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Abstract

This article addresses the problem of moment generating functions of the com-
plementary exponential-geometric distributions using generalized order statistics.
The relations for marginal and joint moment generating functions of generalized
order statistics from complementary exponential-geometric distribution are de-
rived. The corresponding results for order statistics and record values are deduced
from the relations derived. Further, using conditional expectation of generalized
order statistics, we obtain characterization of this distribution. Finally, we sug-
gest some applications.

1 Introduction

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed random vari-
ables with cumulative distribution function (cdf) F (x) and probability density function
(pdf) f(x). Let Xj:n denote the jth order statistic of a sample X1, X2, . . . , Xn. Assume
that k > 0, n ∈ N , n ≥ 2, m̃ = (m1,m2, . . . ,mn−1) ∈ <n−1, Mr =

∑n−1
j=1 mj such that

γr = k + n− r +Mr > 0 ∀ r ∈ {1, 2, . . . , n− 1} .

If the random variables U(r, n, m̃, k), r = 1, 2, . . . , n possess a joint pdf of the form

fU(1,n,m̃,k),...,U(n,n,m̃,k)(u1, u2, . . . , un)

= k

n−1∏
j=1

γj

(n−1∏
i=1

(1− ui)mi
)

(1− un)k−1, (1)

on the cone 0 ≤ u1 ≤ u2 ≤ . . . un < 1 of <n, then they are called uniform generalized
order statistics.
Generalized order statistics (gos) based on some distribution function F are defined

by means of quantile transformationX(r, n, m̃, k) = F−1(U(n, n, m̃, k)), r = 1, 2, . . . , n.
Ordered random variables such as, order statistics, kth upper record values, upper
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288 The Complementary Exponential-Geometric Distribution

record values, progressively Type II censoring order statistics, Pfeifer records and se-
quential order statistics are seen to be particular cases of gos. These models can be
effectively applied in many statistical applications, statistical modeling and inference
involving data pertaining to economics, life testing studies, reliability theory and so on.
Suppose X(1, n,m, k), . . . , X(n, n,m, k), (k ≥ 1, m is a real number), are n gos from
an absolutely continuous cumulative distribution function cdf F (x) with probability
density function pdf f(x). If their joint pdf is of the form

k

n−1∏
j=1

γj

(n−1∏
i=1

[1− F (xi)]
mif(xi)

)
[1− F (xn)]k−1f(xn), (2)

on the cone
F−1(0) ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ F−1(1).

For convenience, let us define X(0, n,m, k) = 0. It can be seen that for

m1 = m2 = · · · = mn−1 = 0 and k = 1,

i.e., γi = n − i + 1 and 1 ≤ i ≤ n − 1, this model reduces to the ordinary order
statistic and (2) will be the joint pdf of n order statistics X1:n ≤ X2:n ≤ . . . ≤ Xn:n

from cdf F (x). In a similar manner, choosing the parameter appropriately, some other
models such as kth upper record values (m1 = · · · = mn = −1, k ∈ N , i.e., γi = k,
1 ≤ i ≤ n − 1), sequential order statistics (mr = (n − r + 1)αr − (n − r)αr+1 − 1;
r = 1, 2, . . . , n− 1, k = αn; α1, α2, . . . , αn > 0, i.e., γi = (n− i+ 1)αi; i ≤ i ≤ n− 1),
order statistics with non-integral sample size (m1 = · · · = mn−1 = 0, k = α − n + 1
with n− 1 < α ∈ <, i.e., γi = α− i+ 1; 1 ≤ i ≤ n− 1) (Rohatgi and Saleh [1], Saleh et
al. [2]), Preifer’s record values and progressively type-II right censored order statistics
can be obtained (cf. Kamps [3, 4], Kamps and Cramer [5]).
In view of (2), the marginal pdf of the r-th gos, X(r, n,m, k), 1 ≤ r ≤ n, is

fX(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F̄ (x)]γr−1f(x)gr−1

m (F (x)). (3)

The joint pdf of X(r, n,m, k) and X(s, n,m, k), 1 ≤ r < s ≤ n, is

fX(r,n,m,k),X(s,n,m,k)(x, y)

=
Cs−1

(r − 1)!(s− r − 1)!
[F̄ (x)]mf(x)gr−1

m (F (x))

× [hm(F (y))− hm(F (x))]
s−r−1 [

F̄ (y)
]γs−1

f(y) (4)

for x < y where

Cr−1 =

r∏
i=1

γi, F̄ (x) = 1− F (x),

hm(x) =

{
− 1
m+1 (1− x)

m+1 if m 6= −1,

− ln (1− x) if m = −1,
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and
gm(x) = hm(x)− hm(1), x ∈ [0, 1).

Several authors utilized the concept of gos in their work. References may be made
to Kamps and Gather [6], Keseling [7], Cramer and Kamps [8], Ahsanullah [9], Al-
Hussaini et al. [10, 11], Kulshrestha et al. [12] among others.
Kumar [13] has established recurrence relations for marginal and joint mgf of lower

generalized order statistics from Marshall-Olkin extended logistic distribution. Kumar
[14, 15] also established explicit expressions and some recurrence relations for mgf of
kth record values from generalized logistic and extended type II generalized logistic
distributions. Recurrence relations for moments of kth record values were investigated,
among others, by Grudzień and Szynal [16], and Pawlas and Szynal [17, 18].
The exponential distribution is the most popular distribution for modeling many

problems in life testing and reliability studies. Recently Adamidis and Loukas [19]
introduced two-parameter complementary exponential-geometric (CEG) distribution
lifetime distribution, which is complementary to the exponential-geometric model. For
λ > 0 and 0 < θ < 1 the two-parameter CEG distribution has the pdf of the form

f(x; θ, λ) =
λθe−λx

[θ + (1− θ)e−λx]2
, x > 0 (5)

and the corresponding cdf is

F (x; θ, λ) = 1− e−λx

[θ + (1− θ)e−λx]
, x > 0. (6)

Here, λ and θ are the scale and shape parameters respectively. Plots of the pdf of CEG
distribution for some combination of the values of the model parameters are given in
Figure 1.

Figure 1. CEG Density Function.

The reliability function R(x), which is the probability of an item not failing prior
to some time t, is defined by R(x) = 1 − F (x). The reliability function of a CEG
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distribution is given by

R(x) =
e−λx

[θ + (1− θ)e−λx]
, x > 0. (7)

The basic tools for studying the ageing and reliability characteristics of the system are
the hazard rate (HR) and the mean residual lifetime (MRL). The HR and the MRL
deal with the residual lifetime of the system. The HR gives the rate of failure of the
system immediately after time x, and the MRL measures the expected value of the
remaining lifetime of the system, provided that it has survived up to time x. Thus the
hazard rate function of the CEG distribution is given by

h(x) =
f(x; θ, λ)

1− F (x; θ, λ)
=

(
θλ

θ + (1− θ)e−λx

)
, x > 0. (8)

Plots of the hazard function of CEG distribution for some combination of the values
of the model parameters are given in Figure 2.

Figure 2. CEG reliability function.

A recurrence relation for moment generating functions of gos from the CEG distribu-
tion is obtained by making use of the following (obtained from (5) and (6))

F̄ (x; θ, λ) =

(
θ + (1− θ)e−λx

θλ

)
f(x; θ, λ). (9)

Let us denote the marginalmgf ofX(r, n,m, k) byMX(r,n,m,k)(t) and its jth derivative

by M (j)
X(r,n,m,k)(t). Similarly, let MX(r,n,m,k),X(s,n,m,k)(t1, t2) denote the joint mgf of

X(r, n,m, k) and X(s, n,m, k) and its (i, j)th partial derivatives by

M
(i,j)
X(r,n,m,k),X(s,n,m,k)(t1, t2)
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with respect to t1 and t2, respectively.

Figure 3. CEG reliability function.

The presentation of the content of this work is as follows: In Section 2, we present
some explicit expressions and recurrence relations for marginal mgf of gos from CEG
distribution. We obtain the relations for joint mgf of gos from this distribution in
Section 3. We also present recurrence relations for the moments so that one can obtain
the higher order moments from those of the lower order. In Section 4, we obtain a
characterization result of this distribution by using conditional expectation of gos. In
Section 5, three applications are demonstrated to illustrate the utility of the results
derived in Sections 2 and 3. Section 6 ends with concluding remarks.

2 Relations for Marginal Moment Generating Func-
tions

For the CEG distribution given in (5), the mgf of X(r, n,m, k) is given as

MX(r,n,m,k)(t) =

∫ ∞
−∞

etxfX(r,n,m,k)(x)dx

=
Cr−1

(r − 1)!

∫ ∞
−∞

etx[F̄ (x)]γr−1f(x)gr−1
m (F (x))dx. (10)

Further, by using the binomial expansion, we can rewrite (10) as

MX(r,n,m,k)(t) =
Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)u
(
r − 1
u

)
×
∫ ∞
−∞

etx[F̄ (x)]γr−u−1f(x)dx. (11)

Now letting z = F̄ (x) in (11), we get

MX(r,n,m,k)(t) =
θ−t/λCr−1

(r − 1)!(m+ 1)r

∞∑
p=0

r−1∑
u=0

(−1)u+p

(
r − 1
u

)
Γ
(
1 + t

λ

)
p!Γ
(
1 + t

λ − p
)
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×(1− θ)p B

(
k

m+ 1
+ n− r + u+

p− (t/λ)

m+ 1
, 1

)
. (12)

Since
b∑

a=0

(−1)a
(
b
a

)
B(a+ k, c) = B(k, c+ b), (13)

where B(a, b) is the complete beta function, we have

MX(r,n,m,k)(t) =

∞∑
p=0

(−1)p θ−t/λ (1− θ)p Γ
(
1 + t

λ

)
p!Γ
(
1 + t

λ − p
)∏r

a=1

(
1 + p−(t/λ)

γa

) . (14)

Special cases
i) Putting m = 0 and k = 1 in (14), the explicit formula for mgf of order statistics
from the CEG distribution can be obtained as

MXr:n(t) =
θ−t/λ n!

(n− r)!

∞∑
p=0

(−1)p (1− θ)p Γ
(
1 + t

λ

)
Γ
(
n− r + 1 + p− t

λ

)
p!Γ
(
1 + t

λ − p
)

Γ
(
n+ 1 + p− t

λ

) ,

and

MX1:n(t) = n θ−t/λ
∞∑
p=0

(−1)p (1− θ)p Γ
(
1 + t

λ

)
p!Γ
(
1 + t

λ − p
) (
n+ p− t

λ

) for r = 1.

ii) Setting m = −1 in (14), we get the explicit expression for the marginal mgf of kth
upper record values from the CEG distribution

MX(r,n,−1,k)(t) =

∞∑
p=0

(−1)p (1− θ)p θ−t/λ Γ
(
1 + t

λ

)
p!Γ
(
1 + t

λ − p
) (

1 + p−(t/λ)
k

)r ,

and

MXU(r) =

∞∑
p=0

(−1)p (1− θ)p θ−t/λ Γ
(
1 + t

λ

)
p!Γ
(
1 + t

λ − p
) (

1 + p− t
λ

)r for r = 1.

A recurrence relation for the marginal mgf for gos from (9) can be obtained in the
following theorem.

THEOREM 1. For the distribution given in (5) and for 2 ≤ r ≤ n, n ≥ 2,
k = 1, 2, . . . , (

1− t

λγr

)
M

(j)
X(r,n,m,k)(t)

= M
(j)
X(r−1,n,m,k)(t) +

j

λγr
M

(j−1)
X(r,n,m,k)(t)

− (1− θ)
λθγr

[
tM

(j)
X(r,n,m,k)(t− λ) + jM

(j−1)
X(r,n,m,k)(t− λ)

]
. (15)
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PROOF. From (3), we have

M
(j)
X(r,n,m,k)(t) =

Cr−1

(r − 1)!

∫ ∞
−∞

etx[F̄ (x)]γr−1f(x)gr−1
m (F (x))dx. (16)

Integrating by parts of (16) and by (9), we get

M(r,n,m,k)(t) = MX(r−1,n,m,k)(t) +
t

λγr
M(r,n,m,k)(t)

+
t(1− θ)
λθγr

M(r,n,m,k)(t− λ). (17)

Differentiating both sides of (17) j times with respect to t, we get the result given in
(15). By differentiating both sides of equation (15) with respect to t and then setting
t = 0, we obtain the recurrence relations for moments of gos from CEG in the form

E[Xj(r, n,m, k)] = E[Xj(r − 1, n,m, k)] +
j

λγr
E[Xj−1(r, n,m, k)]

+
j(1− θ)
λθγr

E[φ(X(r, n,m, k))], (18)

where
φ(x) = xj−1e−λx.

REMARK 1. Putting m = 0 and k = 1 in (15) and (18), we can get the following
relations for order statistics{

1− t

λ(n− r + 1)

}
M

(j)
Xr:n

(t)

= M
(j)
Xr−1:n

(t) +
j

λ(n− r + 1)
M

(j−1)
Xr:n

(t)

+

{
(1− θ)

λθ(n− r + 1)

}[
tM

(j)
Xr:n

(t− λ) + jM
(j−1)
Xr:n

(t− λ)
]

and

E[Xj
r:n] = E[Xj

r−1:n] +
j

λ(n− r + 1)

{
E[Xj−1

r:n ] +
1− θ
θ

E[φ(Xr;n)]

}
.

REMARK 2. Setting m = −1 and k ≥ 1 in (15) and (18), relations for record
values can be obtained as{

1− t

λk

}
M

(j)

Z
(k)
r

(t) = M
(j)

Z
(k)
r−1

(t) +
j

λk
M

(j−1)

Z
(k)
r

(t)

+

{
(1− θ)
λθk

}[
tM

(j)

Z
(k)
r

(t− λ) + jM
(j−1)

Z
(k)
r

(t− λ)
]

and
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E[(Z(k)
r )j ] = E[(Z

(k)
r−1)j ] +

j

λk

{
E[(Z(k)

r )j−1] +
1− θ
θ

E[φ(Zr)]

}
,

and hence for upper records,

E[Xj
U(r)] = E[Xj

U(r−1)] +
j

λ

{
E[Xj−1

U(r)] +
1− θ
θ
− E[φ(XU(r))]

}
.

REMARK 3. The relation in (18) can be used in a simple recursive process to
obtain all the rth single moments of generalized order statistics for j ∈ Z+, (Z+ is the
set of positive integer values). The computations of these moments can be done based
on the rth single moment of the order statistics and record value.

3 Relations for Joint Moment Generating Functions

For CEG distribution, the joint mgf of X(r, n,m, k) and X(s, n,m, k) is given as

MX(r,n,m,k),X(s,n,m,k)(t1, t2) =

∫ ∞
−∞

∫ ∞
x

et1x+t2yfX(r,n,m,k)X(s,n,m,k)(x, y)dxdy.

By (4) and binomial expansion, we have

MX(r,n,m,k),X(s,n,m,k)(t1, t2)

=
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

×
r−1∑
u=0

s−r−1∑
v=0

(−1)u+v

(
r − 1
u

)(
s− r − 1

v

)
×
∫ ∞

0

et1x[F̄ (x)](s−r+u−v)(m+1)−1f(x)G(x)dx, (19)

where

G(x) =

∫ ∞
x

et2y[F̄ (y)]γs−v−1f(y)dy. (20)

By setting z = F̄ (y) in (20), we obtain

G(x) = θ−t2/λ
∞∑
p=0

(−1)p (1− θ)p Γ
(
1 + t2

λ

)
[F̄ (x)]γs−v+p−(t2/λ)

p!Γ
(
1 + t2

λ − p
) [
γs−v + p− t2

λ

] .

On substituting the above expression of G(x) in (19) and simplifying the resulting
equation, we get

MX(r,n,m,k),X(s,n,m,k)(t1, t2)

=
θ−(t1+t2)/λ Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2
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×
∞∑
p=0

∞∑
q=0

(−1)p+q (1− θ)p+q Γ
(
1 + t2

λ

)
Γ
(
1 + t1

λ

)
p!q!Γ

(
1 + t2

λ − p
)

Γ
(
1 + t1

λ − q
)

×
r−1∑
u=0

(−1)u
(
r − 1
u

)
B

(
k

m+ 1
+ n− r + u+

p+ q − (t1 + t2)/λ

m+ 1
, 1

)

×
s−r−1∑
v=0

(−1)v
(
s− r − 1

v

)
B

(
k

m+ 1
+ n− s+ v +

p− (t2/λ)

m+ 1
, 1

)
. (21)

By relation (13) in (21), and after simplification we get

MX(r,n,m,k),X(s,n,m,k)(t1, t2)

=

∞∑
p=0

∞∑
q=0

(−1)p+q (1− θ)p+q Γ
(
1 + t2

λ

)
Γ
(
1 + t1

λ

)
p!q!Γ

(
1 + t2

λ − p
)

Γ
(
1 + t1

λ − q
)

× θ−(t1+t2)/λ∏r
a=1

(
1 + p+q−(t1+t2)/λ

γa

)∏s
b=r+1

(
1 + p−(t2/λ)

γb

) . (22)

Special Cases
i) Puttingm = 0 and k = 1 in (22), the explicit formula for jointmgf of order statistics
can be obtained as

MXr:n,Xs:n(t1, t2)

=
θ−(t1+t2)/λ n!

(n− s)!

∞∑
p=0

∞∑
q=0

(−1)p+q (1− θ)p+q Γ
(
1 + t2

λ

)
Γ
(
1 + t1

λ

)
p!q!Γ

(
1 + t2

λ − p
)

Γ
(
1 + t1

λ − q
)

×Γ[n− r + 1 + p+ q − (t1 + t2)/λ]Γ[n− s+ 1 + p− (t2/λ)]

Γ[n+ 1 + p+ q − (t1 + t2)/λ]Γ[n− r + 1 + p− (t2/λ)]
.

ii) Setting m = −1 in (22), we deduce the explicit expression for joint mgf of upper
record value in the form

MXU(r),XU(s)(t1, t2) =

∞∑
p=0

∞∑
q=0

(−1)p+q (1− θ)p+q Γ
(
1 + t2

λ

)
Γ
(
1 + t1

λ

)
p!q!Γ

(
1 + t2

λ − p
)

Γ
(
1 + t1

λ − q
)

× θ−(t1+t2)/λ(
1 + p+q−(t1+t2)/λ

k

)r (
1 + p−(t2/λ)

k

)s−r .
By (9), we can derive the recurrence relations for the joint mgf of gos.

THEOREM 2. Let X(1, n,m, k), . . . , X(n, n,m, k) be n gos formed from a random
sample of size n from the pdf (5). Then for 1 ≤ r < s ≤ n , n ≥ 2 and k ≥ 1 the
following recurrence relation is satisfied(

1− t2
λγs

)
M

(i,j)
X(r,n,m,k)X(s,n,m,k)(t1, t2)
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= M
(i,j)
X(r,n,m,k)X(s−1,n,m,k)(t1, t2) +

(1− θ)
λθγs

[
t2M

(i,j)
X(r,n,m,k)X(s,n,m,k)(t1, t2 − λ)

+ jM
(i,j−1)
X(r,n,m,k)X(s,n,m,k)(t1, t2 − λ)

]
+

j

λγs
M

(i,j−1)
X(r,n,m,k)X(s,n,m,k)(t1, t2). (23)

PROOF. Using (4), the joint mgf of X(r, n,m, k) and X(s, n,m, k) is given by

MX(r,n,m,k)X(s,n,m,k)(t1, t2)

=
Cs−1

(r − 1)!(s− r − 1)!
×
∫ ∞

0

[F̄ (x)]mf(x)gr−1
m (F (x))I(x)dx (24)

and

I(x) =

∫ ∞
x

et1x+t2y[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y)dy.

Solving the integral in I(x) by parts and using (9), substituting the resulting expression
in (24), we get

MX(r,n,m,k)X(s,n,m,k)(t1, t2)

= MX(r,n,m,k)X(s−1,n,m,k)(t1, t2) +
t2
λγs

{
MX(r,n,m,k)X(s,n,m,k)(t1, t2)

+
(1− θ)
θ

MX(r,n,m,k)X(s,n,m,k)(t1, t2 − λ)

}
. (25)

Differentiating both sides of (25) i times with respect to t1 and then j times with re-
spect to t2 and simplifying the resulting expression, we get the result given in (23).

One can also note that Theorem 1 can be deduced from Theorem 2 by letting t1
tends to zero.
By differentiating both sides of equation (23) with respect to t1, t2 and then setting

t1 = t2 = 0 , we obtain the recurrence relations for product moments of gos from CEG
in the form

E[Xi(r, n,m, k)Xj(s, n,m, k)]

= E[Xi(r, n,m, k)Xj(s− 1, n,m, k)]

+
j

λγs

{
E[Xi(r, n,m, k)Xj−1(s, n,m, k)]

+
(1− θ)
θ

E[φ(X(r, n,m, k)Xj(s− 1, n,m, k))]

}
, (26)

where
φ(x, y) = xiyj−1e−λy.

REMARK 4. Putting m = 0 and k = 1 in (23) and (26), we obtain the recurrence
relations for joint mgf and single moments of order statistics in the form(

1− t2
λ(n− s+ 1)

)
M

(i,j)
Xr,s:n

(t1, t2)
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= M
(i,j)
Xr,s−1:n

(t1, t2) +
j

λ(n− s+ 1)
M

(i,j−1)
Xr,s:n

(t1, t2)

+
(1− θ)

λθ(n− s+ 1)

[
t2M

(i,j)
Xr,s:n

(t1, t2 − λ) + jM
(i,j−1)
Xr,s:n

(t1, t2 − λ)
]

and

E[Xi,j
r,s:n] = E[Xi,j

r,s−1:n] +
j

λ(n− s+ 1)

{
E[Xi,j−1

r,s:n ] +
1− θ
θ

E[φ(Xr,s:n)]

}
.

REMARK 5. Substituting m = −1 and k ≥ 1 in (23) and (26), we get recurrence
relation for joint mgf and product moments of the kth upper record values for CEG
distribution.

4 Characterization

Let X(r, n,m, k), r = 1, 2, . . . , n be gos. Then from a continuous population with cdf
F (x) and pdf f(x), then the conditional pdf of X(s, n,m, k) given X(r, n,m, k) = x,
1 ≤ r < s ≤ n, in view of (5) and (6), is

fX(s,n,m,k)|X(r,n,m,k)(y|x)

=
Cs−1

(s− r − 1)!Cr−1
× [hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1

[F̄ (x)]γr+1
f(y). (27)

THEOREM 3. Let X(r, n,m, k), r = 1, 2, . . . , n be gos based on continuous dis-
tribution function F (x) with F (0) = 0 and 0 < F (x) < 1 for all x > 0. Then the
conditional expectation of gos X(s, n,m, k) given X(r, n,m, k) = x, is given as

E[etX(s,n,m,k)|X(r, n,m, k) = x]

= θ−t/λ
∞∑
p=0

(−1)p (1− θ)p Γ
(
1 + t

λ

)
p!Γ
(
1 + t

λ − p
) (

e−λx

θ + (1− θ)e−λx

)p−(t/λ)

×
s−r∏
j=1

(
γr+j

γr+j + p− (t/λ)

)
. (28)

if, and only if,

F (x; θ, λ) = 1− e−λx

[θ + (1− θ)e−λx]
, x > 0.

PROOF. From (27), we have

E[etX(s,n,m,k)|X(r, n,m, k) = x]

=
Cs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1
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×
∫ ∞
x

ety

[
1−

(
F̄ (y)

F̄ (x)

)m+1
]s−r−1 [

F̄ (y)

F̄ (x)

]γs−1
f(y)

F̄ (x)
dy. (29)

By setting w = F̄ (y)
F̄ (x)

from (6) in (29), we obtain

E
[
etX(s,n,m,k)|X(r, n,m, k) = x

]
=

θ−t/λCs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

×
∞∑
p=0

(−1)p (1− θ)p Γ
(
1 + t

λ

)
p!Γ
(
1 + t

λ − p
) (

e−λx

θ + (1− θ)e−λx

)p−(t/λ)

×
∫ 1

0

wγs+p−(t/λ)−1(1− wm+1)s−r−1dw. (30)

Again by setting z = wm+1 in (30) and simplyfying the resulting expression, we get
the result given in (28). To prove suffi ciency, we have from (27) and (28)

Cs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

∫ ∞
x

ety[(F̄ (x))m+1 − (F̄ (y))m+1]s−r−1

×[F̄ (y)]γs−1f(y)dy = [F̄ (x)]γr+1φr(x), (31)

where

φr(x) = θ−t/λ
∞∑
p=0

(−1)p (1− θ)p Γ
(
1 + t

λ

)
p!Γ
(
1 + t

λ − p
)

×
(

e−λx

θ + (1− θ)e−λx

)p−(t/λ) s−r∏
j=1

(
γr+j

γr+j + p− (t/λ)

)
.

Differentiating (31) both sides with respect to x and rearranging the terms, we get

− Cs−1[F̄ (x)]mf(x)

(s− r − 2)!Cr−1(m+ 1)s−r−2

×
∫ ∞
x

ety[(F̄ (x))m+1 − (F̄ (y))m+1]s−r−2[F̄ (y)]γs−1f(y)dy

= φ′r(x)[F̄ (x)]γr+1 − γr+1φr(x)[F̄ (x)]γr+1−1f(x)

or

−γr+1φr+1(x)[F̄ (y)]γr+2+mf(x) = φ′r(x)[F̄ (x)]γr+1 − γr+1φr(x)[F̄ (x)]γr+1−1f(x).

Therefore,
f(x)

F̄ (x)
= − φ′r(x)

γr+1[φr+1(x)− φr(x)]
=

λθ

[θ + (1− θ)e−λx]
,
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which proves that

F (x; θ, λ) = 1− e−λx

[θ + (1− θ)e−λx]
, x > 0.

REMARK 6. For m = 0, k = 1 and k = 1, m = −1, we obtain the characterization
results of the CEG distribution based on order statistics and record values, respectively.

5 Numerical Results

In Tables 1—4, we have computed the values of means for λ = 0.5(0.5)4 and θ = 0.5, 1.0.
From Tables 1 and 2, one can see that the mean of order statistics is increasing with
respect to θ but decreasing with respect to r, n and λ. Also from Tables 3 and 4
one can see that the means of record values are increasing with respect to θ and r
but decreasing with respect to λ. In Tables 5—8, we have computed the variances of
order statistics and record values for different values of r, s and n for different values
of θ and λ. The numerical computation for the skewness, kurtosis and covariances of
order statistics and record values are not presented here but they are available from
the author on request.

6 Applications

• The recurrence relations for moments of ordered random variables are important
because they reduce the amount of direct computations for moments, evaluate
the higher moments and they can be used to characterize distributions.

• The recurrence relations of higher joint moments enable us to derive single, prod-
uct, triple and quadruple moments which can be used in Edgeworth approximate
inference.

• The explicit expressions given in Sections 2 and 3 can be used to calculate the
means, variances, skewness, kurtosis and variance covariance matrix.

7 Concluding Remarks

In this paper, we considered the gos from CEG model and obtained exact explicit
expressions as well as recurrence relations for the marginal and joint moment generating
functions of gos. The recurrence relations obtained in the paper allow us to evaluate
the means, variances and covariances of all order statistics and upper record values
for all sample sizes in a simple recursive manner. However, we have only computed
the means and variances of the order statistics and record values which are useful in
determining best linear unbiased estimators (BLUEs) of location/scale parameters and
best linear unbiased predictors (BLUPs) of censored failure times.
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Table 1: Means of order statistics for θ = 0.5.

Table 2: Means of order statistics for θ = 1.0.

Table 3: Means of record statistics for θ = 0.5.
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Table 4: Means of record statistics for θ = 1.0.

Table 5: Variances of order statistics for θ = 0.5.

Table 6: Variances of order statistics for λ = 1.0.
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Table 7: Variance of record statistics for θ = 0.5.

Table 8: Variance of record statistics for θ = 1.0.
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