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Abstract

In this paper, we study the existence of periodic solutions to the following pre-
scribed mean curvature Duffi ng-type equation with a singularity and a deviating
argument: (

u′(t)√
1 + (u′)2

)′
+ cu′(t) + g(t, u(t− δ)) = p(t),

where g has a strong singularity at x = 0 and satisfies a small force condition at
x =∞, which are different from the known literatures.

1 Introduction

In recent years, the problems of periodic solution have been studied widely for some
types of differential equations with a singularity, see [3, 6—8, 13—16] and references
therein. For example, Wang [15] studied periodic solutions for the Liénard equation
with a singularity and a deviating argument of the form

x′′(t) + f(x(t))x′(t) + g(t, x(t− σ)) = 0,

where 0 ≤ σ < T is a constant, f : R→ R, g : R× (0,+∞)→ R is an L2-Carathéodory
function, g(t, x) is a T -periodic function in the first argument and can be singular at
x = 0, i.e., g(t, x) can be unbounded as x→ 0+.

Nowadays, the prescribed mean curvature equation(
u′(t)√

1 + (u′)2

)′
= f(u(t)),

and its modified forms, which arises from some problems associated to differential
geometry and combustible gas dynamics, were studied extensively, see [1, 2, 11, 12] and
the references therein. Moreover, we note that the existence of periodic solutions for the
prescribed curvature mean equations has attracted much attention from researchers.
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However, it is not easy to study the periodic solutions for the prescribed curvature mean
equations. The main diffi culty lies in the nonlinear term ( u′(t)√

1+(u′)2
)′, the existence of

which obstructs the usual method of finding a priori bounds for the Liénard or the
Rayleigh equations from working. Until, in [4] , Feng considered a kind of prescribed
mean curvature Liénard equation(

u′(t)√
1 + (u′)2

)′
+ f(u(t))u′(t) + g(t, u(t− τ(t))) = e(t), (1)

where τ , e ∈ C(R,R) are T -periodic, and g ∈ C(R × R,R) is T -periodic in the first
argument, T > 0 is a constant. Through the transformation, Feng asserts that Eq.(1)
is equivalent to the following system{

u′(t) = ϕ(v(t)) = v(t)√
1−v2(t)

,

v′(t) = −f(t, ϕ(v(t)))− g(t, u(t− τ(t))) + e(t).

Then by applying Mawhin’s continuation theorem under some suffi cient conditions, the
author show that Eq.(1) has at least one periodic solution.
On the basis of Feng’s work, various types of prescribed curvature mean equations

have been studied, see [9, 10, 17] and the references therein.
However, to the best of our knowledge, the study of positive periodic solutions for

the prescribed mean curvature equation with a singularity is relatively infrequent. This
is due to the fact that the mechanism on which how the solution is influenced by the
singularity and the nonlinear term ( u′(t)√

1+(u′)2
)′ associated to prescribed mean curvature

equation is far away from clear.
Inspired by the above facts, in this paper, we consider the following prescribed mean

curvature Duffi ng-type equation with a singularity and a deviating argument(
u′(t)√

1 + (u′)2

)′
+ cu′(t) + g(t, u(t− δ)) = p(t), (2)

where c is a constant, 0 ≤ δ < T, g : [0, T ] × (0,+∞) → R is a continuous function.
g can be singular at u = 0, p(t) is continuous and T -periodic with

∫ T
0
p(t)dt = 0. By

applying Mawhin’s continuation theorem, we prove that Eq.(2) has at least one positive
T -periodic solution.
The structure of the rest of this paper is as follows. In Section 2, we state some

necessary definitions and lemmas. In Section 3, we prove the main result. Finally, we
give an example of an application in Section 4.

2 Preliminary

In order to use Mawhin’s continuation theorem, we first recall it.
Let X and Y be two Banach spaces, a linear operator L : D(L) ⊂ X → Y is said

to be a Fredholm operator of index zero provided that
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(a) ImL is a closed subset of Y ,

(b) dim kerL = codim ImL <∞.

Let X and Y be two Banach spaces, Ω ⊂ X be an open and bounded set, and
L : D(L) ⊂ X → Y be a Fredholm operator of index zero. A continuous operator
N : Ω ⊂ X → Y is said to be L-compact in Ω̄ provided that

(c) Kp(I −Q)N(Ω̄) is a relative compact set of X,

(d) QN(Ω̄) is a bounded set of Y ,

where we define X1 = kerL, Y2 = ImL, and

X = X1

⊕
X2 and Y = Y1

⊕
Y2.

Let P : X → X1, Q : Y → Y1 be continuous linear projectors (meaning P 2 = P
and Q2 = Q), and Kp = L |−1kerP∩D(L).

LEMMA 1 ([5]). Let X and Y be two real Banach spaces, and Ω be an open and
bounded set of X, and L : D(L) ⊂ X → Y be a Fredholm operator of index zero. The
operator N : Ω̄ ⊂ X → Y is said to be L-compact in Ω̄. In addition, if the following
conditions hold:

(1) Lx 6= λNx, ∀(x, λ) ∈ ∂Ω× (0, 1);

(2) QNx 6= 0, ∀x ∈ kerL ∩ ∂Ω;

(3) deg{JQN,Ω ∩ kerL, 0} 6= 0 where J : ImQ→ kerL is a homeomorphism.

Then Lx = Nx has at least one solution in D(L) ∩ Ω̄.

In order to use Lemma 1, let us consider the problem u′(t) = φ(v(t)) = v(t)√
1−v2(t)

,

v′(t) = −cφ(v(t))− g(t, u(t− δ)) + p(t).
(3)

Obviously, if (u(t), v(t))> is a solution of (3), then u(t) is a solution of (2). Let

X = Y = {x : x(t) = (u(t), v(t))> ∈ C1(R,R2), x(t) = x(t+ T )},

where the normal

‖x‖ = max{||u||0, ||v||0}, ||u||0 = max
t∈[0,T ]

|u|, and ||v||0 = max
t∈[0,T ]

|v|.

It is obvious that X and Y are Banach spaces.
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Now we define the operator

L : D(L) ⊂ X → Y, Lx = x′ = (u′(t), v′)>,

where
D(L) =

{
x : x = (u(t), v(t))> ∈ C1(R,R2) and x(t) = x(t+ T )

}
.

Let
X0 =

{
x = (u(t), v(t))> ∈ C1(R,R× (−1, 1)) : x(t) = x(t+ T )

}
.

Define a nonlinear operator N : Ω ⊂ (X ∩X0) ⊂ X → Y as follows:

Nx =

(
v(t)√

1− v2(t)
,− cv(t)√

1− v2(t)
− g(t, u(t− δ)) + p(t)

)>
,

where Ω ⊂ X0 ⊂ X and Ω is an open and bounded set. Then problem (3) can be
written as Lx = Nx in Ω. We know

kerL =
{
x : x ∈ X, x′ = (u′(t), v′(t))> = (0, 0)>

}
.

Then we have u′(t) = 0, v′(t) = 0 for t ∈ R. Obviously u ∈ R, v ∈ R, thus kerL = R2,
and it is also easy to prove that

ImL =

{
y ∈ Y :

∫ T

0

y(s)ds = 0

}
.

Therefore, L is a Fredholm operator of index zero. Let

P : X → kerL, Px =
1

T

∫ T

0

x(s)ds,

Q : Y → ImQ, Qy =
1

T

∫ T

0

y(s)ds.

Let Kp = L|−1kerL∩D(L). Then it is easy to see that

(Kpy)(t) =

∫ T

0

Gk(t, s)y(s)ds,

where

Gk(t) =

{
s−T
T for 0 ≤ t ≤ s,
s
T for s ≤ t ≤ T.

For all Ω with Ω ⊂ (X ∩X0) ⊂ X, we see that Kp(I −Q)N(Ω) is a relative compact
set of X and QN(Ω) is a bounded set of Y . So the operator N is L-compact in Ω.
For the sake of convenience, we list the following assumptions

[H1] There exist positive constants A1 and A2 with A1 < A2 such that
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(1) For each positive continuous T -periodic function x(t) satisfying∫ T

0

g(t, x(t))dt = 0,

there exists a positive point τ ∈ [0, T ] such that

A1 ≤ x(τ) ≤ A2.

(2) g(x) < 0 for all x ∈ (0, A1) and g(x) > 0 for all x > A2 where

g(x) =
1

T

∫ T

0

g(t, x)dt, x > 0.

[H2] g(t, x) = g1(t, x) + g0(x) where g1 : [0, T ] × (0,+∞) → R is a continuous
function and

(1) There exist positive constants a and b such that

g(t, x) ≤ ax+ b for all (t, x) ∈ [0, T ]× (0,+∞).

(2)
∫ 1
0
g0(x)dx = −∞.

Throughout this paper, define

B :=

(∫ T

0

|p(t)|2dt) 12 + sup
t∈[0,T ]

|p(t)|
)
< +∞.

3 Main Results

THEOREM 1. Suppose the conditions [H1]—[H2] hold, |c| > aT and

aA2T + bT +B
√
T

|c| − aT (c+ 2aT ) + T (2aA2 + 2b+B) < 1.

Then Eq.(2) has at least one positive T -periodic solution.

PROOF. Let
Ω1 = {z ∈ Ω : Lz = λNz and λ ∈ (0, 1)}.

If z ∈ Ω1, we have u′(t) = λφ(v(t)) = λ v(t)√
1−v2(t) ,

v′(t) = −λcφ(v(t))− λg(t, u(t− δ)) + λp(t).
(4)
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Integrating the second equation of (4) from 0 to T , we have∫ T

0

g(t, u(t− δ))dt = 0. (5)

It follows from [H1](1) that there exist positive constants A1, A2 and τ ∈ [0, T ] such
that

A1 ≤ u(τ) ≤ A2. (6)

Then, we can have

‖u‖0 = max
t∈[0,T ]

|u(t)| ≤ max
t∈[0,T ]

∣∣∣∣u(τ) +

∫ t

τ

u′(s)ds

∣∣∣∣ (7)

≤ A2 +

∫ T

0

|u′(s)|ds ≤ A2 +
√
T ‖u′‖2 .

Multiplying the second equation of (4) by u′(t) and integrating on the interval [0, T ],
we have

0 =

∫ T

0

v′(t)u′(t)dt = −
∫ T

0

c(u′)2dt− λ
∫ T

0

g(t, u(t− δ))u′(t)dt

+ λ

∫ T

0

p(t)u′(t)dt.

Combining with [H2], we get

|c|
∫ T

0

|u′2dt ≤
∫ T

0

(a|u(t− δ)|+ b) |u′(t)|dt+

∫ T

0

|p(t)||u′(t)|dt

≤ a
√
T ‖u‖0 ‖u

′‖2 + b
√
T ‖u′‖2 +B ‖u′‖2 ,

which, combining with (7), gives

|c| ‖u′‖22 ≤ a ‖u‖0
√
T ‖u′‖2 + b

√
T ‖u′‖2 +B ‖u′‖2

≤ a
[
A2 +

√
T ‖u′‖2

]√
T ‖u′‖2 + b

√
T ‖u′‖2 +B ‖u′‖2

= aT ‖u′‖22 + (aA2
√
T + b

√
T +B) ‖u′‖2 .

Then by |c| > aT , we obtain

‖u′‖2 ≤
aA2
√
T + b

√
T +B

|c| − aT . (8)

Substituting (8) into (7), we obtain

‖u‖0 ≤ A2 +
aA2T + bT +B

√
T

|c| − aT := M1. (9)
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From the second equation of (4), we can get∫ T

0

|v′(t)|dt ≤
∫ T

0

|c||u′(t)|dt+ λ

∫ T

0

|g(t, u(t− δ))|dt+ λ

∫ T

0

|p(t)|dt. (10)

Write

I+ = {t ∈ [0, T ] : g(t, u(t− δ)) ≥ 0} and I− = {t ∈ [0, T ] : g(t, u(t− δ)) ≤ 0}.

Then, combining with (5) and [H2](1), we have∫ T

0

|g(t, u(t− δ))|dt =

∫
I+

g(t, u(t− δ))dt−
∫
I−

g(t, u(t− δ))dt

= 2

∫
I+

g(t, u(t− δ))dt

≤ 2a

∫ T

0

u(t− δ)dt+ 2

∫ T

0

bdt

≤ 2aT ‖ u ‖0 +2bT.

(11)

Substituting (11) into (10) and in view of (8) and (9), we obtain∫ T

0

|v′(t)|dt ≤ |c|
√
T ‖ u′ ‖2 +λ(2aT ‖ u ‖0 +2bT ) + λBT

≤ aA2T + bT +B
√
T

|c| − aT (c+ 2aT ) + T (2aA2 + 2b+B).

(12)

Integrating the first equation of (4) on the interval [0, T ], we can get∫ T

0

v(t)√
1− v2(t)

dt = 0.

Then we can see that there exists η ∈ [0, T ] such that v(η) = 0. It implies that

|v(t)| =
∣∣∣∣∫ t

η

v′(s)ds+ v(η)

∣∣∣∣ ≤ ∫ T

0

|v′(s)|ds,

which, combining with (12), gives

|v(t)| ≤
∫ T

0

|v′(s)|ds

≤ aA2T + bT +B
√
T

|c| − aT (c+ 2aT ) + T (2aA2 + 2b+B)

:= ρ.

(13)

Since
aA2T + bT +B

√
T

|c| − aT (c+ 2aT ) + T (2aA2 + 2b+B) < 1,
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we obtain
‖v‖0 = max

t∈[0,T ]
|v(t)| ≤ ρ < 1. (14)

By (4), we can also have

‖u′‖0 ≤ λ max
t∈[0,T ]

|v(t)|√
1− v2(t)

≤ λρ

1− ρ2 . (15)

From the second equation of (4) and by [H2], we can have

v′(t+ δ) = −cu′(t+ δ)− λ[g1(t+ δ, u(t)) + g0(u(t))] + λp(t+ δ). (16)

Multiplying both sides of Eq.(16) by u′(t), we can see that

v′(t+ δ)u′(t) = −cu′(t+ δ)u′(t)− λ[g1(t+ δ, u(t)) + g0(u(t))]u′(t)

+ λp(t+ δ)u′(t).
(17)

Let τ ∈ [0, T ] be as in (6). For any t ∈ [τ , T ], integrating Eq.(17) on the interval [τ , T ],
we obtain

λ

∫ u(t)

u(τ)

g0(u)du = λ

∫ t

τ

g0(u(t))u′(t)dt

= −
∫ t

τ

v′(t+ δ)u′(t)dt−
∫ t

τ

cu′(t+ δ)u′(t)dt

− λ
∫ t

τ

g1(t+ δ, u(t))u′(t)dt+ λ

∫ t

τ

p(t+ δ)u′(t)dt.

Then from the inequality above and combining with (12), we get

λ

∣∣∣∣∣
∫ u(t)

u(τ)

g0(u)du

∣∣∣∣∣ = λ

∣∣∣∣∫ t

τ

g0(u(t))u′(t)dt

∣∣∣∣
≤

∫ T

0

|v′(t+ δ)||u′(t)|dt+

∫ T

0

|c||u′(t+ δ)||u′(t)|dt

+λ

∫ T

0

|g1(t+ δ, u(t))||u′(t)|dt+ λ

∫ T

0

|p(t+ δ)||u′(t)|dt

≤ ‖ u′ ‖0

[
aA2T + bT +B

√
T

|c| − aT (c+ 2aT ) + T (2aA2 + 2b+B)

]

+

∫ T

0

|c||u′(t+ δ)||u′(t)|dt+ λ

∫ T

0

|g1(t+ δ, u(t))||u′(t)|dt

+λ

∫ T

0

|p(t+ δ)||u′(t)|dt. (18)

Set GM1
= max
|u|≤M1

|g1(t, u)|, we have

∫ T

0

c|u′(t+ δ)||u′(t)|dt ≤ |c|T ‖u′‖20 (19)
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and ∫ T

0

|g1(t+ δ, u(t))||u′(t)|dt ≤ GM1T ‖u′‖0 . (20)

Substituting (19) and (20) into (18), we can obtain

λ

∣∣∣∣∣
∫ u(t)

u(τ)

g0(u)du

∣∣∣∣∣
≤ ‖u′‖0

[
aA2T + bT +B

√
T

|c| − aT (c+ 2aT ) + T (2aA2 + 2b+B)

]
+ |c|T ‖u′‖20 + λGM1

T ‖u′‖0 + λBT ‖u′‖0

≤ λρ

1− ρ2

[
aA2T + bT +B

√
T

|c| − aT (c+ 2aT ) + T (2aA2 + 2b+B)

]

+ |c|T
(

λρ

1− ρ2

)2
+GM1

T
λρ

1− ρ2 +BT
λρ

1− ρ2 ,

which, combining with (15), gives∣∣∣∣∣
∫ u(t)

u(τ)

g0(u)du

∣∣∣∣∣ ≤ ρ

1− ρ2

[
aA2T + bT +B

√
T

|c| − aT (c+ 2aT ) + T (2aA2 + 2b+B)

]

+ |c|T
(

ρ

1− ρ2

)2
+
GM1

Tρ

1− ρ2 +
BTρ

1− ρ2

< +∞.

According to [H2](2), for t ∈ [τ , T ], we can see that there exists a constant M2 > 0
such that

u(t) ≥M2. (21)

For the case t ∈ [0, τ ], we can handle it similarly.
Define

0 < D1 = min{A1,M2} and D2 = max{A2,M1}.
Then by (6), (9) and (21) we obtain

D1 ≤ u(t) ≤ D2. (22)

Set

Ω =

{
x = (u, v)> ∈ X :

D1

2
< u(t) < D2 + 1, ‖v‖0 < ρ1 <

ρ+ 1

2

}
.

Then the condition (1) of Lemma 1 is satisfied.
Suppose that there exists x ∈ ∂Ω∩kerL such that QNx = 1

T

∫ T
0
Nx(s)ds = (0, 0)>,

i.e, 
1
T

∫ T
0

v(t)√
1−v2(t)

dt = 0,

1
T

∫ T
0

[
−c v(t)√

1−v2(t)
− g(t, u(t− δ)) + p(t)

]
dt = 0.

(23)
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Since kerL = R2, and u,v ∈ R are constant, by the first equation of (23), we have

v = 0 < ρ1.

Then from the second equation of (23), we get

1

T

∫ T

0

g(t, u(t− δ))dt = 0.

It follows from [H1](1) that

D1

2
< D1 < A1 ≤ u(t) ≤ A2 < D2 < D2 + 1,

which is contrary to the assumption x ∈ ∂Ω. So for all x ∈ kerL ∩ ∂Ω, we have
QNx 6= 0. Then, we can see that the condition (2) of Lemma 1 is satisfied.
In the following, we prove that the condition (3) of Lemma 1 is also satisfied. Define

z = Kx = K

(
u
v

)
=

(
u− A1+A2

2
v

)
.

Then we have that

x = z +

(
A1+A2

2
0

)
.

Define J : ImQ→ kerL is a linear isomorphism with

J(u, v) =

(
v
−u

)
,

and define
H(µ, x) = µKx+ (1− µ)JQNx, ∀(x, µ) ∈ Ω× [0, 1],

Then,

H(µ, x) =

(
µu− µ(A1+A2)

2
µv

)
+

1− µ
T

(∫ T
0

[ cv√
1−v2 + g(t, u)]dt∫ T
0

v√
1−v2 dt

)
. (24)

Now we claim that H(µ, x) is a homotopic mapping. Assume, by way of contradiction,
that there exist

µ0 ∈ [0, 1] and x0 =

(
u0
v0

)
∈ ∂Ω

such that H(µ0, x0) = 0. Substituting µ0 and x0 into (24), we have

H(µ0, x0) =

µ0u0 − µ0(A1+A2)
2 + (1− µ0) cv0√

1−v20
+ (1− µ0)g(u0)

µ0v0 + (1− µ0) v0√
1−v20

 . (25)

Since H(µ0, x0) = 0, we can see that

µ0v0 + (1− µ0)
v0√

1− v20
= 0,
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which combining with µ0 ∈ [0, 1], we obtain v0 = 0. Thus u0 = A1 or A2. If u0 = A1, it
follows from [H1](2) that g(u0) < 0. Then substituting v0 = 0 into (25), we can have

µ0u0 −
µ0(A1 +A2)

2
+ (1− µ0)g(u0) < µ0(u0 −

A1 +A2
2

) < 0. (26)

If u0 = A2, it follows from [H1](2) that g(u0) > 0, then substituting v0 = 0 into (25),
we can have

µ0u0 −
µ0(A1 +A2)

2
+ (1− µ0)g(u0) > µ0(u0 −

A1 +A2
2

) > 0. (27)

Combining with (26) and (27), we can see that H(µ0, x0) 6= 0, which contradicts the
assumption. Therefore H(µ, x) is a homotopic mapping and

x>H(µ, x) 6= 0, ∀(x, µ) ∈ (∂Ω ∩ kerL)× [0, 1].

Then

deg(JQN,Ω ∩ kerL, 0) = deg(H(0, x),Ω ∩ kerL, 0)

= deg(H(1, x),Ω ∩ kerL, 0)

= deg(Kx,Ω ∩ kerL, 0)

=
∑

x∈K−1(0)

sgn(detK ′(x))

= 1 6= 0.

Thus, the condition (3) of Lemma 1 is also satisfied. Therefore, by applying Lemma 1,
we can conclude that Eq.(2) has at least one positive T -periodic solution.

4 Example

In this section, we provide an example to illustrate results from the previous sections.

Example 4.1. As an application, we consider the following example:(
u′(t)√

1 + (u′)2

)′
+ 7u′(t) +

1

32
(1 + sin 8t)u(t− δ)− 1

u(t− δ) =
1

64
sin 8t. (28)

Conclusion. The Problem (28) has at least one positive π
4 -periodic solution. Cor-

responding to Theorem 1 and (2), we have

g(t, u(t− δ)) =
1

32
(1 + sin 8t)u(t− δ)− 1

u(t− δ) , p(t) =
1

64
sin 8t.

Then we can choose

T =
π

4
, a =

1

16
, b =

1

32
, c = 7, A1 = 1, A2 = 4,
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and

B :=

(∫ T

0

|p(t)|2dt
) 1

2

+ sup
t∈[0,T ]

|p(t)| < 1

32
< +∞.

Then we can see that [H1] and [H2] hold. Moreover, |c| > aT and

aA2T + bT +B
√
T

|c| − aT (c+ 2aT ) + T (2aA2 + 2b+B) ≈ 0.7202 < 1.

Hence, by applying Theorem 1, we can see that Eq.(28) has at least one positive π
4 -

periodic solution.

REMARK 1. Since all the results in [1]-[17] and the references therein are not
applicable to Eq.(28) for solving positive periodic solutions with periodic π/4, Theorem
1 in this paper is essentially new.
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