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Abstract

Assume that w,v : [a,b] — R are monotonic nondecreasing on the interval
[a,b]. For p,q > 1 with 117 + 1 =1, we say that the complex-valued function
h:a,b] — Cis (p,q)-H- dominated by the pair (u,v) if

A (y) = h(@)] < [u(y) —u@)]" [v(y) = v @)

for any z,y € [a,b] with y > x. In this paper we show amongst other that

b b 1/p b 1/q
fdh‘é(/ |f|du) (/ lfldv>
b b 1/p b 1/q
fgdh]s(/ \fl”dU) (/ \gr’dv)

for any continuous functions f,g : [a,b] — C. Applications for the trapezoidal
and midpoint inequalities are also given.

and

1 Introduction

One of the most important properties of the Riemann-Stieltjes integral f(f f(t)dg(t)
is the fact that this integral exists if one of the function is of bounded variation while
the other is continuous. The following sharp inequality holds

0 dg (1) < ma |f (¢ |\/ 1)

provided that f : [a,b] — C is continuous on [a,b] and g : [a,b] — C is of bounded
b

variation on this interval. Here \/ (g) denotes the total variation of g on [a,b] .

a
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244 Inequalities for the Riemann-Stieltjes Integral

When g is Lipschitzian with the constant L > 0, i.e.,
lg(t) =g (s)| < L[t — s

for any t, s € [a,b], then we have

b
tdg (t)] < L / £ ()] dt (2)

for any Riemann integrable function f : [a,b] — C.
Moreover, if the integrator g is monotonic nondecreasing on the interval [a, b] and
f :]a,b] — C is continuous, then we have the modulus inequality

/ £ ()] dg (¢ (3)

The above inequalities have been used by many authors to derive various integral
inequalities. We provide here some simple examples.

The following generalized trapezoidal inequality for the function of bounded varia-
tion f : [a,b] — C was obtained in 1999 by the author [21, Proposition 1]

t)dg (t

§dt— (z—a) f (@) — (b ) f () s[1<b—a>+\m—“+b\]\7(f>, ()

2 2

a

where x € [a,b]. The constant 1 cannot be replaced by a smaller quantity. See also
[19] for a different proof and other details.
The best inequality one can derive from (4) is the trapezoid inequality

pa LOHI0

Here the constant % is also best possible.

For related results, see [11-15, 17-20, 24, 25, 29-33, 39, 40, 42-44, 52-54].

In order to extend the classical Ostrowski’s inequality for differentiable functions
with bounded derivatives to the larger class of functions of bounded variation, the
author obtained in 1999 (see [21] or the RGMIA preprint version of [23]) the following

result
<[;(b_a)+‘x_“;bu\7<ﬁ (6)

a

tydt - f (x) (b )

for any x € [a,b] and f : [a,b] — C a function of bounded variation on [a,b]. Here
\/Z (f) denotes the total variation of f on [a,b] and the constant 3 is best possible in
(6). The best inequality one can obtain from (6) is the midpoint inequality, namely

va-7(“32) - < 30—\ ) ™
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for which the constant % is also sharp.
For related results, see [1-11, 16, 17, 21, 23, 25-27, 31, 34-38, 41, 45-51, 55-58].
Motivated by the above results, we establish in this paper bounds for the quantities

/a b fdh / ’ fadh

in the case when the integrands f, g, are continuous while the function of bounded
variation h is (p, q)-H-dominated by a pair of monotonic functions in the sense presented
at the beginning of the next section. Applications for the trapezoidal and midpoint
inequalities are also given.

and

2 Some General Inequalities

Assume that w,v : [a,b] — R are monotonic nondecreasing on the interval [a,b].
Assume everywhere in what follows that p,q > 1 with % + é = 1. We say that the
complex-valued function h : [a,b] — C is (p, q)-H-dominated by the pair (u,v) if

h(y) = h ()] < [uy) —u@)]"? [o(y) —v ()] (S)

for any z,y € [a,b] with y > z.

We can give numerous examples of such functions.

For instance, if we take f, g two measurable complex-valued functions such that | f|”
and |g|? are Lebesgue integrable and denote

/f t)dt, u( /|f ()" dt and v (z /|g ()| dt,

then we observe that v and v are monotonic nondecreasing on [a,b] and by Halder
integral inequality we have for any y > x with x,y € [a, b] that

(/ 1) |pdt)1/p(/ 9 (¢ |th) :
y)w( )1””[( v (@)

Now, for m,n > 0 if we consider f (t) := ¢™ and g (¢) :=t" for ¢t > 0, then

[h(y) = h(z)] = t)dt

1
m+n+1

m—+n—+1

)

B () == / L =
0

v 1 v 1
Ump (T) 1= / trmdt = ———— 2™ and v, , (z) == / tindt = ———— g2l
0 2pm +1 0 2gn +1

forp,q>1with]%+%:1.
Taking into account the above comments we observe that the function h,, , is
(p, q)-H-dominated by the pair (U, p,Un,q) o0 any subinterval of [0, c0).
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PROPOSITION 1. If h : [a,b] — C is (p, q)-H-dominated by the pair (u,v), then h
is of bounded variation on any subinterval [c,d] C [a, b] and

d
\ () < [u(d) = u ()] [o(d) —v(c)]9. 8)
forp,q>1with%+%:1.

PROOF. Consider a division ¢ of the interval [c, d] given by
dic=20< 21 < .. <Tp_1 <z =>b.
Since h : [a,b] — C is (p, ¢)-H-dominated by the pair (u,v) then we have
[ (ig1) = hwa)| < [ (@ie1) = w (@] o (i) =0 ()]
for any i € {0,...,n — 1} .

Summing this inequality over ¢ from 0 to n — 1 and utilizing the Holder discrete
inequality we have

S 1 (wis) — B (a1
< 3 fu (i) — u (@] o (2ie) — v (2]
Z_n—l p /p_q 1/q
< (X o) - umn) (Z o (@i41) — v <xi>]>
= [ (d) — u (@7 o (d) — v ()] /1 ©)

Taking the supremum over § we deduce the desired result (8).

COROLLARY 1. If h: [a,b] — C is (p, q)-H-dominated by the pair (u,v), then the
cumulative variation function V' : [a,b] — [0, 00) defined by

V() =\/(h)

is also (p, ¢)-H-dominated by the pair (u,v).
The following result is a kind of Holder integral inequality for the Riemann-Stieltjes
integral:

THEOREM 1. Assume that u,v : [a,b] — R are monotonic nondecreasing on the
interval [a, b] . If b : [a, b] — C is (p, q)-H-dominated by the pair (u,v) and f : [a,b] — C
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is a continuous function on [a,b], then the Riemann-Stieltjes integral ff f@)dn(t)

exists and
(/ o ) (/ f O)ldv e ) (10)

PROOF. Since the Riemann-Stieltjes integral f;f(t) dh (t) exists, then for any
sequence of partitions

t)dh(t

IT(]n) ca = tgn) < tg‘ﬂ) < e <& tg’i)l < tgln) -

with the norm
v (Iff”) = max ( 51)1 tgn)) —0
i€{0,...n—1}

NOME)

as n — oo, and for any intermediate points fgn) clt; s tiial, i€ {0,...,n —1} we

t)dh (t)
S COIICNRACE)
< S - (@)
<l Sl ][ m) ()] [ () o ()]
< (S b )
<o (Sl @)

(/ £ O] dut ) (/ £ (O] dv ) (1)

where for the last inequality we employed the Holder weighted discrete inequality

n n 1/p n 1/q
S maanty < (Z mkaz> (z mkbz) ,
k=1 k=1 k=1

where my, ag, by > 0 for k € {1,...,n}.
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We have the following weighted Holder type inequality for the Riemann-Stieltjes
integral as well.

THEOREM 2. Let f,g : [a,b] — C be continuous on [a,b]. If b : [a,b] — C is
(p, q)-H-dominated by the pair (u,v), which are monotonic nondecreasing on [a,b],
then for any continuos nonnegative function ¢ : [a,b] — [0, 00) we have

b b 1/p b 1/a
/ (fgdh| < </ €|f|pdu> </ £|g|qdv> : (12)
In particular, for £ = 1 we have
1/p b 1/q
( / Ifl”dU> ( / g|qdv> . (1)

/ fgdh| <

PROOF. Since the Riemann-Stieltjes integral f;) Lfgdh exists, then for any sequence
of partitions

IV o=t <t <<t <t =

with the norm

o(10) = e (80 - 07) — 0
as n — oo, and for any intermediate points 51(-") [t(”),tgi)l] € {0,...,n—1} we

have:

- (1}}};3%25@(77)]0( U)o () [ (en) =n ()]
o S )+ ()
< U<I};§3H0j§€ (&) 7 (&) lo (&)

) () ) )]

=1 (14)

| AN

Utilising the weighted Holder discrete inequality

n n 1/p n 1/(1
Zékakbk < (Z gkCLi) (Z f}J)Z)
k=1 k=1 k=1
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where l, ap, by > 0 for k

X

X

S o) [
1/p
1%3&026(5(")) (@) ) ()

e {1,...,n}, we have

AT ) @)

Il
N
@\
~
=
S
QU
<
v
\
~
o
=
QU
S
v

Making use of the inequalities (14) and (15) we deduce the desired result (1

From (12) we also have the dual inequality

efgdh

1/q

(/ €|g|’°du> " (/ab£|f|qczv> ,

which together with (12) provide

b
/ Lfgdh

In particular we have

max {

b
0f2dh

b
/
a

<min{</ab€1/];pdu> (//zjd> ,
(/abempdu) (/a/szv) }

0| f? dh

We also have the inequality

ijZfdh

smm{(/ m) (/mfr%zv) ,
(L) (fora) )

1/p
W S ) ()T )
1/q
()]

2).

b 1/p b 1/q
}§</ efl”du) (/ ﬁflqdv> -

249

(16)

(17)

(18)

(19)
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and in particular

b b e
/fdh Smin{[U(b)u(a)]l/p (/ |f|qdv> :

b 1/q
o (8) - v ()] ( / Ifl“dU> } | (20)

3 'Trapezoid and Midpoint Inequalities

The following result holds:

THEOREM 3. Assume that u,v : [a,b] — R are monotonic nondecreasing on the
interval [a,b]. If b : [a,b] — C is (p, q¢)-H-dominated by the pair (u,v) for p,q > 1 with
% + % =1, then

’W(b—a)—/abh(t)dt

b a 1/p
< [; (b—a)[u®) —u(a)] —/a sqn (t— ;b>u(t)dt1
b 1/q
X l; (b—a)[v () —v(a)] —/ sgn <t— T)v(t}dt]
< 30— a)u(®) @] o ()~ v (@], (21)

PROOF. Integrating by parts in the Riemann-Stieltjes integral, we have that

W(b-@—/jh(t)dt:/j(t—“;b)dh(t% (22)

Applying the inequality (10) we have
/b <t _a+b
@ 2

b Ur s b
< ([ -5t we) ()

> dh (t)

1/q
t—a;b‘dv(t)> . (23)
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Integrating by parts in the Riemann-Stieltjes integral we also have

;
e
- (%
(e

t_a+b

’ du ()

(a+b )du(t)+/; (t—a;b)du(t)

:—b;au(a)—i—/a u(t)dt—l—b;au(b)—/a;bu(t)dt

:2(b—a)[u(b)—u(a)]—/absgn<t—a;—b)u(t)dt (24)

and a similar relation for v.
By the Cebysev inequality for monotonic nondecreasing functions F, G that states

that
1

b 1 b 1 b
> .
b—a/a F(t)G(t)dt_b_a/a F (t)dt b—a/a G (t)dt
we also have

/absgn(t—b> dt>7/ ( a+b>dt/abu(t)dt:() (25)

and a similar result for v.
Utilizing (22)-(25) we deduce the desired result (21).

THEOREM 4. Assume that u,v : [a,b] — R are monotonic nondecreasing on the
interval [a,b]. If h: [a,b] — C is (p, q¢)-H-dominated by the pair (u,v) for p,q > 1 with
% + % =1, then

h(a;b) (b—a)—/abh(t)dt

- Vlbsgn <t a;b) “(t)dtr/p x l/absgn <t a;rl?) ’U(t)dt]l/q
< 30RO —u@ o) v (26)

PROOF. Integrating by parts on the Riemann-Stieltjes integral we have

+b

h(“;b) (b—a)—/abh(t)dt:/aaz(t—a)dh(t)—/ab b-t)dh(t). (27)

atb
2
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Taking the modulus in (27) we have

h(“;b> (b—a)—/abh(t)dt

Applying the inequality (10) twice, we have

a+b
2

/a (t — a)dh (t)

< + /lb (b—t)dh(t)|. (28)

atb
2

a+b

/a T (t—a)dh (1)

and

Summing these inequalities and utilizing the elementary result
aB+ M\ < (of + /\p)l/p (37 +5q)1/q
for a, B, A\, 6 > 0 and p,q > 1 with % + % =1, we have

a+b

/a C (t—a)dh(t)

+

/i (b—t)dh (%)

atb b 1/q
+ (/ (t—a)dv(t) + /m (b—1t)dv (t)) . (29)
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Integrating by parts in the Riemann-Stieltjes integral we have

afb b
/ (t—a)du(t)—l—/ar%(b—t)du(t)
astb =n b
= (t—a)u(t)|,? —/ w(t) dt + (b—t)u(t)ﬂ%b —&-/ﬂy%u(t)dt

- /ab sgn <t - a—;b) w (t) dt (30)

and the last integral is nonnegative as shown in the proof of Theorem 3.
The same equality holds for v as well.
Utilising the Griiss integral inequality

bia/abF(t)G(t)dt—b_la/abF(t)dtbia/abG(t)dt

gi(M—m)(N—n) (31)

that holds for the Lebesgue integrable functions F' and G that satisfy the conditions
m<F@#)<Mandn<G(@{t) <N

for almost every ¢ € [a,b] , we have

b—a /, 2 ‘b—a
< 3 u(b) ~ua)]
which implies that
b a
/ sgn(t ;rb>u(t)dt§;(ba)[u(b)u(a)]. (32)

A similar result holds for v.
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Making use of the inequalities (28), (29), (30) and (32) we deduce the desired result
(26).

In this section we provide some inequalities of trapezoid type by utilizing the above
inequalities (20) and (8).

THEOREM 5. If f: [a,b] — C is (p, q)-H-dominated by the pair (u,v) for p,q > 1
with % + % =1 and (u,v) are monotonic nondecreasing on [a, b] , then

b
HOZIO ooy [ 0at] < 100
< 50— () —u (@] [ (6) ~ v (@],
(3)
where
Ty (0,0) = [0 (8) — (@] x § == (b= 0) [0 () v (a)]
b a a q—1 1/q
_q/a sgn (t— ;b> ‘t— ;b U(t)dt} (34)

PROOF. Integrating by parts in the Riemann-Stieltjes integral, we have that

f(a)""f(b)(b—a)—/abf(t)dt:/ab(t—a—;b>df(t). (35)

2

Utilizing the inequality (20) we have

/ab (t - ;b> & (0| < fu®) —u @) </b

Integrating by parts in the Riemann-Stieltjes integral we also have

b
t_a—l—

q 1/q
dv (t)> . (36)

b q q b
b b
/atfa; dv(t)‘ta;r vio)|
b q—1
b b
—p/ sgn t—a+ t—a+ v (t)dt
. 2 2
1
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Utilizing (23) we deduce the first inequality (33). By the Cebysev inequality for
monotonic nondecreasing functions F, G that states that

bia/abF(t)G()dtzb_a/ t)dt - _a/G

1 b a+b
b_a/a (t— y )v(t)dt
1 b a+b 1 b
> - . = U.
_b_a/a (t 5 )dt b_a/av(t)dt 0

This proves the last part of the inequality (33).

we also have

We also have another trapezoid type inequality as follows:

THEOREM 6. Let f : [a,b] — C be a differentiable function on (a,b) and u,v :
[a,b] — R be differentiable and convex on (a,b) . If f’ is (p, q¢)-H-dominated by the pair
(u/,v") for p,q > 1 with % + % =1 on (a,b), then

b b
M(b—a)_/f(t)dt < l;p(p—l)/ (b= a)" " u(t) dt
1/p
—%p (b—a)’ u(d) + % (b—a)"u’ (b)]

b
x l;q (q— 1)/ (b—t)"" v (t)dt

1 1/q

~500- 0" 0@ = 50— 0" (@] (7

PROOF. Observe that for f’ of bounded variation, the following Riemann-Stieltjes
integral exists and integrating by parts twice we have

b b
[e-ae-nao=c-ae-oratez[ (-5) row
a b b
—2[(15 ;Lb>f(t)a i
_9 lf(“);f(b) (b—a) — bf(t) dt] (38)

giving the identity

f();rf /f /(t—a)(b—t)df’(t). (39)



256 Inequalities for the Riemann-Stieltjes Integral

Utilising the inequality (13) we have

b 1/p b 1/q
<< / (t—a)pdu'(t)> < / (b—t)qdv’(t)) ~(40)

Integrating by parts, we have

/ab (t —a)’ du’ (t)

b
— (t—a) @) — p/ (t—a)" Lo (1) dt

b
[ t-ae-va

b

=(b—a)’u (b)—p l(t —a)” " u(t)

~o-1) [t u( dt]

b
—plp=1) [ -0y P u®dt—pb-ay ulb)+ (b0 ()
giving that
b
% / (t— a)? du (1)
1 ’ 2 1 2
= §p(p— 1)/ (t—a) “u@)dt—=pb—a)’ " u(d)+=((b—a)Pu (b). (41)

We also have

b
/ (b—t)?dv (t)

= (b-1t)% (t)|Z + q/b (b—t)" " (¢) dt

b

=—(b—a)" (a)+q |(—t)" " v(t)

+(qg— 1)/b (b—t)q%(t)dt]

a

b 2 1
—aa-1) [ 0-0" e Odt—a - 0" v () - 0- ) (0
giving that
;/b (b— )2 dv’ (1)
b
511 [ 6= e@dt- a0 o) - S0 (@, (12)
Making use of (39)—(42) we deduce the desired inequality (37).

Acknowledgement. The author would like to thank the anonymous referee for
valuable remarks that have been implemented in the final version of the paper.
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