the location of zeros of a polynomial have sig-
nificant applications in many areas such as Mathematical Physics, Signal Processing,
Communication Theory, Control Theory, Coding Theory, Cryptography, Mathematical
Biology, and Computer Engineering, and so there is always a demand for better and
better results.

It may be remarked that there are methods, for example, Ehrlich-Aberth’s type (see,
[1, 13, 21]) for the simultaneous determination of the zeros of algebraic polynomials,
and there are studies to accelerate convergence and increase computational efficiency
of these methods (for example, see [19, 22]). These methods, which are of course very
useful, because of their giving approximations to the zeros of a polynomial, can possibly
become more efficient when combined with the results of this paper that provide annulus
containing all the zeros of a polynomial.
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318 Location of Zeros of a Polynomial

The first result concerning the location of zeros of a polynomial is probably due to
Gauss, who proved that a polynomial

p(2) = ap + a1z + az2” + -+ + an2",
with all ay real, has no zeros outside the circle |z| = R, where

R = max (nv?2]ax|)*.
1<k<n

The above result of Gauss was improved by Cauchy [5], who proved that if
p(z) =ap+ a1z + a2+ Fap_12" "+ 2"
is a complex polynomial of degree n, then all the zeros of p(z) lie in the disc
{z:]zl <n}Cc{z:|z| <1+ A},

where A = maxi<k<n—1|ax| and n is the unique positive root of the real-coefficient
equation

n n—1 n—2

2" = an—1|2""" = |ap—2]z" " — - —|a1] z — |ag| = 0.

If one applies the above result of Cauchy to the polynomial P(z) = z"p(1/z), one easily
gets the following Theorem 1.

THEOREM 1 (Cauchy). All the zeros of the polynomial p(z) = ag+a1z+- - -+a,z",
an # 0, lie in the annulus r; < |z| < ry, where 71 is the unique positive root of the
equation

|an|2™ + |an—1]2""1 + -+ Jar]z — |ao| = 0, (1)

and ry is the unique positive root of the equation

lao| + |a1| z + - + |an_1]|2" 7! = |an|z™ = 0. (2)

Although the above Theorem of Cauchy gives an annulus containing all the zeros
of a polynomial, it is implicit, in the sense, that in order to find the annulus containing
all the zeros of a polynomial, one needs to compute the zeros of two other polynomials.
The results providing annuli with radii explicitly in terms of coefficients have been given
in many papers and books (see [2, 3, 6, 9, 14, 15, 18, 24]), and we begin by stating the
following theorem due to Diaz-Barrero [10], which gives an annulus containing all the
zeros of a polynomial.

THEOREM 2. If p(z) = ap+a1z+---+a,_12" "t +a,z" is a non-constant complex
polynomial of degree n, with ax # 0, 1 < k < n, then all the zeros of p(z) lie in the
annulus C = {z : 1y < |z] <o}, where

1
}k

2" FLC(n, k)

3 . ag
1= = min —
2 1<k<n Fy,

Qg
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and .
r 2 ma F4n Qn—k F
= -~ max
27 3 1<kin 20 FC(n, k) | an ’
where C'(n, k) = #lk),, and F}, is the k' Fibonacci number, defined by Fy = 0, F} =

land Fp, = Fy_1+ Fx_2, k> 2.
In this direction, Kim [16] also gave the following
THEOREM 3. Let p(z) = ap + a1z + -+ + an—12""1 + a,2" be a non-constant

complex polynomial of degree n, with ax # 0, 1 < k < n. Then all the zeros of p(2)
lie in the annulus C' = {z : r1 < |z| < ry}, where

_ {C(n, k) | ao }’1‘
r1 = min —
1<k<n | 2% —1 |ag
and )
2" —1 |a, 1|\ *
To = Max  ——— )
27 1 <k<n C(n, k)| ay

where C(n, k) are the binomial coefficients.

Another result in this direction, providing annulus containing all the zeros of a
polynomial is due to Diaz-Barrero and Egozcue [11].

THEOREM 4. If p(z) = ap+a1z+---+a,_12" "t +a,z" is a non-constant complex
polynomial of degree n, with a; # 0, 1 < k < n, then for j > 2, all the zeros of p(z)
lie in the annulus C' = {z : r1 < |z| < ry}, where

1
, {C(n, k)AxBE(bB;_1)"" | aq }
r1 = min 20
1<k<n Ajn ag
and 1
r9 = max Ajn ani||"
2 1<k<n C’(mk)AkB;?(ij_l)n—k an )

where C(n, k) are the binomial coefficients,

n—1 n
Bp=>Y r*s" 'K and > C(n,k)(bB;j_1)" "B Ay, = Ajp, for j > 2,
k=0 k=0

where A,, = cr™ + ds™, ¢, d are real constants and r, s are the roots of the equation

22 — ax — b= 0, in which a, b are strictly positive real numbers.

Recently Dalal and Govil [7] (also, see [8]) proved the following theorem which
unifies and includes all the above Theorems 2, 3 and 4 as special cases.
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THEOREM 5. Let Ay > 0 for 1 < k < n and be such that Y ,_; A, = 1. If
p(z) = ap + a1z + -+ anp_12""t + a,z™ is a non-constant complex polynomial of
degree n, with a; # 0 for 1 < k < n. Then all the zeros of p(z) lie in the annulus
C ={z:r1 <|z| <73}, where

}i

As an application of Theorem 5, Dalal and Govil [7] also gave the following.

Ap—k
(429

ao

Qg

ri{ = min {Ak

* 1 1
} and ro9 = 11%1]2(” {Ak

THEOREM 6. Let p(z) = ap + a1z + - + an_12""1 + a,2" be a non-constant
complex polynomial of degree n, with a; # 0, 1 < k < n. Then all the zeros of p(z)
lie in the annulus C' = {z : r1 < |z| < ry}, where

1
) Cr—1Cni |ag || *
ry= min { ——= | —
1<k<n Ch ay
and )
T max Cn Gt | | *
2 p—
1<k<n | Cro1Chk | an ’

where C) = % is the k" Catalan number in which C(2k,k) are the binomial
coefficients.

As mentioned in the paper of Dalal and Govil [7], the above Theorem 5, besides
including Theorems 2, 3, and 4, as special cases, is also capable of generating many
new results by making appropriate choice of the numbers Aj. Recently Bidkham et
al. [4] and Rather and Matto [23] obtained results on annulus containing all the zeros
of a polynomial involving Fibonacci numbers and generalized Fibonacci numbers re-
spectively. Although not mentioned in their papers, but as is easy to see, the results
obtained by them can also be obtained as special cases of Theorem 5.

In this paper, we use Theorem 5 to obtain the following theorems, which provide
annuli containing all the zeros of a polynomial. Also, we show that for some polynomials
our theorems sharpen some of the known results in this direction, and this has been
done in Section 4 where we develop MATLAB code to generate examples of polynomials
for which our results give better bounds than obtainable from the known results, such
as Theorems 2, 3 and 6. As we will see, in some cases improvement has come out to
be quite significant.

Our first result, stated below gives annulus in terms of Narayana numbers [20].

THEOREM 7. Let p(z) = ag + a1z + -+ + an_12""! + a,2™ be a non-constant
complex polynomial of degree n, with a; # 0, 1 < k < n. Then all the zeros of p(z)
lie in the annulus C = {z : r; < |z| < ro}, where

%
SO

. N(n,k)
RRE/ Gares

a G

an

Cn
a } R 1131113%(71{N(n,k)
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C, = % is the n" Catalan number, N(n,k), (1 <k < n) are Narayana numbers
given for any natural number n, by N(n,k) = 1C(n,k)C(n,k — 1), and C(n,k) are

binomial coefficients.

In the next result, we will make use of Motzkin numbers (see [12]) to evaluate
the radii of two circles involved in the annular region containing all the zeros of a
polynomial.

THEOREM 8. Let p(z) = ag + a1z + -+ + ap,_12"" ! + a,2™ be a non-constant
complex polynomial of degree n, with ar # 0, 1 < k < n. Then all the zeros of p(z) lie
in the annulus C = {2z : r; < |z| < ro} with

*
} 0

}'1“, 5)

where M, is the n*" Motzkin number given by My = M; = M_; = 1 and

M1 Mp_1-x

. ao
1 = min —
1<k<n M,

73

and
M,

T = maXx n—k

Qn

2n + 3 3n

Mn = 5 ¥n 5
+ n+3 n+3

Mrb—l; n= 1.

Finally, we present the following result which involves the special combination of
binomial coefficients.

THEOREM 9. Let p(z) = ap + a1z + -+ + an_12""1 + a,2" be a non-constant
complex polynomial of degree n, with a; # 0, 1 <k < n. Then all the zeros of p(z)
lie in the annulus C' = {z : 1 < |z| < ra}, where

}}c

ao

= min {C’(Q(k -1),k-=1)C2(n—-k),n—k)
1<k<n 4gn—1

ag

and
- 4n71
e { C(k—1),k—1) C2(n—Fk),n—k)

where C'(2(k — 1),k — 1) and C(2(n — k),n — k) are binomial coefficients.

Qn

As mentioned above, these theorems are of interest because for some polynomials,
they yield sharper bounds than obtainable from some of the known results and this
has been shown in Section 4.
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2 Lemmas

We will need the following lemmas to prove our results. Our first lemma connects
Narayana numbers with Catalan numbers

LEMMA 1. If N(n, k) are Narayana numbers for the given positive integer n, then
> N(n,k)=C, (7)

k=1
where C), is the nth Catalan number.
PROOF. Even though, it is a fundamental identity in the field of combinatorics, for

the sake of completeness, we provide brief outlines of the proof. Note that, if C'(n, k)
denote the binomial coefficients, then Narayana numbers are given by the formula

N(n,k) = %C(n,kz) C(n,k—1),

and Catalan numbers, by the formula C,, = %HC(Qn, n). Then
- I 1
ZN(n7 k) = = ZC(n, E)C(n,k—1)==-C(2n,n—1)
n n
k=1 k=1
1 (2n)! 1

T am-DICn—(n-1) n+ 1C@2n,n) = Cn.

Next lemma provides an identity involving Motzkin numbers, which we will use to
prove Theorem 8. Although, this identity is known, however for the sake of complete-
ness we will present brief outlines of the proof.

LEMMA 2. If M,, is the n** Motzkin number, then

My, = My 1My, ®)
k=1

where MO = M1 = M,1 =1.

PROOF. It is known that, Motzkin number M,, is the number of different ways of
drawing non-intersecting chords on a circle between n points. Take any one point on
the circle and join it to any one of the other points on the circle. If one side of the chord
contains ¢ points then the other side of the chord contains (n —2 —4) points. Hence the
number of different ways of drawing non-intersecting chords in which the selected point
always forms a chord is MoM,,_o + M1 M,,_3 + -+ - + M, _2Mj. By removing selected
point from the circle, the number of ways drawing non-intersecting chords in which the
selected point never forms a chord is M, _1. In other words, the total number of ways
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of drawing non-intersecting chords on the circle is the sum of those two numbers; that
is,
n—2

M, =M, + Z M; M, _o_;.
i=0
Proper re-indexing gives the equality (8), thus completing the proof.

Our next result is a nice consecutive binomial coefficient identity, which is well-
known. We omit its proof since it can be found in [17, p. 77].

LEMMA 3. With the standard binomial coefficient notations,

f:C(Q(k— ), k—1)C2n—k),n—k)=4"""1 (9)
k=1

3 Proofs of the Theorems

PROOF OF THEOREM 7. If N(n, k) are Narayana numbers and C,, is the n!* Catalan
number, then by Lemma 1,

" N(n,k) 1
Z c,
k=1

Thus, if we take Ay = %7 then each Ay, is positive and Y.}, Ay = 1, and hence

applying Theorem 5 for this set of Ag, (1 <k < n), we get the required annulus C
given by (3), that contains all the zeros of the polynomial p(z).

PROOF OF THEOREM 8. Note that if M,, is the n” Motzkin number, then from

Lemma 2, we have
n

Z My My 1) 1
M, =5
h—1

where My = My = M_; = L If we take Ay = 2=13=1=k then Ay > 0 and
>or_i Ar = 1, and hence by applying Theorem 5 for this set of values of Ay, (1 <
k <mn), we get (4), and Theorem 8 is proved.

PROOF OF THEOREM 9. By Lemma 3, we have

=1.

" C2k—-1),k-1)C2n—-k),n—k
; (2(k—1) 4)TH(( ) )

Now, if we take
C2(k-1),k—1)C2(n—k),n—k)
Ak = gn—1 )
then Ay > 0 and Y }_, Ay = 1, and hence applying Theorem 5 for this set of values
of A, we get the required annulus given by (6), and the proof of Theorem 9 is thus

complete.
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4 Computational Results and Analysis

In this section, we present two examples of polynomials, for which the annuli obtained
by our results are significantly smaller than the annuli obtainable from the other stated
results.

Our first example is the one given in the paper due to Dalal and Govil [7].

EXAMPLE 1. Let p(z) = 23 +0.122 + 0.1z + 0.7.

As one can observe from the Table 1 given below, our Theorem 8 is giving signifi-
cantly better bound than obtainable from any of the known Theorems 2, 3 and 6. In
fact the area of the annulus containing all the zeros of the polynomial p(z) obtained by
Theorem 8 is about 2.3701, which is about 68.24% of the area of the annulus obtained
by Theorem 2, about 28.27% of the area of the annulus obtained by Theorem 3, and
about 73.69% of the area of the annulus obtained by Theorem 6.

Table 1:

Result 71 9 Area of the annulus
THEOREM 2| 0.6402 | 1.2312 3.4730
THEOREM 3| 0.4641 | 1.6984 8.382
THEOREM 6 | 0.6542 | 1.2050 3.2159
THEOREM 7| 0.5192 | 1.5182 6.3950
THEOREM 8| 0.7047 | 1.1186 2.3701
THEOREM 9| 0.6403 | 1.2313 3.4748

Actual bound | 0.8840 | 0.8899 0.0328

Our next example has been constructed by using MATLAB code.

EXAMPLE 2. Let p(z) = 2° + 0.062% + 0.292° 4 0.2922 + 0.29z + 0.001.

For the polynomial p(z) given in this example, it is clear from the Table 2 below
that Theorem 7 gives the best upper bound of the annular region containing all the
zeros of the polynomial p(z). Theorem 7 also provides considerably good result for the
estimation of the area of the annular region containing all the zeros of p(z), which is
very close to the actual area of the annulus. In fact the area of the annulus containing
all the zeros of the polynomial p(z) obtained by Theorem 7 is about 2.2167 which
differs from the actual area by only about 1.089%. Also, this area is about 24.67% of
the area obtained from Theorem 2, about 52.61% of the area obtained by Theorem 3,
and about 28.96 % of the area obtained by Theorem 6.
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Table 2:

Result r1 9 Area of the annulus
THEOREM 2| 0.00012233 | 1.6912 8.986
THEOREM 3| 0.00055617 1.158 4.2125
THEOREM 6 0.0011 1.5608 7.6529
THEOREM 7| 0.00024631 0.84 2.2167
THEOREM 8 0.0015 1.2339 4.7831
THEOREM 9 | 0.000942895 | 1.362351 5.83078

Actual bound 0.0034602 | 0.83544 2.1927

Acknowledgement: We are thankful to Ankur Agrawal of Birla Institute of Tech-

nology and Science, Goa Campus, India for his help with MATLAB.
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